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Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks
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Voronoi tessellations of Poisson point processes are widely used for modeling many types of physical
and biological systems. In this paper, we analyze simulated Poisson-Voronoi structures containing a total of
250 000 000 cells to provide topological and geometrical statistics of this important class of networks. We also
report correlations between some of these topological and geometrical measures. Using these results, we are able
to corroborate several conjectures regarding the properties of three-dimensional Poisson-Voronoi networks and
refute others. In many cases, we provide accurate fits to these data to aid further analysis. We also demonstrate
that topological measures represent powerful tools for describing cellular networks and for distinguishing among
different types of networks.
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I. INTRODUCTION

Poisson-Voronoi tessellations are random subdivisions of
space that have found applications as models for many physical
systems [1,2]. They have been used to study how galaxies
are distributed throughout space [3,4] and have aided in
discovering new galaxies [5]. They have been used to study
how animals establish territories [6], how crops can be planted
to minimize weed growth [7], and how atoms are arranged in
crystals [8], liquids [9], and glasses [10,11]. A more complete
list of applications can be found in standard references on the
subject [1,2].

A Poisson-Voronoi tessellation is constructed as follows.
Points called seeds are obtained as the realization of a uniform
Poisson point process (e.g., see Refs. [2,12–15]) in a fixed
region. Cells are the sets of all points in the region that
are closer to a particular seed than to any other. If a point
is equidistant to multiple nearest seeds, then it lies on the
boundary of the associated cells. In three dimensions, there
is a zero probability that a point will be equidistant to five
or more seeds. All cells are convex, and this network of cells
partitions the entire region.

Many exact results have been obtained in connection
with three-dimensional Poisson-Voronoi structures. Meijering
[16] proved that the average number of faces per cell is
48π2/35 + 2 ≈ 15.535, the average number of edges per face
is 144π2/(35 + 24π2) ≈ 5.228, the average surface area per
cell is (256π/3)1/3�( 5

3 )ρ−2/3 and the average edge length per
cell is (3072π5/125)1/3�( 4

3 )ρ−1/3, where ρ is the number of
seeds or cells per unit volume. Gilbert [17] expressed the
variance of the cell volume distribution as a double integral.
Using a more general approach, Brakke [18] obtained integral
expressions for the variances of number of cell faces, volumes,
surface areas, number of face edges, face areas, and perimeters,
as well as variances and covariances of several other quantities
of interest and the distribution of edge lengths. In all of these
cases, Brakke also solved these integrals numerically. Much
more is understood about Poisson-Voronoi structures than
can be detailed here, and the interested reader is referred to

standard references [1,2,19] and the more recent surveys of
Møller and Stoyan [20] and of Calka in Ref. [21].

Additional properties of Poisson-Voronoi structures have
been investigated through simulation. Using a data set with
358 000 cells, Kumar et al. [22] reported the distributions
of faces with fixed numbers of edges and cells with fixed
numbers of faces, volumes, face areas, and cell surface areas.
They also reported distributions of volumes and surface areas
restricted to cells with fixed numbers of faces and distributions
of areas and perimeters restricted to faces with fixed numbers
of edges. Although their data set was relatively small by
current standards, their results are the most complete set of
three-dimensional Poisson-Voronoi cell statistics available in
the literature.

The Kumar et al. data set has since been augmented by
additional results. Marthinsen [23] used a set of 100 000 cells
to compute the distribution of cell volumes and surface areas.
Tanemura [24] later used a substantially larger data set of
5 000 000 cells to obtain more precise data for the distributions
of volumes, surfaces areas, and faces, as well as volumes
for cells with fixed numbers of faces. Ferenc and Néda [25]
later used a data set with 18 000 000 cells to calculate the
distribution of cell volumes.

Thorvaldsen [26] and Reis et al. [27] used the ratio between
the surface area of a cell and the surface area of a sphere of
equal volume to describe the “shape isotropy” of a cell. Using a
system of 250 000 cells, Thorvaldsen reported the distribution
of this parameter among Poisson-Voronoi cells, and observed
that this parameter decreases with increasing cell volume.
Using a smaller set of 10 000 cells, Reis et al. considered how
this parameter depends on the number of faces of a cell. A
more sophisticated, higher-order method of measuring shape
isotropy using Minkowski tensors has been recently introduced
[28] and used to characterize a number of natural structures
[29,30]. In particular, Kapfer et al. [29] have used this method
to characterize a data set of 160 000 Poisson-Voronoi cells [29].

In prior studies, the topology of individual cells has been
described by counting their numbers of faces. As we discuss
below, this is a simplistic and incomplete description of the
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topology of a cell.1 In this report, we present distributions
of many important topological features of Poisson-Voronoi
structures based on a data set of a combined total of
250 000 000 cells. This is the largest data set available today
and provides the most precise characterization of topological
properties of the Poisson-Voronoi network. This resolution
allows us to examine the validity of conjectures made on
the basis of smaller data sets, some of which we now show
are qualitatively incorrect. We supplement the discussion of
topological properties with analysis of some purely geo-
metrical descriptions and the interrelationship between some
topological and geometrical features. We leave many results
in the Supplemental Material and make the entire data set
available online [31].

II. METHOD

We employ the computer code VOR3DSIM, developed by
Ken Brakke [32], to generate 250 Poisson-Voronoi tessel-
lations, each of which contains 1 000 000 cells; periodic
boundary conditions are used to eliminate boundary effects.
Because the statistics we consider measure neighborhoods of
the structure which are small compared to the total size of the
system, we expect that statistics observed in this set of smaller
systems will be consistent with what we would observe in a
single system with an identical number of total cells. Details
of the algorithms used to perform some of the more complex
topological analyses were reported previously [33,34].

III. TOPOLOGICAL CHARACTERISTICS

A. Distribution of faces

The simplest way to classify the topology of a Poisson-
Voronoi cell involves counting its number of faces. This is
the topological characterization most commonly quoted in the
literature [35,36]. Figure 1 shows this distribution of faces per
cell; these data are consistent with those reported in Refs. [22]
and [24]. As noted earlier, Meijering [16] proved that the mean
of this distribution is 48π2/35 + 2. Brakke [18] obtained an
integral form of the variance, which he numerically evaluated
to be 11.1246. Our data reproduce these exact results to within
0.001% and 0.004%, respectively. While the distribution of
faces is approximately symmetric about 15, there are no cells
with fewer than 4 faces. We note that while Kumar et al. [22]
and Tanemura [24] reported no cells with more than 36 faces
based on their more limited data set, we find cells with up to
41 faces.

Kumar et al. [22] suggested that the distribution of the
number of faces F per cell can be described by the discretized
two-parameter � function,

p(F ) =
∫ F+1/2

F−1/2

xa−1

ba�(a)
e−x/bdx. (1)

1When referring to the topology of a cell we have in mind the
topology of the cell and its immediate neighborhood, which includes
the network of edges and faces which intersect it.
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FIG. 1. (Color online) Distribution of the number of faces per
cell; squares show the discrete probability distribution of Eq. (1). The
mean and standard deviation are 15.535 and 3.335, respectively, to
within the accuracy of the data. The inset shows a subset of the data
on a semilogarithmic plot; error bars show the standard error from
the mean.

The best fit to their data yielded a = 21.6292 and b = 0.7199.
The form of p(F ) in Eq. (1) gives p(F ) > 0 for all positive
integers F , including 1, 2, and 3. Of course, this is incorrect
since there can be no polyhedra with fewer than four faces in
a Voronoi tessellation. Moreover, since we know exactly both
the mean of the distribution as well as its variance, we are left
with no free parameters. Regardless of whether we choose to
include p(1), p(2), and p(3) in normalizing the distribution,
these parameters must be a = 21.85892 and b = 0.710714 to
match the exact results. Careful inspection of the data in the
inset to Fig. 1 reveals that Eq. (1) does not accurately describe
the decay in p(F ) for large F . This further demonstrates that
this conjectured equation is not an exact representation of
p(F ); we know of no such exact relation.

B. Distribution of edges

We next consider the distribution p(n) of faces with n

edges. Meijering [16] proved that the mean of this distribution
is 144π2/(35 + 24π2), and Brakke [18] obtained an integral
form of the variance, which he evaluated numerically to be
2.4846. Our data reproduce the exact result of the mean
to within 0.0002%, and the exact result for the variance to
within 0.00001%. Figure 2 shows this distribution for our
Poisson-Voronoi data set. This distribution is similar to that
reported earlier [22], albeit with more accurate statistics and
over a greater range of n. The distribution has a maximum at 5
edges per face, which is close to the mean; there are no faces
with fewer than 3 edges. While Kumar et al. [22] reported no
faces with more than 15 edges, our data set shows faces with
up to 18 edges.

While the mean and variance of this distribution are known
exactly, little else is known and, to our knowledge, there are no
proposed forms for this distribution. We suggest the following
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FIG. 2. (Color online) Distribution of number of edges per face;
squares show the discrete probability distribution of Eq. (2). The
mean and standard deviation for this data set is 5.228 and 1.576,
respectively, to within the accuracy of the data. The inset shows the
same data on a semilogarithmic plot; error bars show the standard
error from the mean.

empirical form:

p(n) =
{

A(n − 2)e−B(n−n̂)2
n � 2

0 n < 2,
(2)

where n is the number of edges of a face. Although this
empirical relation fits the data remarkably well, its origin
is unclear. By requiring that the distribution is properly
normalized and that the mean and variance reproduce the exact
results, all three parameters are determined: A = 0.13608070,
B = 0.093483172, and n̂ = 2.64631320. Overall, this empir-
ical functional form provides an excellent fit to the Poisson-
Voronoi data set, including the large n tail.

C. Aboav-Weaire relation

In studying two-dimensional cross sections of polycrys-
talline magnesium oxide, Aboav [37] and Weaire [38] explored
the relationship between the number of edges n of a cell
and the expected number of edges m(n) of its n neighbors.
They observed that this relationship can be described by
m(n) ≈ A + B/n, which can be understood as follows. In two
dimensions, the average number of edges per cell is 〈n〉 = 6. If
this average is approximately maintained among every cluster
of cells, then a cluster with an n-sided cell in its center should
have on average (n + nm(n))/(n + 1) ≈ 〈n〉 edges per cell.
This gives us an expression for m(n) in terms of n and 〈n〉
of the above form, m(n) ≈ 5 + 6/n. This equivalence is only
approximate because the 〈n〉 = 6 average is not maintained
among every cluster of cells. This leads to a correction term
that in part depends on the variance of the distribution. We
note, for later, that this form of m(n) decreases monotonically
with increasing n. This relationship has been used to analyze
biological tissue [39,40], soap foams [41,42], and other cellular
structures [43–45].

In two dimensions, it was originally believed that this
relationship also describes Poisson-Voronoi structures [46,47].
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FIG. 3. (Color online) Expected number of faces m(F ) of neigh-
bors of cells with F faces; error bars indicate standard error from
the mean. The red, yellow, green, and blue curves show the forms
suggested by Kumar et al., Fortes, Hillhorst (truncated at i = 3), and
Mason et al. (truncated at i = 4), respectively.

However, Hilhorst [48,49] has shown that the correct form
of the relationship is m(n) = 4 + 3(π/n)1/2 + O(1/n), in the
limit of large n.

We now investigate the extension of this relationship to
three-dimensional Poisson-Voronoi structures, i.e., the rela-
tionship between the number of faces F of a cell and the
expected number of faces m(F ) of its neighbors. Figure 3
shows that m(F ) increases for small F , reaches a maximum at
F = 12, and then decreases in a nearly linear manner for large
F . The existence of the increasing region of m(F ) has not been
previously reported for the Poisson-Voronoi structure.

Based on limited three-dimensional Poisson-Voronoi data
(3729 cells), Kumar et al. [22] fit their data to a linear function
as follows:

m(F ) = A − BF, (3)

and found A = 16.57 and B = 0.02. Of course, such a
fit is unreasonable because it suggests that m(F ) < 0 for
sufficiently large F . Using the same data set as Kumar et al.,
Fortes [50] proposed fitting this data to an Aboav-Weaire-type
of relation,

m(F ) = A + B/F, (4)

where the constants A = 15.96 and B = 4.60 were found
using a least-squares fit to this data set. The forms suggested
by Kumar et al. and Fortes do not provide even a qualitative
fit to m(F ) at small F ; they both decrease monotonically
with increasing F , contrary to the data for F < 12. Clearly,
the general form of the Aboav-Weaire relation provides a
poor representation of the topological correlations between
nearest-neighbor cells in three-dimensional Poisson-Voronoi
structures.

Hilhorst [51], building on his earlier work on two-
dimensional Poisson-Voronoi structures [48,49], provided
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(a) (b)

FIG. 4. Topologically distinct cells with six faces. Type (a)
appears more than twice as frequently as type (b) in the Poisson-
Voronoi structure.

strong theoretical arguments for a relationship of the
form

m(F ) = k0 +
∞∑
i=1

kiF
−i/6 (5)

with k0 = 8. A least-squares fit of this expression (truncated
at i = 3) to our data yields k1 = 2.474, k2 = 49.36, and k3 =
−51.50. This form provides an excellent fit to the present
three-dimensional Poisson-Voronoi data set, over the entire
range of F .

Finally, Mason et al. [52], also based on theoretical
arguments, developed the following expression for m(F ):

m(F ) = 〈F 〉 + 〈F 〉 + μ2

F
− 1

− 1

ξF

∞∑
i=1

ki[(F − 〈F 〉)i − μi], (6)

where ξ = 4π − 6 cos−1(−1/3) is a constant for three-
dimensional structures, μi is the i th central moment of the
distribution of faces, and ki are fitting parameters. The equation
shown in Fig. 3 corresponds to a best fit when considering i �
4; we find that k1 = −1.567, k2 = 0.0478, k3 = −0.00109,
and k4 = 0.000022. Except at the tail end of m(F ), Eqs. (5)
and (6) are indistinguishable.

D. p vectors

Although counting faces can often distinguish between
topologically distinct cells, it cannot do so in general. Figure 4
shows topologically distinct cells, each with six faces.

A more refined description of the topology of a cell involves
recording not only its number of faces but also its particular
types of faces. Figure 4(a) has six four-sided faces, while
Fig. 4(b) has two three-sided faces, two four-sided faces,
and two five-sided faces. These two topological types are the
only ones with six faces that appear in the Poisson-Voronoi
structures.

Barnette [53], in describing the combinatorial properties of
three-dimensional polytopes, defined a p vector as a vector
of integer entries in which the i th entry denotes the number of
i-sided faces of a polyhedron. Table I lists the 48 most frequent
p vectors of the Poisson-Voronoi structure and their relative
frequencies in the Poisson-Voronoi data set. The table shows
that the Poisson-Voronoi structure is not dominated by a small
set of p vectors; rather, the distribution is quite broad—no
p vector occurs with a frequency greater than 0.39%. In the
250 000 000 Poisson-Voronoi cell data set, there are 375 410
distinct p vectors; the complete distribution of observed p

vectors may be found in the Supplemental Material.
Poisson-Voronoi cells may be contrasted with those found

in other natural structures. Matzke [54] carefully recorded
p-vector data for 1000 soap bubbles in a foam, and Williams
and Smith [55] reported p-vector data for 91 individual
cells in an aluminum polycrystal. More recently, Kraynik
et al. [56] reported p-vector data to characterize over 1000
simulated monodisperse foam bubbles, and we have reported
the distribution of p vectors in a set of 269 555 grains in
simulated grain growth microstructures [33].

Although soap foams and grain growth microstructures
share much in common with Poisson-Voronoi tessellations,
it is important to emphasize that they result from qualitatively
different processes. Capillarity, surface tension, and curvature
play significant roles in the formation and evolution of soap
foams [41] and grain growth microstructures [57]. Since these
forces tend to minimize interfacial areas (subject to certain
constraints), we can expect that the microstructures that result

TABLE I. The 48 most frequent p vectors in the Poisson-Voronoi structure, their number of faces F , and their relative frequency f .
The 250 000 000 cell data set contains 375 410 distinct p vectors; the complete distribution of p vectors may be found in the Supplemental
Material.

p vector F f p vector F f p vector F f p vector F f

1 (001343100 . . .) 12 0.388% 13 (002332110 . . .) 12 0.256% 25 (002323200 . . .) 12 0.213% 37 (002422210 . . .) 13 0.190%
2 (001342100 . . .) 11 0.342% 14 (001422100 . . .) 10 0.254% 26 (002232100 . . .) 10 0.210% 38 (002333300 . . .) 14 0.188%
3 (001433200 . . .) 13 0.298% 15 (002322200 . . .) 11 0.252% 27 (002423210 . . .) 14 0.203% 39 (002324200 . . .) 13 0.188%
4 (001344100 . . .) 13 0.289% 16 (002242200 . . .) 12 0.248% 28 (002334110 . . .) 14 0.202% 40 (001442300 . . .) 14 0.186%
5 (001423100 . . .) 11 0.288% 17 (002342210 . . .) 14 0.247% 29 (001252000 . . .) 10 0.201% 41 (001444110 . . .) 15 0.185%
6 (002333110 . . .) 13 0.284% 18 (001443110 . . .) 14 0.244% 30 (000533100 . . .) 12 0.199% 42 (001443300 . . .) 15 0.185%
7 (001332000 . . .) 9 0.274% 19 (000443000 . . .) 11 0.239% 31 (001263100 . . .) 13 0.198% 43 (002332300 . . .) 13 0.180%
8 (000442000 . . .) 10 0.265% 20 (002343210 . . .) 15 0.233% 32 (001341100 . . .) 10 0.196% 44 (001351200 . . .) 12 0.179%
9 (001352200 . . .) 13 0.263% 21 (001442110 . . .) 13 0.232% 33 (002234100 . . .) 12 0.193% 45 (000453100 . . .) 13 0.178%

10 (002233100 . . .) 11 0.261% 22 (001424100 . . .) 12 0.231% 34 (001354200 . . .) 15 0.192% 46 (001533210 . . .) 15 0.175%
11 (001432200 . . .) 12 0.258% 23 (001434200 . . .) 14 0.223% 35 (001345100 . . .) 14 0.191% 47 (001333000 . . .) 10 0.173%
12 (001353200 . . .) 14 0.258% 24 (002243200 . . .) 13 0.217% 36 (001334000 . . .) 11 0.190% 48 (001453210 . . .) 16 0.172%

063309-4



STATISTICAL TOPOLOGY OF THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 88, 063309 (2013)

from these processes somehow reflect these physics. More
specifically, we might expect to find qualitatively different
microstructures than those that result from a Poisson-Voronoi
tessellation, in which these forces play no role.

The data reported in Refs. [54], [55], and [56] are insuf-
ficient to provide definitive p-vector distributions for either
polycrystalline aluminum or soap foam structures. However,
they are sufficient to clearly distinguish those structures
from the Poisson-Voronoi one. Of the 91 aluminum cells
examined by Williams and Smith, the most common p vector
is (0004420 . . .), and it appeared 8 times. Seven other p vectors
appeared 2 or 3 times each, and the remaining 66 distinct p

vectors appeared only once each.
Considering only the interior bubbles of his original

sample, Matzke found that the most common p vector was
(0001 10 2 . . .). These bubbles accounted for 20% of the 600
interior bubbles. Three more p vectors each accounted for at
least 8% of all bubbles, five more accounted for at least 3%
each, and five more accounted for at least 1.5% of all bubbles.

Kraynik et al. [56] found that data from simulated monodis-
perse foams closely resembled the experimental results of
Matzke. In particular, he found that the most common p

vector was (0001 10 2 . . .), which accounted for just under
20% of all relaxed and annealed monodisperse foam bubbles,
a result almost identical to that of Matzke. The next most
common p vector in simulated monodisperse structures was
(0002840 . . .), which accounted for almost 14% of all bubbles,
and then (0001 10 3 . . .), which accounted for just under 11%
of all bubbles. Four other p vectors each accounted for at least
5% of bubbles.

The distribution of p vectors in grain growth structures [33],
which evolve through mean curvature flow, is substantially
more concentrated than in the Poisson-Voronoi microstructure,
but not nearly as much as in the data of Matzke, Williams and
Smith, and Kraynik et al. In the grain growth data, the most
common p vector is (0004400 . . .), and it accounts for nearly
3% of all cells; each of the 10 most common p vectors accounts
for at least 1% of all cells.

Although the exact nature of the heavy bias towards certain
p vectors in each of the structures is not completely un-
derstood, it can already be used to distinguish the different
structures from the Poisson-Voronoi structure and from each
other by standard statistical tests (e.g., a chi-squared test). The
distribution of p vectors, hence, provides a useful means to
distinguish between cellular structures of different physical
origin. Despite its early introduction, this method has not been
widely adopted.

E. Distribution of topological types

Although the p vector of a cell provides more information
than a mere count of its faces, it too does not completely
describe its topology. For example, Fig. 5 shows three cells
that share the p vector (0004420 . . .) and yet are topologically
distinct.

In an earlier paper [33], we developed a method to
succinctly characterize the complete topology of a cell. That
work was built on earlier work of Weinberg [58,59], who
developed an efficient graph-theoretic algorithm to determine
whether two triply connected planar graphs are isomorphic.

(a) (b) (c)

FIG. 5. Three topologically distinct cells, each with four quadri-
lateral, four pentagonal, and two hexagonal faces. Type (a) appears
roughly twice as frequently as type (b), which appears roughly fives
times as frequently as type (c), in the Poisson-Voronoi structure.

We showed that the edges and vertices of a cell can be treated
as a planar graph, and Weinberg’s method can then be used
to calculate what we call a Weinberg vector for each cell.
A Weinberg vector for a cell with F faces is a vector with
6(F − 2) integer entries that can be computed in time linear
in F 2. Two cells are topologically identical if and only if
their Weinberg vectors are identical. Moreover, the method
by which the Weinberg vector is calculated also determines
the order of the cell’s associated symmetry group [60]. The
topological type of each cell in the structures is recorded,
along with its p vector, symmetry order, and frequency. We
do not reproduce the algorithm for creating a Weinberg vector
here but simply refer the interested reader to Ref. [33].

In the remainder of this paper, we use Schlegel diagrams
to help visualize topological types. A Schlegel diagram is
constructed by projecting the boundary of a cell onto one
of its faces in a way that vertices not belonging to that face
lie inside it and no edges cross [61,62]. Figure 6 shows
Schlegel diagrams for the 24 most common topological types
that appear in the Poisson-Voronoi structure. Along with the
Schlegel diagram for each, we show its frequency f , number
of faces F , p vector, and order S of its symmetry group.

Each of the six most common topological types have 10 or
fewer faces. This may be surprising in light of the fact that
of the 48 most commonly occurring p vectors, only one had
fewer than 10 faces. This can be understood by considering that
many distinct topological types can share the same p vector,
as illustrated earlier in Fig. 5. This degeneracy increases with
the number of faces, and so p vectors of cells with many
faces can appear frequently even if no single topological type
with that p vector appears frequently. Conversely, p vectors
with few faces are typically shared by few distinct topological
types. The most frequently occurring p vector (001343100...)
is shared by 38 distinct topological types,2 not one of which
appears among the 24 most common types.

The most common topological type in the Poisson-Voronoi
structure (Fig. 6, entry 1) has p vector (0013320 . . .) and occurs
with frequency 0.273%. Two factors appear to contribute
to its relative high frequency. First, its distribution of face
types closely resembles that of the structure as a whole
(Fig. 2). Specifically, four- and five-sided faces appear most

2This can be extracted from data available on The Manifold
Page [63]; data for these 38 types are included in Fig. 20 of the
Supplemental Material.
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1. f=0.274%

(0013320...)
F=9, S=1

2. f=0.166%

(0013310...)
F=8, S=2

3. f=0.158%

(0004420...)
F=10, S=2

4. f=0.120%

(0013411...)
F=10, S=1

5. f=0.117%

(0004410...)
F=9, S=4

6. f=0.101%

(0004400...)
F=8, S=8

7. f=0.096%

(0014221...)
F=10, S=1

8. f=0.095%

(0003620...)
F=11, S=2

9. f=0.095%

(0013330...)
F=10, S=1

10. f=0.094%

(0004430...)
F=11, S=1

11. f=0.094%

(0014221...)
F=10, S=1

12. f=0.093%

(0014231...)
F=11, S=1

13. f=0.091%

(0004420...)
F=10, S=2

14. f=0.091%

(0012510...)
F=9, S=2

15. f=0.090%

(0005220...)
F=9, S=4

16. f=0.088%

(0012520...)
F=10, S=2

17. f=0.082%

(0012520...)
F=10, S=2

18. f=0.082%

(0012611...)
F=11, S=1

19. f=0.081%

(0022321...)
F=10, S=1

20. f=0.080%

(0022311...)
F=9, S=2

21. f=0.079%

(0003610...)
F=10, S=6

22. f=0.077%

(0014140...)
F=10, S=2

23. f=0.075%

(0004430...)
F=11, S=2

24. f=0.073%

(0032122...)
F=10, S=1

FIG. 6. Schlegel diagrams of the 24 most common topological types among the Poisson-Voronoi cells. Listed for each type is its frequency
f , p vector, number of faces F , and order S of its associated symmetry group. In these data, there are four pairs of Weinberg vectors which
share p vectors.

frequently, followed by six-sided faces and then three-sided
faces. Second, no other topological type shares this p vector.
Despite its frequency, however, it is difficult to describe it as a
“typical” Poisson-Voronoi cell, given how few cells are of this
type.

Figure 7 illustrates Schlegel diagrams of a number of highly
symmetric polyhedra: the tetrahedron, truncated tetrahedron,
cube, truncated cube, pentagonal dodecahedron, truncated
pentagonal prism, pentagonal antiprism over a heptagon,
and truncated octahedron. The first, third, and fifth of
these are Platonic solids that occur with nonzero proba-
bility in the Poisson-Voronoi structures. The last of these
shapes, often referred to as the Kelvin tetrakaidecaheron or
Kelvin cell, was conjectured by Lord Kelvin [64,65] to tile
three-dimensional space with a minimal surface area, very
much like the regular hexagon tiles the plane with minimal
perimeter [66].

It can be shown that every topological type appears in
the Poisson-Voronoi tessellation with a nonzero frequency,

and so the appearance of these highly symmetric shapes is
not surprising. However, their relative frequencies warrant
attention. The truncated cube and the Kelvin cell both have
14 faces and a symmetry group of order S = 48, and yet
they occur with substantially different frequencies. It is clear
that frequencies are not entirely determined by the number of
faces of a cell nor by the order of its associated symmetry
group. It is unclear how these topological features impact
frequency.

The 24 most common topological types in Poisson-Voronoi
structures account for less than 2.5% of all cells. By contrast,
the distribution of topological types in grain growth structures
is substantially more concentrated [33]. There, the 24 most
common types account for over 25% of all cells [33].
While space-filling constraints in both the Poisson-Voronoi
and grain growth structures create a bias towards certain
topological types, the curvature flow process that governs
the evolution of grain growth structures leads to a secondary
bias towards cells that exhibit a low surface-area-to-volume

N = 325
F=4, S=24

tetrahedron

N = 22227
F=8, S=24

truncated
tetrahedron

N = 23744
F=6, S=48

cube

N = 41
F=14, S=48

truncated
cube

N = 3612
F=12, S=120

pentagonal
dodecahedron

N = 1
F=17, S=20

truncated
prism over

a prism

N =55
F=16, S=28

pentagonal
antiprism over

heptagon

N = 623
F=14, S=48

Kelvin cell

FIG. 7. Highly symmetric polyhedra. For each type, we include the number of times N it appears in the 250 000 000 cell data set, its number
of faces F , and the order S of its symmetry group.
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FIG. 8. Distribution of orders of cell symmetry groups. Error bars
indicate standard error from the mean; in many cases the error bars
are not visible because they are smaller than the points.

ratio. Distributions of topological types have not been col-
lected, to the best of our knowledge, for other cellular
structures.

F. Order of symmetry groups

As noted earlier, the algorithm which determines the
Weinberg vector of a cell also determines the order of its
associated symmetry group. Figure 8 shows the distribution
of symmetry orders among all cells. Roughly 91.71% of
cells have only the trivial symmetry (order 1), 6.61% have
a symmetry of order 2, and 1.00% have a symmetry of order
4. The remaining 0.68% have symmetries of order 3 or higher
than 4. The probability of finding a cell with a particular
symmetry order generally decreases quickly with the order,
subject to certain secondary rules. More specifically, odd
numbers and numbers whose prime factors are all large appear
highly infrequently. Odd orders appear in topological types
with rotational symmetries but without mirror or inversion
symmetries. Therefore, we find no cells with symmetry order
13, for example, even though we find many with symmetry
orders 16, 24, and 48.

The average symmetry order of Poisson-Voronoi cells is
1.16. This might be contrasted with the case of grain growth
structures [67], where the average observed symmetry order
is 3.09 [33]. This discrepancy may be due to the tendency
of mean curvature flow to minimize surface area, although
how this correlates with topological symmetry is unclear since
curvature is a geometric quantity.

We note that although some symmetries of a cell can
be observed in its Schlegel diagram, the diagram can often
obscure other symmetries. Entries 5 and 21 in Fig. 6, for
example, might appear at first sight more symmetric than entry
6, and yet the latter has the highest symmetry order of the
three. To understand this apparent inconsistency between the
diagram and the data, we note that entries 5 and 21 both have
only one hexagonal face. Therefore, aside from rotations or
reflections, there is no way to redraw identical graphs using

a different face as the outside polygon. Entry 6, in contrast,
has four pentagonal faces, and the graph can be redrawn with
each of those faces as the outside polygon. These contribute
additional symmetries which might be initially overlooked
when considering the Schlegel diagrams.

G. Cloths and swatches

The types of topological information considered up to this
point concern the configuration of faces and edges on cell
surfaces but not the topology of the network of cells extending
throughout the tessellation. This is more difficult to address
for at least two reasons. First, much more information is
involved in characterizing the topology of the cell network
than a single cell. Second, collecting statistics relating to the
topological features of the boundary network requires a much
larger computational effort.

One approach [34] is to construct and collect statistics of
swatches, where a swatch is roughly a collection of labels
for the vertices (intersection of four cells) in a portion of the
tessellation. The labeling procedure is performed as follows.
Let one of the vertices of the structure be designated as
the root and assign a label to this vertex. The swatch is
expanded by a canonical procedure that assigns labels to
any vertices connected by a single edge to one of the most
recently labeled vertices. While performing this procedure on
a quadrivalent Cayley tree would give a single, unique label for
every vertex, in practice the network of edges contains loops
around every face. The result is that vertices are often assigned
multiple labels; the labels of such a vertex are considered
to be equivalent and define an equivalence relation. After r

iterations of assigning labels, the set of equivalence relations
is known as a swatch of order 2r . A swatch contains all of the
topological information about the network of cells in the region
around the root; as evidence of this, consider that applying the
equivalence relations to a labeled quadrivalent Cayley tree
exactly reproduces the network of edges. A swatch therefore
classifies the topology of the locale, analogous to the way a
Weinberg vector classifies a single cell.

For a positive integer k, vertices may be randomly selected
from the tessellation to serve as root vertices for the con-
struction of swatches of order k. The frequencies at which
the different types of swatches appear during this sampling
gives a probability distribution that effectively describes the
distribution of local topological environments. Allowing k

to vary over the positive integers gives an infinite set of
probability distributions, collectively known as the cloth of
the cell network.

The probability distribution for a given value of k further
defines a k entropy via the Shannon entropy formula [68].
The k entropy indicates the variability of the local topological
environment and is a well-defined property of an infinite
and statistically homogenous [34] cellular structure. The k

entropies are reported here as a function of k.
We constructed swatches for all V = 1 691 911 665 vertices

in the data set and report the k entropies for k = 0 to 8 in Fig. 9.
The k entropy of the system is 0 for k = 0,1,2 since a

sufficiently small neighborhood around any vertex is topolog-
ically trivial (e.g., an isolated vertex or a vertex connected to
four edges). On the other hand, for k = 7,8 there are so many

063309-7



LAZAR, MASON, MACPHERSON, AND SROLOVITZ PHYSICAL REVIEW E 88, 063309 (2013)

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8

k  
- 

en
tr

op
y

k

FIG. 9. (Color online) The k entropy calculated using all V =
1 691 911 665 vertices in the three-dimensional Poisson-Voronoi
structures, containing 250 000 000 cells. The red line is 0.0457e0.972k .

possible local environments that the number of swatch types
is much larger than the number of vertices in the system. As
a result, no swatch type is sampled more than once during the
sampling procedure, apparently bounding the k entropy from
above due to the finite system size. This probably affects the
k entropy for k = 6 as well, where the probability distribution
of swatch types appears to be insufficiently sampled. The
k entropy for the remaining three values of k = 3,4,5 is
adequately fit by a least-squares procedure to an exponential
function.

Suppose that the k entropy is roughly proportional to the
natural logarithm of the number of swatch types (this is
precisely true in the case of a uniform distribution) and that
the exponential form suggested above holds, i.e.,

ln(Nk) ∼ c0 exp(c1k), (7)

where Nk is the number of swatch types of order k. This implies
that Nk grows roughly as a double exponential,

Nk ∼ exp(c0 exp(c1k)). (8)

Although more data points would certainly help to validate this
suggestion, the apparent growth rate means that adequately
sampling the k entropy for even k = 6 is extremely computa-
tionally demanding.

Comparing our results with the k entropies for grain
growth structures [34], we find that the k entropies of the
Poisson-Voronoi tessellation are slightly higher. The slightly
higher values are consistent with the greater variability of
cell types in the Poisson-Voronoi tessellation, as is evidenced
by the differences in the distributions of the p vectors or of
the Weinberg vectors for the two structures. That said, the
similarity of the k entropies does not imply the similarity of
the local topological environments but only that the amount of
variability in the two structures is similar.

IV. GEOMETRICAL DATA

One of the most frequently studied geometrical-topological
relations is that between the number of faces of a cell and
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FIG. 10. (Color online) Distribution of normalized cell volumes,
xv = v/〈v〉. The standard deviation of the data set is 0.4231,
consistent with analytical results to within numerical accuracy. The
curves represent suggested forms of the distribution, as described in
the text. The inset shows a subset of the data on a semilogarithmic
plot.

its expected volume. Before considering that relationship, we
look at the distribution of volumes over all cells and at the
partial distributions of volumes limited to cells with fixed
numbers of faces. Likewise, we consider the distribution of
surface areas of cells, as well as areas and perimeters of faces.

A. Distribution of volumes

Despite much interest in understanding the distribution of
volumes among three-dimensional Poisson-Voronoi cells, few
rigorous results are available. Throughout this section we use
xv = v/〈v〉 to denote normalized cell volumes, where v is
the volume of a particular cell and 〈v〉 is the average volume
per cell. Throughout the paper we use p(x) to denote the
probability distribution of a variable x. Gilbert [17] and Brakke
[18] obtained exact integral expressions for the variance of
this distribution; numerical integration yields a variance of
0.1790. Figure 10 shows the distribution of cell volumes in our
data set. The distribution exhibits a maximum at roughy xv =
0.831 with a probability density of p(xv) = 1.006. Several
suggestions have been made for the form of this distribution.

Hanson [69] suggested that the volume is distributed
according to a Maxwell distribution:

p(x) = 32

π2
x2e−4x2/π . (9)

Hanson acknowledged the lack of physical motivation to
substantiate this suggestion and realized that this form does
not provide a particularly good fit to the data for all x. In
addition, the variance of this distribution, 3π/8 − 1, is not
consistent with the exact results of Gilbert [17] and Brakke
[18].

Ferenc and Néda [25], motivated by a known result of
one-dimensional Poisson-Voronoi structures, and based on the
study of 18 000 000 three-dimensional Poisson-Voronoi cells,
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proposed

p(x) = 3125

24
x4e−5x. (10)

The variance of this distribution is 1/5 which, again, is
inconsistent with the known exact result. Ferenc and Néda
acknowledged that this form is empirical and not completely
consistent with the true distribution. Because Eqs. (9) and (10)
are inconsistent with the exact, known properties of this
distribution, we do not consider them further.

Kumar et al. [22] considered a lognormal distribution as an
approximation of the Poisson-Voronoi volumes distribution,

p(x) = 1

x
√

2πσ
exp

[
− (ln x − μ)2

2σ 2

]
, (11)

where μ and σ are determined by fitting. Using simulation
data, Kumar et al. [22] obtained σ = 0.4332 and μ =
−0.0735. However, since we know the mean and variance
exactly [17,18], these two parameters are completely deter-
mined: σ = 0.4058 and μ = −0.0823. As noted by Kumar
et al. [22] and others [70], a lognormal distribution appears
to have little physical justification and, given its weakness in
fitting the data, can serve only as a rough guide to the actual
distribution.

Another suggested form for the Poisson-Voronoi volume
distribution is a � distribution function with one, two, or
three fitting parameters. Kiang [71] attempted to extend results
known for one-dimensional systems and limited simulation
data to suggest a volume distribution of the form

p(x) = γ

�(γ )
(γ x)γ−1e−γ x, (12)

where γ is a constant which Kiang believed to be 6. Andrade
and Fortes [72], using a larger data set, concluded that γ ≈
5.56. Kumar et al. [22] found γ = 5.7869. All these fits should
only be considered approximations, since the variance σ 2 is
known exactly. This, then, determines γ = 1/σ 2 = 5.586.

Kumar et al. [22] also suggested a two-parameter version
of this distribution,

p(x) = xγ−1

βγ �(γ )
e−x/β . (13)

Using simulation data, Kumar et al. obtained best-fit values
of the constants, β = 0.1782 and γ = 5.6333. However, the
exact variance results require β = σ 2 = 0.1790 and γ =
1/σ 2 = 5.586. With these values, Eq. (13) reduces to Eq. (12).
Tanemura [24] suggested a three-parameter version of the
distribution,

p(x) = αβγ/α

�(γ /α)
xγ−1e−βxα

. (14)

Fitting to simulation data, Tanemura found α = 1.409, β =
2.813, and γ = 4.120. However, this can be simplified using
the exact values for the mean and variance; hence, there is
only one free parameter. Fitting to our own data and using
these exact results yields α = 1.1580, which fixes β = 4.0681
and γ = 4.7868.

Figure 10 shows a comparison of the volume distribution
for our large data set and the various suggested fits.
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FIG. 11. (Color online) Partial distributions p
F

(xv) of cell vol-
umes for each number of faces F . The red-most curve, at the bottom
left of the plot, corresponds to F = 5; the blue-most curve, at the
bottom right of the plot, corresponds to F = 32. Data were binned in
intervals of width 0.04.

The parameters in Eqs. (11), (12), and (13) are determined
using the known exact results, with the single free parameter
in Eq. (14) determined via a least-squares fit to our data set.

Inspection of Fig. 10 shows that Eq. (11) does a poor
job reproducing the simulation data. Equations (12) and (13)
exhibit systematic errors compared with the simulation data
(see both the peak position and the large x behavior),
although they are far superior to Eq. (11). The adjustable
three-parameter � distribution function [Eq. (14)] provide a
best fit to the data.

We next consider the partial distributions p
F
(xv) of cell

volumes for each number of faces F ; the partial distributions
are normalized so p(x) = ∑∞

F=1 p
F
(xv). Data for 4 � F �

32 are shown in Fig. 11; a semilog scale is used to help
differentiate the data for very small and very large volumes.
Tanemura [24] used a relatively large data set (5 million cells)
and suggested that each of these partial distributions could
be accurately described by the three-parameter � function
considered earlier [Eq. (14)], where α, β, and γ for each curve
are parameters that depend on F . We test this suggestion
using a least-squares fit to obtain parameters α, β, and γ

for each F . Figure 11 shows least-squares fits of Eq. (14)
for each F . Obtained parameters are provided in Table IX of
the Supplemental Material. While we know of no theoretical
reason to expect this form, it appears to match the data very
well.

B. Distribution of surface areas

We next consider the distribution of surface areas over all
cells. In this section we use xs = s/〈s〉 to denote normalized
surface area, where s is the surface area of a particular cell and
〈s〉 is the average surface area per cell. Brakke [18] provided
an integral equation for the variance of this distribution, and
numerically evaluated it to be 0.064679. Our data reproduce
this exact result to within 0.0001%. Figure 12 plots the
distribution of surface areas in our data set. The curve appears
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FIG. 12. (Color online) Distribution of surface areas among all
cells. Data were binned in intervals of width 0.04. The standard
deviation is 0.254, shown to three decimal places. The inset shows a
subset of the data on a semilogarithmic plot.

to peak at roughly xs = 0.96 with a probability density of
p(xs) = 1.57.

Kumar et al. suggested that this distribution can be
described by a two-parameter � function [Eq. (13)] with fitted
parameters α = 15.4847 and β = 0.06490. However, since
both the mean and variance are known, there are no degrees
of freedom in fitting two parameters. The analytic constraints
yield α = 15.461 and β = 0.06468.

If we consider a three-parameter � function [Eq. (14)],
then we are left with one degree of freedom in choosing
the parameters. A least-squares fit finds that α = 1.845,
β = 4.416, and γ = 8.557 fit the data most closely, while
satisfying the known analytic constraints. Figure 12 shows
both fits and the collected data. Although the three-parameter
version slightly underestimates p(x) for small x, as can be
seen on the inset plot, overall it provides excellent agreement
with the data.

Figure 13 shows the partial distributions p
F
(xs) of surface

areas for cells with fixed numbers of faces. We show the data on
a semilog plot to focus attention on data of very large and small
surface areas. Tanemura [24] suggested that these distributions
could also be accurately described by the three-parameter �

function considered earlier [Eq. (14)], where α, β, and γ for
each curve are parameters that depend on F . We test this
suggestion using a least-squares fit to obtain parameters α, β,
and γ for each F . Figure 11 shows least-squares fits of Eq. (14)
for each F ; the parameters are provided in Table X of the
Supplemental Material. While we cannot provide justification
to expect this form, it appears to match the data very well.

C. Distribution of face areas

We next consider the distribution of areas of faces. In this
section we use xa = a/〈a〉 to denote normalized areas, where
a is the area of a particular face and 〈a〉 is the average area
over all faces. Brakke [18] provided an integral expression for
the variance of this distribution; numerical evaluation shows
that it is equal to 1.01426. Our data reproduce this exact
result to within 0.005%. The black curves in Fig. 14 show the
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FIG. 13. (Color online) Partial distributions p
F

(xs) of cell sur-
face areas for each number of faces F . The red-most curve, at the
bottom left of the plot, corresponds to F = 4; the blue-most curve,
at the bottom right of the plot, corresponds to F = 33. Data were
binned in intervals of width 0.04.

distribution of areas among all faces in our data set. Unlike the
distributions considered earlier, this one is far from symmetric;
instead, it is strongly biased towards faces with very small
areas.

We also consider the partial distributions pn(xa) of areas
limited to faces with fixed numbers of edges n. The colored
curves in Fig. 14 show these distributions. It appears from the
figure that pn(0) > 0 for n = 3 and 4. Hence, these curves
cannot be fitted using a � function [Eq. (14)], for which p(0)
always evaluates to 0.

D. Distribution of face perimeters

Last, we consider the distribution of perimeters of faces.
In this section we use xl = l/〈l〉 to denote a normalized
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FIG. 14. (Color online) Partial distributions pn(xa) of face areas
for each number of edges n. The red-most curve, located to the left of
the other curves, corresponds to n = 3; the blue-most curve, located
at the bottom-center of the plot, corresponds to n = 15. The black
curves show the distribution of areas summed over all n. Data were
binned in intervals of width 0.04.
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FIG. 15. (Color online) Partial distributions pn(xl) of face
perimeters for each number of edges n. The red-most curve, located
to the left of the other curves, corresponds to n = 3; the blue-most
curve, located at the bottom-center of the plot, corresponds to n = 15.
The black curves show the distribution of perimeters summed over
all n. Data were binned in intervals of width 0.04.

perimeter, where l is the perimeter of a particular face and
〈l〉 is the average perimeter over all faces. Again, Brakke [18]
derived an exact analytical expression for the variance that
evaluates to 0.2898. Our data reproduce this result to within
0.004%. The black curves in Fig. 15 show the distribution
of perimeters among all faces in our data set. The shape of
this figure is similar to that calculated analytically by Brakke
[73] for the distribution of edge lengths in two-dimensional
Poisson-Voronoi structures.

We also consider the partial distributions pn(xl) of perime-
ters limited to faces with fixed numbers of edges n. The
colored curves in Fig. 15 show these distributions. It appears
from the data that pn(0) > 0 for n = 3; this implies that
the partial perimeter distributions cannot be fitted to a �

function.
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FIG. 16. (Color online) Average normalized volume 〈xv〉F
as a

function of number of faces F ; error bars indicate standard error from
the mean. The red curve is a least-squares fit to AF b, as explained in
the text.
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FIG. 17. (Color online) Average normalized surface area 〈xs〉F

as a function of number of faces F ; error bars indicate standard
error from the mean. The red curve is a least-squares fit to AF b, as
explained in the text.

V. CORRELATIONS BETWEEN
GEOMETRY AND TOPOLOGY

We now consider how the average volume and surface area
of a cell depend on its number of faces F , and how the average
area and perimeter of a face depend on its number of edges n. In
two-dimensional systems, the study of this type of relationship
was pioneered by Lewis [74], who observed in some natural
structures that the area of a cell was proportional to its number
of edges.

Figure 16 shows the average volume of a cell as a function
of its number of faces; we use 〈xv〉F to denote the average
volume of cells with F faces. Based on a data set with 102 000
cells, Kumar et al. [22] suggested that 〈xv〉F = AFb, where A

and b are fitting parameters. Kumar et al. found A = 0.0164
and b = 1.498; the more extensive data collected here yield
similar values, A = 0.0176 and b = 1.468. The curve appears
to fit the data well for 10 � F � 20, though not for large or
small F .
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FIG. 18. Average normalized area 〈xa〉n as a function of number
of edges n; error bars indicate standard error from the mean.
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FIG. 19. Average normalized perimeter 〈xl〉n as a function of
number of edges n; error bars indicate standard error from the mean.

A similar relation might be considered for the average
surface area of a cell. Based on simulation results, Kumar
et al. [22] suggested that 〈xs〉F = AFb, where 〈xs〉F is the
average surface area of cells with F faces and A and b are
fitting parameters (Fig. 17). Kumar et al. found A = 0.09645
and b = 0.8526; our data yield similar values, A = 0.0993
and b = 0.843. This curve too appears to fit the data well for
10 � F � 20, though also fails for large and small F .

Finally, we turn to the dependence of the expected area
and perimeter of a face on its number of edges n, illustrated in
Figs. 18 and 19. Although the exact forms of these relationships
cannot be determined, it is clear that neither the average area
nor perimeter of a face increase linearly with n.

VI. CONCLUSIONS

Poisson-Voronoi networks are widely used across the phys-
ical and biological sciences as canonical cell structures. While
two-dimensional Poisson-Voronoi networks have been widely
studied and often used as surrogates for three-dimensional
applications, such three-dimensional networks have been
much less widely examined. In this report, we have provided
a much more complete characterization of three-dimensional
Poisson-Voronoi networks than exists in the literature.

In particular, we report a wide range of statistical properties
of three-dimensional Poisson-Voronoi structures containing a
combined total of 250 000 000 cells. The data demonstrate
that although the Poisson-Voronoi structure is generated using
a random distribution of points, it exhibits a rich topological
and geometrical structure.

The size of the data set considered here has enabled us to
resolve properties of such structures that have been impossible
to investigate previously. While some of the results corroborate
earlier work at much higher precision, the results also clearly
contradict other conjectures.

In particular, we found that the natural extension of the
Aboav-Weaire relation to three dimensions is not consistent
with our very large data set, contrary to what was previously
reported [22,50]. In particular, for F < 12 faces, the average
number of faces of a cell’s neighbors increases with the number
of faces F of a central cell. This is consistent with recent
theoretical results [51,52].

Considering more refined topological data, we observed
that some p vectors appear significantly more frequently than
others. We also observed that even when considering a fixed p

vector, not all topological types appear with equal frequencies.
Understanding such topological distributions may provide new
insight into the topological structure of other natural cellular
structures and the forces under which those systems evolve.
One particularly interesting set of results shows that the order
of the symmetry groups of the three-dimensional Poisson-
Voronoi cells shows clear trends that can be used to distinguish
it from other types of cellular networks.

Our data set supports the conjecture of Tanemura [24]
regarding the distribution of cell volumes and surface areas
when restricted to cells with fixed numbers of faces. In
particular, a three-parameter � function [Eq. (14)] appears
to fit these data precisely. This equation also appears to fit the
distribution of volumes over all cells. However, this functional
form does not accurately describe the distribution of cell
surface areas or cell face areas and perimeters.

We considered the dependence of the expected volume and
surface area of a cell on its number of faces. The data presented
here counters conjectures of Kumar et al. [22] regarding the
form of this relationship. Unfortunately, we were unable to
provide a well-founded alternative.

Extensive geometrical and topological statistics from our
data structures are included in the Supplemental Material
and an extensive set of measures of the cells in the entire
250 000 000 cell data set is available online at Refs. [31,75].
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[39] B. Jeune and D. Barabé, Ann. Botany (London) 82, 577

(1998).
[40] J. C. M. Mombach, R. M. C. de Almeida, and J. R. Iglesias,

Phys. Rev. E 48, 598 (1993).
[41] D. L. Weaire and S. Hutzler, The Physics of Foams (Oxford

University Press, Oxford, 1999).
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