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Alternate islands of multiple isochronous chains in wave-particle interactions
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We analyze the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a
standing electrostatic wave. We show that a pulsed wave produces an infinite number of perturbative terms with
the same winding number, which may generate islands in the same region of phase space. As a consequence,
the number of isochronous island chains varies as a function of the wave parameters. We observe that in all
the resonances, the number of chains is related to the amplitude of the various resonant terms. We determine
analytically the position of the periodic points and the number of island chains as a function of the wave number
and wave period. Such information is very important when one is concerned with regular particle acceleration,
since it is necessary to adjust the initial conditions of the particle to obtain the maximum acceleration.
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Wave-particle interaction is basically a nonlinear pro-
cess [1,2] that may present regular and chaotic trajectories
in its phase space [3]. This kind of interaction can be found in
many areas of physics [1,4–6], and it is used in a wide range
of applications as an efficient way for particle heating [1,7–9]
and particle acceleration [1,5,9–11].

References [12–14] present two cases of particles moving
in a uniform magnetic field and perturbed by electrostatic
waves. For such systems, appropriate resonant conditions
are responsible for a great amount of particle acceleration.
References [12,13] determine the parameters values for which
the acceleration may be maximum.

However, the process of regular acceleration also depends
on the trajectory followed by the particles. To attain the
condition of maximum acceleration, it is necessary to know
the position of the resonances and the number of island chains
as a function of the parameters. In this way, it is possible
to properly adjust the initial conditions of the particles and
make them follow the best trajectory in phase space. Moreover,
successive bifurcations changing the number of chains modify
the acceleration conditions. Even so, these bifurcations have
not been explored yet.

In this Brief Report, we analyze the onset of different island
chains described by the dynamics of a twist system consisting
of a relativistic particle moving in a uniform magnetic field.
This integrable system is kicked by standing electrostatic
pulses [15–17], such that it becomes near integrable for small
amplitudes [1–3,12,16].

Expanding the pulses in a Fourier-Bessel series, we observe
that the wave presents an infinite number of perturbative terms.
There are groups of perturbative terms with the same winding
number that may generate different islands in the same region
of phase space. This superposition alters the number of island
chains according to the wave parameters. Using the map of the
system, we carry a series of analytical estimates, including the
position of the periodic points in phase space and the number
of island chains as functions of the wave parameters.
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The Hamiltonian of the system also reveals that the
perturbative terms are symmetric, and as a consequence, the
total number of islands is even for all the resonances. Thus, for
any resonance, the number of chains is even when the number
of islands in each chain is odd. On the other hand, when the
number of islands in each chain is even, the number of chains
may be even or odd.

Following Refs. [13,14], we analyze a beam of charged
particles interacting with a uniform magnetic field and a
standing electrostatic wave. We assume that the density of the
beam is very low, so that it does not induce any wave growth,
and the particles may be considered as test particles that do
not interact with each other. The dimensionless Hamiltonian
that describes the dynamics transverse to the magnetic field is
given by [13,14]

H (I, θ, t) = √
1 + 2I + ε

2
cos(k

√
2I sin θ )

+∞∑
n=−∞

δ(t − nT ),

(1)

where the periodic sum of delta function kicks describes a
pulsed wave with dimensionless wave number k, period T ,
and amplitude ε/2.

Integrating the system, we obtain an exact map that
describes its time evolution [13,14]:

In+1 = 1

2

{
2In sin2 θn + [

√
2In cos θn

+ 1

2
εk sin(k

√
2In sin θn)]2

}
,

θn+1 = arctan

[
2
√

2In sin θn

2
√

2In cos θn + εk sin(k
√

2In sin θn)

]

+ T√
1 + 2In+1

(mod2π ), (2)

where (In, θn) are defined as the values of (I, θ ) immediately
before kick n.

This model does not include any effect regarding the
radiation emitted by an accelerated charged particle. Typically,
particle accelerators present magnetic fields on the order of
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1 T. Considering an electron with velocity v⊥ ∼= 0.9999c

perpendicular to the magnetic field, the energy emitted by
the electron in a cyclotron period is approximately 4.87 ×
10−10K [18,19], where K denotes its kinetic energy. On the
other hand, the maximum energy emitted by the electron due
to one wave pulse is estimated as 2.21 × 10−8K [18,19], for
an ultrashort pulse with time duration on the order of 10−16

s [20], k = 10 and ε = 1. Therefore, the energy emitted by
the electron is much smaller than its kinetic energy, and the
radiation process, for our purposes, can be neglected.

The position of primary resonances in phase space can be
estimated if we expand Hamiltonian (1) and map (2) to first
order. Expanding Hamiltonian (1) in a Fourier-Bessel series,
we obtain

H = √
1 + 2I + ε

2T

+∞∑
s=−∞

+∞∑
r=−∞

Jr (k
√

2I ) cos

(
rθ − 2πst

T

)
.

(3)

From (3), we calculate the approximate resonant condition,

d

dt

(
rθ − 2πst

T

)
= 0, r

dθ

dt
= 2πs

T
, rω0

∼= sω, (4)

where ω = 2π/T is the frequency of the wave and we approx-
imate dθ/dt ∼= ω 0, with ω 0, the unperturbed frequency, given
by

ω0 = dθ

dt

∣∣∣∣
H=H0

= dH0

dI
= 1√

1 + 2I
. (5)

Since ω and ω 0 are both positive, (4) is satisfied only when r

and s have the same sign (with r �= 0 and s �= 0). Condition (4)
implies that the system behaves resonantly whenever the ratio
� = ω 0/ω is a rational number [3,21–27]. The quantity � is
called the winding number or rotation number, and for � =
s/r , the periodic points of the resonance repeat themselves
after r iterations of the map.

Inserting (5) into (4), we obtain the position of the (r,s)
primary resonances with respect to the action variable as

Ir,s
∼= 1

2

(
r

sω

)2

− 1

2
= 1

8

(
rT

sπ

)2

− 1

2
. (6)

To estimate the values of θ in the periodic points, we
approximate the first equation of map (2) to first order in ε

such that

In+1 = In + εk

2

√
2In cos θn sin(k

√
2In sin θn). (7)

Following this first order approximation in the successive
iterations of the map, all the terms on the order of O(ε2) should
be neglected, and thus we have

In+2 = In + εk

2

√
2In cos θn sin(k

√
2In sin θn)

+ εk

2

√
2In cos θn+1 sin(k

√
2In sin θn+1),

In+r = In + εk

2

r−1∑
j=0

√
2In cos θn+j sin(k

√
2In sin θn+j ), (8)

such that the sum in (8) contains just terms of zero order in ε.

As the periodic points return after r iterations of the map,
we obtain In+r = In

∼= Ir,s . This result must be valid for k �= 0,
Ir,s �= 0, and small finite ε. From (8) it follows that

Gr,s ≡
r−1∑
j=0

cos θn+j sin(k
√

2Ir,s sin θn+j ) = 0. (9)

Moreover, for the unperturbed periodic points θn+1 = θn +
2πs/r , so that θn+r = θn + 2πs = θn(mod2π ):

Gr,s(θ ) =
r−1∑
j=0

{
cos

(
θ + 2πs

r
j

)

× sin

[
k
√

2Ir,s sin

(
θ + 2πs

r
j

)]}
= 0. (10)

According to the Poincaré-Birkhoff fixed point theorem,
any (r,s) primary resonance presents M r (M a positive integer)
resonant islands around the stable periodic points [3,26–28].
The set of islands surrounding one stable orbit form a
chain [3,23–28]. In this sense, M indicates the number of
isochronous chains and r represents the number of islands in
each chain.

Although the Poincaré-Birkhoff fixed point theorem does
not determine the value of M [3,26–28], we generally find in
the literature twist systems that present just one chain with r

islands [3]. However, for some twist systems more than one
chain has already been observed [29,30]. In our system, more
chains are commonly present in the phase space, as can be
seen in Fig. 1.

Figure 1 shows the phase space of the system for T = 2.5π ,
k = 5, and ε = 0.006. In this figure, there are six resonant
islands at I6,5

∼= 0.62. All these islands form a single chain,
because just one initial condition visits the six islands. In
contrast, we need two different initial conditions to create all
the islands of the (4,3) resonance located at I4,3

∼= 0.89. Thus,

FIG. 1. (Color online) Phase space of the system for T = 2.5π ,
k = 5, and ε = 0.006. In this figure, we show the (1,1), (6,5), (4,3),
and (3,2) resonances located, respectively, at I1,1

∼= 0.28, I6,5
∼= 0.62,

I4,3
∼= 0.89, and I3,2

∼= 1.26. The resonant islands are drawn in
(labeled with the letters) red (a), green (b), blue (c), and cyan (d).
For a given resonance, each color (letter) represents a different island
chain.
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FIG. 2. (Color online) Number of island chains as a function of T and k for the (a) (1,1); (b) (2,1); and (c) (5,9) resonances. Each color
represents a different number of chains as indicated by the numbers in the pictures. Panels (a) and (b) display the expressions obtained
numerically for k as a function of Ir,s(T ) for the dashed black curves separating two regions with a different number of chains.

the (4,3) resonance presents two chains with four islands each.
The islands of both chains alternate in the phase space. The
different chains are drawn in (labeled with the letters) red (a)
and green (b) in Fig. 1, and they can also be distinguished by
their different size and shape.

For the present system, appropriate resonant conditions are
useful for particle acceleration [13,14]. To attain the maximum
acceleration, it is necessary to adjust the parameters of the
system in such a way that the particle receives a great amount
of energy from the wave [13]. Moreover, the initial conditions
of the particle should be chosen according to the resonance
that presents the best acceleration condition. In this sense, it
is important to know the position and the number of island
chains for the (r,s) resonances and how this number varies as
a function of the wave parameters.

Every (r,s) primary resonance lies on a rational surface
� = s/r [3,21–27]. However, Hamiltonian (3) presents an
infinite number of perturbative terms with the same winding
number. From this point on, we will always refer to r and s as
two positive relative primes. In this case, we observe that all
the (mr, ms) perturbations (with m integer and m �= 0) lie on
the same rational surface � = s/r . Therefore, each of these
perturbations may generate isochronous islands in the same
region of phase space.

For a twist system that presents only one (mr, ms) pertur-
bative term, |m| represents the number of chains, and r is the
number of islands in each chain. The number of chains in this
case is constant irrespective of the values of the parameters. For
the analyzed system, there are infinite (mr, ms) perturbations
with the same winding number and their coupling makes the
number of chains vary according to the wave parameters. Close
examination of expressions (4)–(10) shows that they are not
functions of the individual numbers r and s, but rather of
the ratio � = s/r . Thus, when we choose the value of �

in these expressions, we are actually taking all the (mr, ms)
perturbative terms with � = s/r , and it is impossible to
distinguish each individual term.

However, just some of the (mr, ms) perturbations actually
generate islands in phase space. In many cases, the M

chains are formed due to the superposition of the (mr, ms)
perturbations for which |m| � M . Although there are

exceptions, the amplitude of the perturbative terms for which
|m| > M are generally much smaller and these terms do not
contribute to the appearance of islands, as we show later.

Figure 2 presents the number of island chains as a function
of the wave period T and wave number k for the (1,1), (2,1),
and (5,9) resonances. The figure was generated using the
estimates from expressions (6) and (10). Overall, in the panels
the number of chains increases with T and k.

To generate Fig. 2(b), we introduced � = s/r = 1/2
in expressions (6) and (10). But as we have just seen,
� = 1/2 represents all the (2m,m) perturbative terms in
Hamiltonian (3). Considering a phase space region close to
the (2,1) resonance, we can reduce the Hamiltonian (3) to a
local Hamiltonian that presents only the (2,1) resonance and,
therefore, is valid only in this region:

H2,1 = √
1 + 2I + ε

2T

+∞∑
r=−∞
r even

Jr (k
√

2I ) cos

(
rθ − rπt

T

)
,

(11)

where I should be close to I2,1.
From Hamiltonian (11), we observe that the amplitude

of the perturbative terms generating the (2,1) resonance
depends on r as Jr [k

√
(T/π )2 − 1]. For k → 0 or T → π ,

the argument of the Bessel functions Jr tends to zero. In this
case, the amplitude of J2 is much higher than the amplitude
of the others Jr for which |r| > 2. Thus, only the perturbative
terms r = ±2 are relevant, and the (2,1) resonance presents
just one chain.

Increasing the values of T or k, the amplitude of J4 cannot
be neglected anymore. In this case, we have four resonant
terms (r = ±2 and r = ±4) with considerable amplitude and
the phase space presents two chains. As we continue increasing
the values of T or k, more perturbative terms should be taken
into account and the number of island chains increases as
shown in Fig. 2(b).

A similar analysis can be carried for the (1,1) resonance
shown in Fig. 2(a). However, for the (r,s) resonances with
r > 4, the coupling of the resonant terms becomes more
complicated and the number of chains does not increase
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monotonically with T and k, as can be seen in Fig. 2(c) for
the (5,9) resonance. In this figure, the regions corresponding
to different numbers of chains are altered and as we increase
the values of T and k, the pattern becomes more complicated.

From Fig. 2, we observe that the number of chains for the
(2,1) resonance may be even or odd, but the number of chains
for the (1,1) and (5,9) resonances is always even. Considering
just the resonant terms of the Hamiltonian (3), we observe that
they are symmetric and all the terms for which r is odd are
canceled in pairs. Just the terms with even r act on the system,
and they generate an even number of islands for every (r,s)
primary resonance. Thus, the resonances with odd r always
present an even number of chains, whereas for even r , the
number of chains may be even or odd.

Figures 2(a) and 2(c) show that the resonances with odd r

never present a single chain. Even for small values of the wave
parameters, these resonances exhibit multiple isochronous
chains in phase space. Observing the panels in Fig. 2, we
also expect that for sufficiently large values of T and k, all the
resonances present more than one chain in phase space.

Using condition (10), it is possible to calculate analytically
the parameter region for a given number of chains in the
(1,s) and (2,s) resonances. Replacing r = 1 (or r = 2) in
condition (10), we obtain the total number of periodic points as
a function of k and I1,s (or I2,s). Since the resonances present
Mr islands [3,26–28], the parameter region for which the (1,s)
resonances present M island chains is given by

(M − 2)π

2
√

2I1,s

< k <
Mπ

2
√

2I1,s

, (12)

whereas for r = 2, the parameter region is given by

(M − 1)π√
2I2,s

< k <
Mπ√
2I2,s

. (13)

The extremes of expressions (12) and (13) (for s = 1)
correspond to the dashed black curves in Figs. 2(a) and 2(b).
Each dashed black curve separates two regions characterized
by a different number of chains. The analytical estimates (12)
and (13) agree quite well with the numerical results displayed
in these figures.

For the (r,s) resonances with r > 2, condition (10) becomes
more complicated and it is not possible to calculate analytically
the curves separating two parameter regions with a different
number of island chains. However, fitting these curves numer-
ically, we find that all of them follow the same kind of power
law:

F (T ) ≡
[

1

4

(
rT

sπ

)2

− 1

]−1/2

= 1√
2Ir,s

. (14)

Expression (14) is valid for all (r,s) resonances, including the
resonances that present a more complicated behavior, such as

the (5,9) resonance in Fig. 2(c). Thus, the decay of the above-
mentioned curves is inversely proportional to the argument of
the Bessel functions Jr (k

√
2Ir,s) that determine the amplitude

of the perturbative terms in (3).
The dynamics of a relativistic particle moving in a uniform

magnetic field, perturbed by standing electrostatic kicks,
presents an infinite number of perturbative terms with the
same winding number, which may generate islands in the same
region of phase space. This superposition alters the number of
island chains as a function of the wave parameters. When
the wave number or wave period are close to their minimum
values, the number of chains in phase space is also minimum.
As we increase the wave number or wave period, the number
of chains increases as well.

Since the islands of the system can be used for regular
acceleration [12–14], the variation in the number of chains
according to the wave parameters is an important phenomenon.
To accelerate the particle in the islands of a given resonance,
it is necessary to know the position of the periodic points and
the number of island chains. In this way, the initial conditions
of the particle may be adjusted in order to attain the maximum
acceleration.

We determined the position of the primary resonances in
phase space, and we obtained the range of the wave parameters
that corresponds to a given number of island chains for the
main resonances. We built the parameter space representing
the number of chains as a function of the wave period and
wave number.

We also observed that the resonant terms acting on the
system are symmetric and, as a consequence, most of the pri-
mary resonances present an even number of island chains in the
phase space. Thus, we conclude that according to the symmetry
of the resonant terms, the dynamics of a near-integrable twist
system may be dominated by multiple isochronous chains,
instead of the usual scenario of single chains.

For the system analyzed in this Brief Report, it is found
that the number of chains increases without limit as the
parameters of the system increase. We point out that this
is not a particular result. This phenomenon occurs in near-
integrable twist systems that present an infinite number of
resonant terms acting on the same rational surface. However,
when the number of resonant terms with the same winding
number is finite, the number of chains also varies according
to the parameters of the system, but there is a finite set for
the possible numbers of chains. This set is determined by the
resonant terms that have the same winding number and by their
superposition.
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search Foundation (FAPESP, Brazil) under Grants No.
2011/20794-6 and No. 2011/19296-1, CNPq (Brazil), CAPES
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