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An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional
kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v)
spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around
embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in
each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We
have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several
recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v

mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an
efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot
light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied
gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin
films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of
cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
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I. INTRODUCTION

Kinetic equations are widely used in many fields from
physics to sociology and finances [1]. Typical applications
in physical kinetics include rarefied gas dynamics, radiation
and heat transport, and the kinetics of charged particles
in plasmas and semiconductors [2,3]. Two major methods
for solving kinetic equations are statistical particle-based
simulation methods and direct numerical solutions using
computational mesh in phase space, which includes physical
and velocity spaces. In the latter case, a discrete velocity
method (DVM) is used for discretizing velocity space [4–6] to
resolve the velocity distribution function (VDF) shape for all
points of physical space. The typical number of velocity cells in
DVM is much larger than the number of discrete velocities used
in the Broadwell models [7] and lattice Boltzmann methods
(LBM) [8], both of which operate with a minimal number of
discrete velocities to simulate dynamics close to equilibrium.

Adaptive mesh refinement (AMR) has been used for solving
partial differential equations (PDEs) with reduced number
of computational cells [9]. In particular, adaptive Cartesian
meshes based on hierarchical data structures [10] have gained
popularity in computational science [11]. The benefits of AMR
increase sharply with increasing dimensionality of the prob-
lem, which makes AMR highly desirable for multidimensional
kinetic solvers. Attempts to use adaptive mesh in phase space
(AMPS) for the kinetic equations can be found in recent
literature [12–15]. AMR allows resolving important regions
of phase space where the particles are present and reduce the
number of cells in the regions with no particles. This makes
DVM resemble the particle-based methods which need no
mesh for particle tracing. Extending to velocity space the
AMR techniques developed for the physical (configuration)
space could provide substantial savings in computational cost.
In particular, AMPS could drastically increase the efficiency
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of direct kinetic solvers for problems with large variations of
the velocity distribution functions (VDFs) in phase space.

Similar ideas have been evolving in the LBM community.
The LBM, originally designed as an alternative solver for com-
putational fluid dynamics (CFD), has been extended beyond
the level of the Navier-Stokes hydrodynamics and is capable
of describing some kinetic effects [16,17]. It is a mesoscopic
method, which utilizes discrete values of the VDF on a minimal
set of discrete velocities to obtain governing equations for
fluid dynamics alternative to conservation equations based on
VDF moments. Most LBM works are devoted to low speed
isothermal flows close to equilibrium. However, LBMs with a
larger number of discrete velocities [18,19], adaptive meshes
in physical space [20], and finite volume (FV) LBMs with
unstructured meshes [17,21] have been recently developed to
expand LBM capabilities. The ideas of using locally adaptive
velocity sets for the Broadwell models and LBM have been
described in the literature [22]. In particular, decomposing
particle velocity into a (locally adaptive) mean flow velocity
and a so-called peculiar velocity is one of the methods
enabling LBM extensions for compressible flows [23]. In
several aspects these methods resemble the computational
technologies described in the present paper.

We have previously developed a unified flow solver (UFS)
for simulations of gas flows over a wide range of Knudsen and
Mach numbers [24]. UFS uses adaptive mesh and algorithm
refinement (AMAR) methodologies [25], which combine
AMR with dynamic selection of kinetic and fluid solvers
in different parts of the computational domain based on
continuum breakdown criteria. The Boltzmann equation is
solved by splitting free flight and collisions with an explicit,
first-order accurate time-marching scheme. The original Boltz-
mann solver in UFS uses a structured Cartesian grid in velocity
space. This grid is static (does not change with time) and is
the same for all cells in configuration space (global velocity
mesh). For highly nonequilibrium gas flow problems at large
Mach and large Knudsen numbers and large variations of
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gas temperatures, the VDF varies drastically in phase space
and possibly in time. This is typical to shock waves and
boundary layers in hypersonic rarefied gas dynamics as well
as high-speed microflows. Solutions of such problems require
velocity grids which are large in size (to cover the entire
range of possible velocities) and dense (to resolve the smallest
VDF features). Using uniform, static velocity grids leads to
prohibitive memory and CPU requirements for these problems
in multidimensional cases.

Adaptive Cartesian mesh in velocity space has been
previously demonstrated for spatially homogeneous kinetic
equations with different types of collision integrals [26,27].
Block-structured AMR algorithms for solving the Vlasov
equation in 1D1V have been described in [13], where further
references to previous works on Vlasov solvers can be found.
A recent paper [14] describes the solution of the Bhatnagar-
Gross-Krook (BGK) kinetic equation in 2D2V using a moving
mesh in configuration space and quadtree Cartesian mesh in
velocity space. A demonstration of adaptive Cartesian mesh
in phase space for hypersonic rarefied flows has been recently
presented using the BGK model for 2D2V settings [28]. The
need for AMR techniques in both configuration and velocity
spaces was expressed in a recent paper [29] devoted to large-
scale space weather simulations with a six-dimensional Vlasov
solver on multi-(GPU) Graphics Processing Unit clusters.

In the present paper, we introduce a concept of a tree-
of-trees (ToT) for solving multidimensional kinetic equations
with adaptive phase space mesh. In this technique, tree-based
adaptive Cartesian meshes are generated for both configuration
and velocity spaces. The mesh in configuration space is refined
around embedded objects of complex shape and dynamically
adapted to local solution properties. A quadtree or octree
mesh in velocity space is created on-the-fly for each cell
in configuration space. The kinetic equations are solved
by splitting the configuration and velocity grids and using
an explicit time-marching scheme. Kinetic solvers without
splitting the space-velocity grids for phase spaces of small
dimensions (up to three) are compared with those using
the ToT technique (split grids). Problems associated with
consistent mesh adaptation in configuration and velocity
space are discussed. The benefits of the AMPS technique
are demonstrated for hypersonic rarefied flows, radiation and
light-particle transport in a Lorentz gas, and charged particle
kinetics in plasmas and semiconductors.

The structure of the present paper is as follows. Section II
provides an introduction to the kinetic equations and descrip-
tion of phase space required for understanding of the proposed
AMPS method. We describe key differences between the DVM
and LBM methods, which are mostly related to selection
of discrete velocity sets. Section III introduces a general
tree-of-trees framework developed for solution of the kinetic
equations. We describe the VDF reconstruction (mapping)
technique required for locally adaptive discrete velocity grids.
In Sec. IV, we describe implementation of discrete collision
integrals on adaptive velocity grids focusing on the bilinear
Boltzmann collision integral for rarefied gas dynamics, and
linear Boltzmann-Lorentz collision integrals for light species
in a Lorentz gas. Section V demonstrates examples of
simulations with the developed technique. We consider two
types of problems. The first type includes hypersonic rarefied

gas flows. The second type deals with kinetics of light particles
in a binary mixture of gases with disparate mass of species
(the Lorentz gas). We also use the Vlasov equation to illustrate
differences between the split and unsplit space-velocity grid
techniques. Conclusions are drawn in Sec. VI.

II. KINETIC EQUATIONS AND PHASE SPACE

A. Kinetic equations

Kinetic equations of interest can be written in a conservative
form suitable for FV discretization:

∂f

∂t
+ ∇ · (Af ) = I, (1)

where ∇ denotes the divergence of the particle flux in six-
dimensional phase space (r,ξ ), and f (r,ξ,t) is the velocity
distribution function (VDF), which depends on the position
vector r in configuration space, and velocity vector ξ . Vector
A has two components (ξ ,a), where a is the acceleration
vector due to external forces. It is assumed that a does not
depend on ξ , so that ∇ξ · (af ) = a · ∇ξ f .1 The left-hand
side of Eq. (1) describes a six-dimensional advection of an
incompressible fluid with the phase space density f (r,ξ ,t).
For binary collisions, the collision term, I , is a local operator
in configuration space. Below, we focus on the Boltzmann, the
Vlasov, and the Lorentz-Boltzmann equations.

The Boltzmann collision integral for elastic collisions of
two atoms in a one-component gas has the following form [30]:

I =
∫

R3
dξ 1

∫
S2

[f (ξ ′
1)f (ξ ′) − f (ξ 1)f (ξ )]|g|σ (|g|,θ )d�.

(2)

Here, g = ξ 1 − ξ is the vector of relative velocity of the
colliding particles, and d� = sin θdθdφ. The differential
collision cross section, σ (g,θ ), depends on the scattering
angle between the relative particle velocities before and after
collision. The particle velocities after collision, (ξ ′,ξ ′

1), and
those prior to collision, (ξ ,ξ 1), satisfy the laws of conservation
of momentum and energy:

ξ + ξ 1 = ξ ′ + ξ ′
1, |ξ |2 + |ξ 1|2 = |ξ ′|2 + |ξ ′

1|2. (3)

Elastic collisions redistribute velocity vectors on a sphere
with the center ξ 0 = (ξ + ξ 1)/2 and radius g/2 in velocity
space. To determine the postcollision velocities (ξ ′,ξ ′

1), it is
necessary to know the scattering angle which in turn depends
on the interaction potential of the atoms. For a hard sphere
(HS) model used in this paper, scattering is isotropic, σ (g,θ ) =
d2/4, where d is the atomic diameter. For a soft sphere model
used for simulations of granular flows only the first equation
(moment conservation) in (3) is satisfied and energy dissipation
takes place [3].

The lowest velocity moments of the VDF are the macro-
scopic variables, the number density N , mean velocity v,

1Since r and ξ are independent variables, the commutativity
∇r · (ξf ) = ξ · ∇rf is always satisfied.
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temperature T , pressure tensor p, and heat flux q:

N =
∫

f dξ , v = 1

N

∫
ξf dξ , T = M

3kBN

∫
c2f dξ ,

pij = M

∫
cicjf dξ , q = M

2

∫
c2cf dξ .

Here c = ξ − v, M is the molecular mass, and kB is the
Boltzmann constant. The subscripts i and j denote the Carte-
sian components. The density, flow velocity, and temperature
satisfy the conservation equations of mass, momentum, energy,
etc., which are expressed by the Euler, Navier-Stokes, Burnet,
and the Grad 13-moment equations. Higher moments, such
as the fourth moments, p2ii = ∫

c4
i f (ξ )dξ , are often used

to illustrate the accuracy of computational methods and the
degree of system deviation from an equilibrium state.

For gas mixtures, kinetic equations can be written for each
component. Below, we consider a binary mixture of heavy and
light species, which is called a Lorentz gas. The density and
mass of the light species are denoted as n and m, respectively.
For collisions between light and heavy particles in the Lorentz
gas, the collision operator is linear, and can be obtained for
a prescribed distribution of heavy (or target) species. For
instance, elastic collisions of hot electrons with cold atoms,
the leading term of the collision operator (at m/M � 1) has
the Boltzmann-Lorentz form [31]

I = Nξ

∫
S2

σ (ξ,θ )[f (ξ�′) − f (ξ�)]d�′, (4)

where the velocity vector ξ = ξ� is decomposed into its
modulus, ξ , and the angular part, �. The differential collision
cross section, σ (ξ,θ ), is a function of the particle speed and
the scattering angle θ = arccos(� · �′) between the initial and
final particle velocity during collision. The collision operator
(4) modifies a direction of the particle’s velocity (momentum)
but conserves its modulus or kinetic energy.

Inelastic collisions are those in which hot light particles
(e.g., electrons) lose a large fraction of their energy. The
inelastic collisions of electrons with atoms or molecules are
described by the collision operator [32]:

I = Nξ
∑

k

∫
S2

[
f (ζ )

ζ 2

ξ 2
σk(ζ,θ ) − f (ξ )σk(ξ,θ )

]
d�′. (5)

Here ζ is the postcollision velocity, ζ 2 = 2εk

m
+ ξ 2, where

εk is the energy required to excite a kth state of an atom or
molecule, σk(ξ,θ ) is the differential cross section for excitation
of a kth energy state, and

∑
k denotes summation over all

excited states.

B. Discretization of velocity and configuration spaces

For the numerical solution of the kinetic equations, we
first discretize velocity space to obtain a discrete Boltzmann
equation (in the absence of external forces) [7]:

∂fi

∂t
+ ξ i · ∇rfi = 1

2

∑
j,k,l

Akl
ij (fkfl − fifj ). (6)

Here, fi denotes the value of VDF at the discrete velocity
ξ i , and Alk

ij is a scattering matrix. For practical applications
of Eq. (6), there are two major challenges: (a) The discrete

collision operator involves a summation over all discrete
velocities, which is expensive (of the order of N2

v , where Nv

is the number of discrete velocities); (b) the discrete collision
operator takes into account only those discrete postcollision
velocities which fall exactly on the collision sphere. The
number of such velocities is small and strongly depends
on the radius of the collisional sphere. To overcome these
challenges (which become even more important for locally
adaptive discrete velocity sets), several methods have been
described in the literature (see Sec. IV).

Selection of discrete velocity sets is different for DVM and
LBM [33]. In DVM, discrete velocities are selected to resolve
the VDF shape. For general 3V cases, the typical number of
cells in velocity space, Nv , is of the order of 103. In LBM,
the discrete values of the VDF are used as the state variables
instead of the moment integrals to describe gas dynamics near
equilibrium. The minimal set of discrete velocities is selected
to satisfy mass, momentum, and energy conservation, as well
as rotational symmetry. In particular, LBM models are dubbed
DnQm for m discrete velocities in n dimensions. Popular
examples are labeled D2Q9 and D3Q19. Higher-order lattices
have been constructed [34,35] to capture some rarefied gas
effects in the Knudsen layer and the Knudsen paradox.

After velocity discretization, the kinetic equation (1) is
reduced to a homogeneous set of linear equations in con-
figuration space (6). To solve these equations numerically,
one uses a computational grid in configuration space. Many
attractive features of the original LBM method are derived for
a uniform Cartesian mesh in configuration space. However,
such mesh has severe practical limitations, and recent works
have attempted to decouple the space mesh from the lattice
structure and solve LBM equations via finite difference, finite
elements, and finite volume methods [17,21]. Although some
of the attractive LBM features are lost in this decoupling,
other features (low degree of numerical diffusivity, etc.) remain
valid [21]. In practically all aspects, except for the selection
method of discrete velocities, the FV LBM with decoupled
space mesh and velocity lattice (see [17,21,36]) becomes
similar to the FV DVM described in this paper. Another
similarity is the implementation of boundary conditions using
immersed boundary methods (IBM) in LBM [20].

For phase spaces with dimensions up to three (such as 1D1V
or 1D2V) one can use standard mesh generation techniques
and assign different axes to the corresponding configuration
and velocity coordinates. Such an approach was used in [37]
for Vlasov solvers on structured static mesh and in [13]
for block-structured adaptive Cartesian mesh in 1D1V phase
space. Figure 1 shows examples of 1D1V tree-based phase
space Cartesian meshes [38]. Such meshes are generated by
subsequent divisions of unit squares [in two dimensions (2D)]
or unit cubes [in three dimensions (3D)] using binary tree,
quadtree, or octree data structures.

Figure 1 illustrates key differences between unsplit and split
phase space grids for a 1D1V setup. The split grid assumes
that binary trees are used for both configuration and velocity
spaces. The split grid has planes of x = const. This allows
simple computing of operators local in space (moments of
the VDF and collisional integrals). The advection operators
in x and ξx are computed independently along the x and ξx

directions. On the other hand, the unsplit grid is constructed

063301-3



ARSLANBEKOV, KOLOBOV, AND FROLOVA PHYSICAL REVIEW E 88, 063301 (2013)

FIG. 1. Examples of 1D1V phase space grids: unsplit (left, quadtree) and split binary (right, ToT). On split grid (right), all velocity cells
and only the last x cell are binary divided. Arrows (solid for ξx < 0 and dashed for ξx > 0) indicate FV upwind fluxes between r cells r1

and r2. Crosses indicate locations used for fine-coarse (two top crosses) and coarse-fine (bottom cross) mappings to achieve second-order
accuracy.

using quadtrees. Computing advection operators involves a
larger stencil of different direct and nondirect neighbor cells
(see, e.g., [38]), which may yield a better accuracy for
the advection operator, but requires special methods for the
treatment of VDF moments and collisional operators. Another
difference is that while a quadtree unsplit grid cell refinement
proceeds along both coordinates, refinement of a split binary
grid takes place independently along each coordinate (e.g., by
adding new columns and rows for the 1D1V illustration in
Fig. 1).

For phase spaces with dimensions larger than 3, special
procedures need to be developed for creating velocity grids.
Examples of Vlasov solvers with unsplit mesh in phase spaces
of high dimensions (up to 4) and linear Boltzmann solvers
with dimensions up to 5 (2D3V) have been reported [39,40].
In principle, any type of a structured or unstructured grid can
be used to discretize velocity space. Hierarchical tree-based
Cartesian grids have several benefits: (1) allowing efficient
ways to traverse and locate cells; (2) seamless grid adaptation;
and (3) easy ways to develop second-order accuracy schemes
for discretization of differential operators and interpolation
routines. Other benefits of hierarchical Cartesian meshes are
related to multigrid and multilevel solvers. In this paper, we use
tree-based adaptive Cartesian meshes for both configuration
and velocity spaces.

There are important differences in implementing AMR
techniques for unsplit and split phase space grids. First, for
unsplit grids, mesh adaptation in configuration space triggers
corresponding mesh adaptation in velocity space (for quad-tree
meshes, see Fig. 1, left). This could be beneficial for pure
advection problems such as collisionless flows of charged
particles described by the Vlasov equations. However, for
collision dominated kinetics, independent grid adaptation in
configuration and velocity spaces is preferable. Second, unsplit
grids create additional difficulties for calculation of collisions,
which involve integral operators in velocity space. Even

computations of the VDF moments become cumbersome.
Such computations involve summing up VDFs along x = const
planes in x-ξx space and using some interpolation techniques
to find the VDF along these planes [13].

III. TREE-OF-TREES STRUCTURE FOR PHASE SPACE

This section describes a tree-of-trees framework developed
for solving kinetic equations with adaptive mesh in phase
space. We introduce the concept of the ToT “structure-within-
a-structure,” provide details of the velocity grid mapping
algorithms for a treatment of advection in configuration space
with velocity grids of different refinement levels, and give
details about the FV discretization and time advance schemes.

A. General tree-of-trees framework

The numerical solution of partial differential equations
(PDEs) is based on discretization of derivatives on a computa-
tional mesh. Most PDEs of mathematical physics only require a
mesh in physical (configuration) space. Modern computational
tools employ quad and octree meshes to simplify automatic
gridding of complex geometries and adaptive mesh refinement.
Kinetic equations operate in phase space of higher dimensions
and require meshing for extra dimensions.

In this paper, we consider kinetic equations with phase
space consisting of configuration space (r space) and velocity
space (ξ space). Meshing this r-ξ phase space can be done in
different ways. In this work, we utilize split, unstructured r

and ξ grids (previously illustrated in Fig. 1, right, for 1D1V
case). A tree-based Cartesian grid for r space was previously
used as in our hybrid, kinetic-fluid solvers [24,27]. To generate
an adaptive ξ grid in each r cell (as opposed to the previously
used global, structured ξ grid across all r cells), we introduce
a structure-within-a-structure method. To create ξ grids, we
utilize the same meshing techniques as in r space and generate
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FIG. 2. Tree-based ξ meshes “grown” in r cells, representing the
concept of a tree-of-trees (ToT) data structure for a 2D2V case.

(“grow”) quadtree- or octree ξ grids in each r cell, as illustrated
in Fig. 2. We call this concept a tree-of-trees (ToT).

More generally, the ToT grid with a locally varying discrete
velocity grid can be considered as a six-dimensional, alternate
direction tree with binary division along configuration and
velocity coordinates independently (x and ξx directions for a
1D1V illustration in Fig. 1, right). Therefore, the numerical
techniques developed for such binary grids can be directly
used for the ToT grids of higher dimensionality. Among these
techniques are higher-order schemes, conservation preserving
schemes, etc. However, since the velocity grid is locally
adapted (e.g., 1D1V x-ξx space as opposed to 2D x-y space),
during operator discretization, one has to pay special attention
to conservation of VDF moments (mass, momentum, and
energy) during the advection step. In this paper, we tackle this
problem by using an accurate VDF reconstruction (mapping)
technique between configuration and velocity spaces. In
addition, when r space adapts, ξ grids need to be dynamically
created and destroyed with solutions being mapped using
special, local moment and property conserving fine-coarse and
coarse-fine methods.

Therefore, the described ToT concept offers a general and
flexible way to control structures within structures (such as
databases, particles, etc.) on quadtree or octree grids, which
can be used in different applications. In the remainder of this
paper, we describe details of this concept which are specific
to the kinetic equations for one-particle VDFs, which are
controlled by advection in r and ξ spaces (e.g., due to external
body forces) and by binary collisions in ξ space. The presented
ToT concept for solving kinetic equations is numerically
realized within Unified Flow Solver (UFS) methodology [24]
based on the object-oriented GFS framework [38].

The goals of the present paper are to develop and demon-
strate the ToT concept for solving the kinetic equations with
adaptive mesh in phase space (AMPS) for several applications.
We are aware that the initial implementation of the ToT
concept carried out in this work is not numerically optimal
and can be improved in several directions. There exists, e.g.,
an overhead related to dealing with unstructured and spatially
dependent velocity grids. This overhead can be reduced
by storing mapping or search data between grid adaptation
events. Also, memory usage of the present ToT solver can be
significantly reduced by rewriting its portions which deal with

velocity space objects (grid and events). In the present paper,
we give examples of speed-up factors offered by our ToT
concept compared to the previously employed approaches;
these factors are only approximate and often underestimated.
Development of optimized ToT solvers capable of efficiently
solving full 3D3V problems, and detailed study of their
numerical efficiency are planned for future work.

B. Advection in configuration space and mapping between
velocity space grids

In our ToT solver implementation, we employ a cell-
centered FV formulation where VDFs are stored on r- and
ξ -cell centers. The advection in r space requires calculating
normal fluxes across faces of neighboring r cells (with cell
centers r1 and r2) for a given velocity ξ = (ξx,ξy,ξz), namely,
ξnf (t,r1,ξ ) with ξn > 0 and ξnf (t,r2,ξ ) with ξn < 0, where ξn

is the face normal velocity. For a first-order accuracy scheme,
a cell face VDF value is interpolated from its values at cell
centers r1 and r2 (see also Fig. 1, right). For a second-order
accuracy scheme, cell-centered gradients of VDF f for a given
velocity ξ are calculated (with slope limiters applied to ensure
solution monotonicity).

Since ξ grids can be different in two neighboring r cells
with a common face (see also Fig. 1 where cells r1 and r2 have
different velocity grids), one needs to develop a mapping (or
reconstruction [15]) technique to obtain a VDF for the same
given velocity ξ in these neighboring r cells. For a 2D x-y
or 1D1V x-ξx Cartesian grid, such a mapping would bring
the locations where velocity and VDF need to be computed
to the same y or ξx levels, correspondingly (see Fig. 1, right
with these locations indicated by crosses). This allows us to
achieve second-order accuracy (see also techniques utilized
in [38] for configuration-space-only grids on unsplit grids)
and our numerical experiments showed that such accuracy
is adequate to accurately describe the particle kinetics under
nonequilibrium conditions. (We note that for an arbitrary
unstructured x-ξx grid, such as a triangular grid, the velocity
vector and f need to be reconstructed at centers of control
volume faces).

While some interpolation techniques (e.g., for neighboring
ξ grids of arbitrary topology) can be used for this purpose,
they can result in a loss of conservation and reduction in the
scheme accuracy. In this work, we propose to use ξ grids of the
same topology (same building linked boxes). This way, each
ξ cell in a given r cell can find a corresponding leaf, parent, or
child cell in a neighboring r cell. Such implementation allows
exact conservation of local (in ξ space) mass and improved
conservation of local impulse and energy to at least a second-
order accuracy [with errors scaling as O(h2

ξ ), where hξ is a
ξ -cell size] when advecting local f from one r cell to another.
This is due to one of the following cases: (1) a leaf cell at the
same level (same velocity, fine-fine type of mapping); (2) leaf
cell at a lower level (fine-coarse mapping); or (3) a nonleaf cell
whose cell center is at the same velocity (coarse-coarse type
of mapping). In case 1 (fine-fine mapping), there is no need
for a special treatment, and the VDF is directly mapped from
a cell center of the corresponding ξ cell. In case 2 (fine-coarse
mapping; see Fig. 3 and also Fig. 1, right), the VDF can be
obtained from a cell center of the coarse ξ cell corrected by
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FIG. 3. Examples of coarse-fine (left) and coarse-coarse (right) mapping between ξ grids in two neighboring r cells. Coarse-fine mapping
involves calculation of (Van Leer limited) ξ -cell-centered gradient and coarse-coarse mapping involves summation over all leaf ξ cells (total 7
in this case) of a nonleaf ξ cell in cell r2.

a cell-centered gradient (here, a Van Leer limited gradient is
used in ξ space to avoid introduction of nonmonotone and
negative VDFs). In case 3, the VDF is obtained as a result of
summation over all leaf cells of the corresponding nonleaf cell
(see Fig. 3 and also Fig. 1, right). Summation is performed
over 4 cells in 2D (and 8 cells in 3D) if the difference in ξ cell
levels is 1. If this difference is 2, summation is carried out over
up to 16 (e.g., 7 as in Fig. 3) cells in 2D (up to 64 cells in 3D),
and so on.

C. Grid adaptation in r and ξ spaces

For the split r and ξ grids, adaptations are carried out
independently (r-space grid adaptation results in creation
of new ξ -space objects, and not vice versa). In the present
implementation based on the object-oriented GFS framework
[38], all events and methods available for r-space objects
are available for ξ -space objects as well. In particular, grid
adaptation can be easily performed in ξ space based on
gradients of any quantity (e.g., VDF f or its log). In this work,
we use a simple ξ -space grid adaptation on gradients of VDF
with a given threshold parameter. This parameter, however,
is an r-space dependent quantity and it is scaled to the local
(in r space and in time) peak value of the VDF. Therefore,
different ξ -space grid adaptation strategies can be carried out
in each r cell; this allows fine tuning of grid adaptation in
some regions of r space (such as a boundary layer near a wall;
see below). We have found that for the studied problems, grid
refinement variation of three to four levels across the r-space
computational domain (e.g., from four to seven, L4-7 ξ grid, or
from five to nine, L5-9 ξ grid) is adequate to obtain acceptable
moment conservation and accuracy during VDF advection or
mapping. Using adapted ξ grids with a three to four refinement
level range allows us to obtain large CPU time and memory
gains compared to uniform ξ grids at the highest level of
refinement.

Grid adaptation in r space requires that VDFs are dynam-
ically created during r-cell refinement and destroyed during
r-cell coarsening. During coarsening of an r cell, a new ξ -cell
object (grid and events) is created in a parent cell with a
VDF computed as an average over its 4 (in 2D) children cells
whose ξ -cell objects (grid and events) are then destroyed.
During refinement of an r cell, 4 (in 2D) new VDFs (or ξ -cell

objects) are created, which are clones of the parent VDF
(ξ -cell object). This assumes a first-order accuracy solution
reconstruction algorithm. Second-order accuracy solution re-
construction (important for transient problems) can be readily
implemented (see, e.g., [38]), which requires calculation of
cell-centered gradients of VDF in parent cells based on
neighboring cells. Grid adaptation in r space is commonly
carried out on gradients of gas density, mean velocity, and/or
temperature. Proper grid adaptation in r space ensures that
ξ grids in neighboring r cells remain close refinementwise
to reduce errors arising when advecting or mapping VDFs
between neighboring r cells.

D. Finite volume and time advance schemes

In the current implementation of ToT kinetic solvers with
the split r and ξ grids, an explicit time stepping scheme is used.
Second-order accuracy in time is achieved by employing the
Hancock, two-step predictor-corrector technique [41], which
for a 3D3V case gives

f n+1/2 = f n + 	tn

2

1

h3
r h

3
ξ

(
Rr [f n]h3

ξ + Rξ [f n]h3
r

+ I [f n,f n]h3
r h

3
ξ

)
.

f n+1 = f n + 	tn

h3
r h

3
ξ

(
Rr [f n+1/2]h3

ξ + Rξ [f n+1/2]h3
r

+ I [f n+1/2,f n+1/2]h3
r h

3
ξ

)
. (7)

Here the residuals due to advection in r and ξ spaces are
expressed as sums over faces of the control volume r and ξ

cells:

Rr [f ] =
∑

r-faces

(ξ · nr )face f (t,rface,ξ )h2
r ,

(8)
Rξ [f ] =

∑
ξ -faces

(a · nξ )facef (t,r,ξ face)h2
ξ ,

with nr and nξ being the unit vectors normal to faces of
the r and ξ cells with sizes hr and hξ , correspondingly.
According to Eq. (8), the advection residuals are discretized
independently on the split adaptive Cartesian r and ξ grids
using the FV formulation. Second-order accuracy in space
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is achieved by using cell-centered gradients with (minmod
or Van Leer) slope limiters to ensure monotonicity of the
VDF at faces of a control volume cell (namely, at locations
rface and ξ face, correspondingly). The values of f at faces are
reconstructed using the upwind scheme (see also Refs. [17,36]
for the upwind schemes in LBM) both in r and ξ spaces
with unwinding being done based on the velocity, ξ , and
acceleration, a, vectors, correspondingly. In order to achieve
second-order accuracy (and thus improved conservation of
the VDF moments) when reconstructing velocity and f on
both sides of r faces (left and right fluxes) with different
ξ grids, we use the specially designed mapping described
above. The time step 	t is estimated from the conventional
Courant-Friedrichs-Lewy (CFL) criterion for both in r and
ξ spaces taking into account the time step limitation from
the collisional integral. For steady-state problems, local time
stepping is used. We note that the second-order upwind FV
cell-centered scheme with slope limiter reconstructed face
values in Eq. (8) is analogous to that used in the FV LBM
scheme in Ref. [17] (where a slightly different flavor of the
second-order accuracy time marching was used).

IV. COLLISION INTEGRALS ON ADAPTIVE
CARTESIAN VELOCITY GRID

In this section, we describe implementation of different
binary collision integrals on adaptive velocity grids. We con-
sider two types of the collision integrals: nonlinear collision
integrals for elastic collisions between particles of similar
types and linear collision integrals for collisions of light and
heavy particles. The first type includes the model collision
operators and the bilinear Boltzmann collision integral. The
second type describes elastic and inelastic collisions of light
particles with heavy particles described by the Boltzmann-
Lorentz integrals.

A. Model collision operators

Different model collision operators can be expressed in a
discrete form [8]:

Ii =
Nv∑
j

Aij

(
fj − f

eq

j

)
. (9)

Here, Ii = I (ξi) is the collisional integral in a cell ξi , i and
j are the indices of ξ cells, Aij is a scattering matrix, and
f eq is a local equilibrium VDF. The scattering matrix in (9)
takes into account that different velocities relax to equilibrium
at different rates. The matrix version of the scattering model
corresponds to the multiple relaxation time model of LBM
[42,43].

When the scattering matrix is reduced to a diagonal form,
and a single parameter τ controls the relaxation time of all
velocities, Aij = −δij /τ , where δij is the identity matrix;
one obtains a most commonly used Bhatnagar-Gross-Krook
(BGK) model. The BGK model assumes f eq as a Maxwellian
distribution. Other commonly used collision models include
the Shakhov model [44] and the elliptic model [45], which
differ from each other by the shape of the equilibrium VDF
to achieve realistic Prandtl and Schmidt numbers not possible
within the BGK model.

The significant difference of the model collision operators
from the discrete Boltzmann collision integral (6) is the lack
of dependency of the collision frequency on the molecular
speed. Despite the fact that the model equations can often give
qualitatively correct results, the degree of accuracy cannot be
estimated a priori. Results for strongly nonequilibrium flows
(e.g., shock waves at high Mach numbers) show substantial
differences in the profiles of temperature and heat flux
compared to the solutions of the full Boltzmann equation. For
problems with small Mach numbers (incompressible flows)
model equations give quantitatively correct solutions and their
use allows significant simplification of the solution of the
kinetic problem. The use of model equations of the BGK
type allows calculations on a smaller number of discrete
velocities by choosing a more accurate integration formula for
calculation of the moments. An example of using a minimum
set of discrete velocities with model collision operators is the
BGK LBM.

For collisions of light particles with a heavy background
lattice, f eq is a Maxwellian distribution with prescribed
density, mean velocity, and temperature. For binary collisions
among particles of the same type, the Maxwellian distribution
function, f eq , should have the same local mean properties as
f , which must be calculated by integration of f over velocity
space. In the latter case, the model collision operators (9)
remain implicitly nonlinear.

We have implemented the BGK model for our DVM
solver on adaptive Cartesian velocity grids (both in 2V and
3V formulations) using special correction procedures [28].
For 2D2V situations, we introduced an additional VDF,
f1(t ,x,y,ξx,ξy), so that the energy contained in the full (3V)
VDF is correctly taken into account. Selected results with the
BGK model for hypersonic gas flows are presented in Sec. V.

B. Boltzmann collision integral

The procedures for calculation of the discrete collision
integrals previously developed for globally defined (same ξ

grid across all r cells) and structured Cartesian meshes must
be modified for adaptive Cartesian ξ grids. For numerical
calculations of the discrete Boltzmann collision integral, we
used a weak form of the integral [30] in the eight-dimensional
space R3 × R3 × 2π × bm with a Dirac delta function δ(ξ −
ξ ∗) as a test function:

I (ξ ∗) = 1

2

∫
C

dξ 1

∫
C

dξ

∫ 2π

0
dε

∫ bm

0
[δ(ξ ′

1 − ξ ∗)

+ δ(ξ ′ − ξ ∗) − δ(ξ 1 − ξ ∗) − δ(ξ − ξ ∗)]i(ξ ,ξ 1)gbdb.

(10)

Here, i(ξ ,ξ 1) = f (ξ )f (ξ 1), b and ε are the impact parameters,
and bm is the upper limit of the impact parameter b. The
calculation of the collision integral takes place over a volume
of velocity space C ∈ R3 bounded by a sphere with the center
and radius determined by the characteristic parameters of the
problem.

The numerical calculation of the discrete Boltzmann colli-
sion integral poses many challenges with respect to its accuracy
and efficiency. First, straightforward numerical integration
is very expensive (∼N2

v ). Second, only a small number of
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postcollision velocities on the collision sphere coincide with
ξ -cell centers even on uniform (or same level) Cartesian ξ

grids. For adaptive velocity grids, the number of such velocities
tends to zero. Thus, some procedure is required to account for
the velocities which do not fall exactly to the cell centers and
satisfy density, momentum, and energy conservation in each
collision, when taking into account the contributions of these
collisions into the collision integral:∫

R3
ψ(ξ )I (f,f )dξ = 0,

where ψ(ξ ) = (1,ξ ,ξ 2) are the collision invariants. Third, the
discrete collision integral must be zero for any Maxwellian
distribution, FM . Finally, the VDF must remain positive in all
ξ cells.

Numerous publications have been devoted to overcoming
these challenges. The first challenge was addressed using
Monte Carlo, quasirandom sampling [24,46], Korobov se-
quences [47], and importance sampling methods [48]. The
second challenge was addressed using conservative projection
methods. Since the majority of postcollision velocities do not
coincide with cell centers of ξ grid (especially on nonuniform
ξ grids), one has to redistribute (project) the contributions
of these collisions into neighboring cells. For a uniform ξ

grid, the projection methods used in [24,46] provide good
recipes for conservative calculations of the collision integral.
The method of projection on the two closest nodes [46] is
the most economical scheme for a global (uniform) velocity
mesh. In the case of a locally adaptive Cartesian ξ grid, we
extend the method of local projection into the seven closest
cells introduced in [49] for a uniform grid.

The third challenge was addressed by partitioning VDF
into an equilibrium part and a deviation [50,51]. All of these
methods have been developed for global, uniform (structured)
meshes in velocity space. In this paper, we have extended these
methods for adaptive octree Cartesian ξ grids.

1. Importance sampling for selection of integration nodes

Due to the high dimensionality of the collision integral
(10), a Monte Carlo (MC) technique is a method of choice
for its numerical integration. However, the convergence rate
of conventional MC methods is quite low (∼1/

√
Nc, with

Nc being the number of samples), and different procedures
for variance reduction are usually applied to improve the
accuracy without significantly increasing the number of
samples. Quasirandom Korobov sequences have demonstrated
a superior performance compared to random MC sampling
methods for calculations of the collision integral with global,
uniform Cartesian ξ grids. For such grids, the most expensive
part—selection of collisions—is carried out only once for
all r cells. However, for VDFs with peculiarities in narrow
regions of ξ space, quasirandom selection methods lose their
efficiency, even on uniform Cartesian ξ grids. Moreover, these
methods become inefficient for spatially dependent ξ grids.

Therefore, in this paper we use the importance sampling
method for selecting velocities of the colliding particles. In
this approach, we perform random sampling based on a given
distribution, �(ξ ), which is close to an integrable function and

satisfies the condition
∫

�(ξ )dξ = 1. The distribution �(ξ ) for
Eq. (10) is defined based on the VDF, f (ξ ), in each r cell:

�(ξ ) = f (ξ )

N
,

where N = ∑Nv

i=1 f (ξi)Vi is the particle number density, Vi is
the volume of a ξ cell with a center ξi . To select random nodes
ξi , a cumulative distribution F (ξn) is precomputed as

F (ξn+1) =
n∑

i=1

�(ξi)Vi

for n = 1, . . . ,Nv − 1 and F (ξ1) = 0. The function F (ξ ) is
uniformly distributed over a unit interval (0,1). A sequence
of random nodes, ξl , for l = 1,. . ., Nv , distributed with the
probability density �(ξ ) is determined from the solution of
the equation, F (ξl) = rl , where rl is a series of uniformly
distributed random numbers. In particular, for each rl we use
the bisection method to find an interval [ξn,ξn+1] for which
F (ξn) < rl < F (ξn+1).

By choosing velocity cells ξl based on distribution �(ξ ) and
assuming a uniform distribution of the collision parameters
(ε,b) (which is appropriate for isotropic scattering), we obtain
the following approximation of the collision integral (10):

I (ξ ∗) = πbm

Nc

Nc∑
l=1

f1lfl

�1l�l

(	′
1l + 	′

l − 	1l − 	l)blgl,

where Nc is the number of collisions, and 	l is the approxi-
mation of a delta function on a discrete ξ grid:

	(ξ − ξl) =
{

1/Vl for ‖ξ − ξl‖∞ � hξ/2

0, otherwise
.

Here ||ξ ||∞ = max{|ξx |,|ξy |,|ξz|}.
The importance sampling method was found to be particu-

larly efficient for strongly nonequilibrium VDFs. To illustrate
its advantages with respect to the Korobov method, we studied
two simple spatially homogeneous (0D) problems using a
uniform (3V) ξ grid. The first problem was concerned with
relaxation of two initially half-Maxwellian distributions:

f (ξ ,t = 0) =
{

FM (N1,u1,T1), ξx > 0

FM (N2,u2,T2), ξx � 0
, (11)

with parameters corresponding to a shock wave (preshock
values for ξx > 0 and postshock values for ξx � 0) for given
Mach number (Ma). For Ma = 10 and a uniform (64 × 64 × 64)
ξ grid, the computation time using the Korobov method
was about 20 times greater compared to that required by
the importance sampling method. The second problem was
concerned with relaxation of two delta-function VDFs with
nonzero values only in two cells symmetrically located with
respect to the origin [12]. For this problem, the Korobov
method could produce no solution on a uniform (64 × 64 × 64)
ξ grid. The importance sampling method allowed solving this
problem in ∼20 s. Typical values of Nc in these simulations
were of the order of 20 000 for the importance sampling
method and 600 000 for the Korobov method.
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FIG. 4. 2D illustration of the seven-point projection method.
Front and back cell neighbors are not shown.

2. Multipoint projection method for adaptive Cartesian grid

Here, we describe a generalization of the seven-point
projection method [52] to nonuniform, unstructured octree
ξ grids. Figure 4 illustrates a selection procedure for such ξ

grid. Consider a postcollisional velocity (Pα in Fig. 4) which
belongs to cell P1. This cell has six direct neighbors (leaf or
nonleaf) of the same or a lower refinement level (left, right,
top, bottom, front, and back). (The front and back cells are
not shown in this two-dimensional figure). These six neighbor
cells would have been selected for projection in the case of
a uniform velocity mesh. In our case, however, the right and
bottom neighbor cells are nonleaf cells and so have children,
leaf cells. So, we select a child, leaf cell P2 closest to Pα in
the right neighbor cell, and a child, leaf cell P5 closest to Pα

in the bottom neighbor cell. The same procedure is employed
for other cell-neighbor configurations.

The coefficients, αi , which define contributions of post-
collision velocities into these cells are found for each set of
velocities ξ ′,ξ ′

1 from the following system of equations:

7∑
i=1

αiXi = βi,

where X = {1,ξxi,ξyi,ξzi ,ξ
2
xi + ξ 2

yi + ξ 2
zi}t , β = {1,ξxα,ξyα,

ξzα,ξ 2
xα + ξ 2

yα + ξ 2
zα}t . In these formulas ξxi , ξyi , ξzi , ξxα , ξyα ,

ξzα are coordinates of the nodes Pi , and Pα , correspondingly,
in the local coordinate system with the center at P1. To
satisfy the five conservation laws (density, momentum, and
energy) with seven coefficients, additional conditions are used:
α4 = α5 = α6.Using this seven-point projection method can
lead to negative values of some coefficients, αi , which in turn
can lead to negative values of the VDF. To get a positive VDF
in all ξ cells, a polynomial correction

f̄ = f∗(ξ )
[
1 + γ0 + γ1ξx + γ2ξy + γ3ξz

+ γ4
(
ξ 2
x + ξ 2

y + ξ 2
z

)]
was used for the new VDF f∗(ξ ) = max [0,f (ξ )]. The co-
efficients γi take into account changes in density, impulses,
and energy after discarding negative values of the VDF. Our

test calculations showed that for the problem of homogeneous
relaxation, discarding negative values of the VDF with a
subsequent polynomial correction resulted in deviations that
did not exceed 0.05% for the second and 0.1% for the fourth
moments.

3. Satisfying the equilibrium law

The equilibrium law requires for the discrete collision
integral to vanish for a Maxwellian distribution. The calcu-
lation of the collision integral (10) with contributions from
direct collisions in the form f (ξ )f (ξ 1) does not guarantee
this requirement. This becomes particularly important for
VDFs close to equilibrium. Indeed, the condition f (ξ )f (ξ 1) =
f (ξ ′)f (ξ ′

1) is strictly satisfied for a Maxwellian distribution.
However, due to random choice of the nodes and collision
parameters in the numerical evaluation of the discrete collision
integral, this condition is satisfied with some error. This error
comes from the fact that selection of direct collisions with
velocities (ξ ,ξ 1) does not guarantee selection of collisions
with velocities (ξ ′,ξ ′

1). This reduces the values of VDF at
nodes (ξ ,ξ 1) and increases its values at nodes (ξ ′,ξ ′

1).
In the present work, we extend the approach developed

in [51] for structured Cartesian grids. In this approach, the
distribution function is represented as f (ξ ) = FM (ξ ) + fd (ξ ),
where FM (ξ ) is a locally Maxwellian VDF, and fd (ξ ) describes
a deviation from the Maxwellian. Using the property of the
collision integral to vanish for any Maxwellian distribution,
the weak form of the Boltzmann collision integral (10) takes
the form [50]

I (ξ ∗) = 1

2

∫
C

∫
C

∫ 2π

0

∫ bm

0
[δ(ξ ′

1 − ξ ∗) + δ(ξ ′ − ξ ∗)

− δ(ξ 1 − ξ ∗) − δ(ξ − ξ ∗)]

× (2FM + fd )fd1gbdbdεdξdξ 1.

By sampling precollision velocities (ξ l ,ξ 1l) from the
following two distributions, �(ξ ) = |2FM + fd |/N2FM+fd

and
�(ξ1) = |fd |/Nfd

, correspondingly, we approximate the colli-
sion integral as

I (ξ ∗) = πbmρ2FM+fd
ρfd

Mc

Mc∑
l=1

sign(2FMl + fdl)sign(fd1l)

× (	′
1l + 	′

l − 	1l − 	l)blgl,

where Nfd
= ∑Nv

i=1 |fdi |Vi , N2FM+fd
= ∑Nv

i=1 |2FMi + fdi |Vi ,
and the sign() terms come from the �(ξ ) terms. The number
of collisions Nc in our calculations was selected as Nc ≈
N2FM+fd

Nfd
gm	t/(|fε|Vv) where |fε| is the selected minimal

value of the VDF, gm is the maximal value of relative velocity,
and Vv = πg3

m/(6Nv) is an average volume of a ξ cell.

C. Boltzmann-Lorentz integral

Calculation of the Boltzmann-Lorentz collision integral (4)
involves searches of all cells in velocity space which intersect
a sphere with a radius |ξ | centered at the origin. Each such cell
contributes to the integral with a weight distributed according
to the scattering law (differential collision cross section). A
straightforward searching approach involves a large number
of cells and is numerically expensive for large velocity grids.
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We therefore developed another approach, which is based
on generation of Np uniformly distributed points on the |ξ |
sphere using the Marsaglia method [53,54]. Numerical tests
showed that Np∼20–50 random points on the collisional
sphere were sufficient for most of the studied problems and
conditions. The tests included a 0D3V problem of VDF
relaxation and isotropization and a 1D3V problem of light-
particle transport. Using a small number of randomly chosen
points resulted in significant acceleration (more than two to
three orders of magnitude) compared to the straightforward
searching algorithm. We have verified that the implemented
numerical algorithm conserves density and energy on octree
ξ grids involving cells of different sizes (refinement levels).
Exact density conservation was achieved by symmetrization
of scattering contributions from and into cells of different
sizes. Good energy conservation was obtained by using proper
grid adaptation capturing VDF spreading over the collisional
sphere under the effect of collisions. For the typical cases
described below, energy was conserved with less than 1%–2%
error. We finally note that the allowed (collisional) time step
	t was estimated by calculating the collisional integral and
then forcing the VDF to remain positive for the next time step;
once the VDF starts to change (here, become isotropic) and
the ξ grid adapts along the collisional sphere, the time step 	t

starts to increase rapidly enabling fast time marching.
For calculations of the inelastic collision integral (5), we

take into account that a particle (e.g., electron) with an initial
velocity ξ = (ξx,ξy,ξz), after an inelastic collision, finds itself
on a smaller sphere of radius ξ ′ = √|ξ |2 − ξ 2

0 distributed
according to the scattering law with a weighting factor of
(ξ 2 + ξ 2

0 )/ξ 2 [see Eq. (5)]. Conservation of particle density in
inelastic collisions was achieved by symmetrization, similar
to that used in the case of elastic collisions.

V. EXAMPLES OF SIMULATIONS AND DISCUSSION

In this section, we show examples of simulations with the
developed ToT techniques of different physical problems in
phase spaces of variable dimensionality.

A. Charged particle transport in a collisionless sheath

In this section, we demonstrate advection in phase space
in the presence of external forces, which is described by the
Vlasov equation. We compare two Vlasov solvers. The first
one is based on an unsplit r-ξ quadtree grid. The second solver
uses the ToT method with split r and ξ quadtree grids.

We consider the problem of a one-dimensional (1D)
collisionless plasma sheath with particles having only one-
component velocity (ξx). A space-charge sheath near a plasma
boundary at a floating potential is formed to equilibrate fluxes
of electrons and ions to the boundary. The sheath thickness, L,
is of the order of the local Debye length, which is assumed to
be smaller than the mean free path of charged particles. Ions
enter the sheath with a Maxwellian VDF, with mean velocity
equal to the ion acoustic speed, cs = √

Te/M (called Bohm
velocity), and are absorbed at the wall. The electron VDF
at the plasma-sheath boundary is assumed to be Maxwellian
with zero mean velocity. The problem is characterized by two
parameters: the ratio of electron to ion mass, m/M , and the

x/L

ξ x

0 1

Solution With Unsplit Grid

x/L0 1

ξ x

0.2

0.4

ξ x

0.8

0.7

FIG. 5. (Color online) r mesh (top) and final adapted ξ mesh (left,
colored by VDF) at two locations indicated by arrows obtained by
the ToT Vlasov solver. The inset box shows the final adapted x-ξx

mesh and VDF obtained by the unsplit Vlasov solver.

ratio of electron to ion temperatures, Te/Ti . This problem
was previously analyzed using Vlasov solvers for electrons
and ions coupled to a Poisson solver for self-consistent
electric field [55]. Analytical solutions for the VDF of ions
and electrons have been obtained for an arbitrary potential
distribution in the sheath using conservation of total energy
[27]:

fe(x,ξx) =
{

Ce exp
[−ξ 2

x + �(x)
]
, ξx <

√
2	�(x)

0, ξx >
√

2	�(x)
,

(12)

fi(x,ξx) =
{

Ci exp
{− Te

Ti

[√
M
m

ξ 2
x + �(x) − 1

]2}
, ξx > 0

0, ξx < 0
.

(13)

Here ξx = ξx/vTe
is the dimensionless velocity measured in

units of electron thermal velocity, vTe
= √

2Te/m; �(x) is the
dimensionless electric potential; and 	�(x) = �(0) − �(x).
The constants Ce and Ci are determined by normalization
conditions at the plasma-sheath boundary (x = 0). According
to the analytical solution (12), the electron VDF is zero at ξx >√

2	�(x) because electrons are absorbed at the wall (x =
L). The ion solution (13) corresponds to a VDF of constant
amplitude and decreasing width (temperature) in the sheath.

In our simulations, for simplicity, we assume a parabolic
potential profile in the sheath, �(x) = (x/2L)2. We first
present results of computations for the ion VDF using the
ToT solver and the unsplit grid solver. In the ToT solver, no
grid adaptation was used in r space and the ξ -grid adaptation
was based on gradients of the VDF. The computational mesh
in r space and the adapted mesh in ξ space (at two locations in
r space indicated by arrows) are shown in Fig. 5. The adapted
ξ grid allows correct capturing of the ion VDF peak position
as well as its shape; see also Fig. 6 (left) where the predicted
ion VDFs are shown at different x locations together with
the analytical solution (13) at x = L. The amplitude of the
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FIG. 6. Ion (left, lines with symbols: numerical results; open circle symbols: analytical solution) and electron (right, symbols: numerical
results; lines: analytical solutions) VDFs obtained by the ToT Vlasov solver.

VDF remains closely constant, and the analytical solution is
reproduced with good accuracy.

For illustration and comparison, Fig. 5 also shows a
computational x-ξx mesh and solution obtained by the unsplit
Vlasov solver. The resulting solution is very close to that
obtained by the ToT Vlasov solver and effectively to the
analytic solution (13) (not shown for brevity).

Figure 6 (right) shows calculated electron VDFs at dif-
ferent x locations, together with the corresponding analytical
solution (12). Slow electrons are repelled by the electrostatic
potential; fast electrons can overcome the potential well and
get absorbed at the wall. The ToT Vlasov solver reproduces
well the analytical solution and therefore allows for an
accurate description of electron kinetics in the collisionless
sheath.

B. Rarefied gas dynamics

In this section, we demonstrate the ToT Boltzmann solver
for rarefied gas dynamics. We consider three specific problems:
spatially homogeneous relaxation (transient, 0D3V), shock
wave structure (steady, 1D3V), and hypersonic flow over a
square body (steady, 2D2V). The following nondimensional
units are used throughout this section. Particle velocities are
normalized to the thermal velocity, υT = √

2RTref , where
Tref is a reference (e.g., free stream) temperature. Time t is
normalized to the collisional time, τ . The Mach number for
a monatomic gas is defined as Ma = υ∞/(υT

√
γ /2) where

υ∞ is the free stream velocity. The Knudsen number, Kn, is
defined as Kn = λ/L where L is a characteristic spatial scale,
and λ is the particle mean free path.

1. Relaxation problem

The implementation of discrete Boltzmann collision
integral on an octree ξ grid has been tested first for accuracy
and efficiency on a problem of spatially homogeneous
relaxation (0D3V setup). The initial VDF was assumed to
consist of two parts: one part, for ξx > 0, corresponds to
preshock conditions and another part, for ξx < 0, corresponds
to postshock conditions [see Eq. (11)]. Computations were
carried out using a single box in velocity space of size 40 (ξ

grid [–20,20] × [–20,20] × [ − 20,20]) for Ma = 10 and that
of size 80 for Ma = 20.

Figure 7 compares the time dependence of the second and
fourth moments of the VDF for Ma = 10 and 20. For these
conditions, the total number of time steps to convergence was
∼700–1000. The ξ grid was adapted on gradients of the VDF
every 50th time step with a minimum level of 3 and a maximum
level of 6 for Ma = 10 (L3-6 ξ grid) and 7 for Ma = 20
(L3-7 ξ grid). The results with uniform grids (L6 and L7 ξ

grids) and those with adaptive L3-6 and L3-7 ξ grids coincide
with good accuracy: The difference between the moments
does not exceed 0.1%. This confirms the correctness of the
implementation of the Boltzmann collision integral on octree
ξ grids which involve cells whose volumes differ by large
factors [e.g., (26/23)3 for L3-6 and (27/23)3 for L3-7 ξ grids].

Such a large range of grid adaptation levels yields increased
efficiency of simulations. As a result of these tests, the
computation time and memory required using the adaptive
ξ grid was obtained to be ∼10 times smaller compared to
that for a uniform ξ grid. We note that since this test involves
only one spatial (r) cell with complex interaction of different
VDF parts (which in turn requires more refined ξ grids), in
tests involving many spatial cells with weak interaction (thus
smaller ξ grids), such as 1D and 2D shock waves, we could
achieve much larger efficiencies in terms of CPU time and
memory requirements (see below).

In order to demonstrate the accuracy of the developed
method, we show in Fig. 7 a comparison with computations
using the well-validated baseline UFS-Boltzmann solver using
the Korobov method on a uniform Cartesian ξ grid. It can
be seen that there is a very good agreement as well, which,
therefore, confirms correctness of the developed importance
sampling technique combined with the multipoint projection
method on adapted ξ grids. Finally, Fig. 8 shows an example
of the adapted meshes and contours of the VDF at t = 0.32
for Ma = 10 and t = 0.15 for Ma = 20. It is clear that the
adapted ξ grids allow efficient capturing of VDF fine details
during transient relaxation processes.

2. Shock wave structure

The second test is concerned with a 1D problem of a shock
wave structure at Mach number of 10 in a monatomic gas
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FIG. 7. Time relaxation of pressure (second moment) components (left) and fourth moment components (right) on static (L6 and L7) and
adaptive (L3-6 and L3-7) ξ grids for Ma = 10 (top row) and Ma = 20 (bottom row) using the ToT Boltzmann solver. Also shown are results
of computations using the method of Korobov sequences on uniform ξ grid.

with HS collisional model. In this problem, Maxwellian VDFs
are specified at both ends of the computational domain in r

space, with parameters corresponding to jump conditions for
a given Mach number. The r-space domain was discretized
with 40 cells covering 20 mean free paths, λ, with no grid
adaptation. The ξ space was considered as a single box of
size [–20,20] × [–20,20] × [–20,20] (1D3V setup). Each local
ξ grid was adapted (on every 100th time step) on gradients
of the VDF with a normalized threshold value of 0.2 for
an L4-6 ξ grid: minimum level of 4 (corresponding uniform
mesh 16 × 16 × 16) and maximum level of 6 (corresponding
uniform mesh of size 64 × 64 × 64). (We note that using a
minimum level of 3 produced acceptable but less accurate
results in the postshock region). Computations were carried
out until convergence was reached, which took about 2000–
3000 time steps (dimensionless time is ∼8–12, time step
	t∼5 × 10−3).

The resulting profiles of density, temperature, and heat flux
are shown in Fig. 9. The results of computations using the
baseline UFS-Boltzmann solver with the Korobov method on
a uniform (structured Cartesian) ξ grid are also shown for
comparison. One can see that there is a very good agreement
between the results providing a proof of the accuracy of the
present method. Also illustrated in Fig. 9 is the fact that the
BGK model does not give an accurate description of the shock

wave structure at high Mach numbers. Finally, we show that the
number of collisions required by our method to achieve high
accuracy remains very small. Namely, about 3000 collisions
are enough outside of the transition region (where cells are
in near equilibrium) and a maximum of ∼20 000 collisions
are enough inside this region (with a highly nonequilibrium
VDF). This yields large acceleration factors compared to the
traditional methods utilizing Korobov sequences.

Adapted ξ grids and corresponding VDFs are shown in
Fig. 10 at different locations inside the shock. The adapted
L4-6 ξ grid allows proper capturing of the VDF details thanks
to our method of calculating the discrete Boltzmann collision
integral. Inside the shock, the VDFs are highly nonequilibrium
(non-Maxwellian), while at both ends of the computational
domain, the VDFs are Maxwellian with good accuracy. When
a uniform ξ grid is used for this problem, similar accuracy
could only be achieved by using L6 ξ grids. Computations with
such ξ grids in all r cells become very expensive. Indeed, the
CPU time and memory usage both increase by a factor of ∼40
when using a uniform L6 ξ grid. Even higher gain factors are
expected for problems when the configuration domain consists
of a large number of cells in near equilibrium (where small
size local ξ grids can be used) or problems with larger Mach
numbers when higher-resolution ξ grids need to be used to
properly resolve the VDF details.
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FIG. 8. (Color online) Adapted mesh and VDF contours for Ma = 10 (left, time 0.32) and Ma = 20 (right, time 0.15) for the problem of
homogeneous relaxation of VDF.

3. Hypersonic rarefied flows

This section presents results obtained with the developed
ToT Boltzmann solver for the third test case of a rarefied
hypersonic flow past a square body using the BGK model
(in 2V formulation, see Ref. [28] for details). The gas
is assumed to enter the computational domain through its
left boundary. The boundary conditions at the body surface
correspond to diffuse reflection with Twall = 1 (cold solid
obstacle), which is equal to the free stream temperature
T∞ = 1. The r grid is adapted on gradients of density,
mean velocity, and temperature (each with its own threshold
value) to ensure that the VDFs, and as a result their ξ grids,
do not differ significantly between neighboring r cells. The
ξ -grid adaptation in each r cell is carried out on gradients of
VDF with a threshold value adjusted to the local magnitude
of VDF. The value of this threshold is reduced at locations
near the wall so that the small amplitude reflected part of
VDF (normal velocity at the wall ξn < 0) can be resolved

compared to the incoming, high-speed VDF (ξn > 0). This
way, the reflected portion of the VDF was well captured and
proper reflection took place, consequently providing correct
conditions for the formation of a bow shock around the solid
obstacle.

Simulations were carried out at Kn = 0.1 for Mach numbers
10, 20, and 30. In this range of Mach numbers, the VDF shape
(e.g., along the stagnation line) changes drastically. Indeed,
while at lower Mach numbers (<10) it is still numerically
possible to describe the particle kinetics by a global velocity
mesh, at higher Mach numbers (>10–15), the shape of the
VDF changes so drastically that the use of velocity grid
adaptation becomes crucial. The gas temperature contours for
Ma = 10 and 30 (Ma = 20 results are omitted here for brevity)
are shown in Fig. 11. A bow shock region can be seen in front
of the body, and the r grid is well adapted to resolve this region.
The flow fields along the stagnation line for Ma = 20 and 30
(Ma = 10 results are omitted here) are shown in Fig. 12. We
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FIG. 10. (Color online) Adapted ξ grids and VDFs, f (ξx,ξy,ξz = 0), at different locations inside the shock: preshock (left), transition
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observe that the code correctly reproduces the magnitudes of
flow parameter jumps across the shock wave.

The predicted VDFs at Ma = 20 are shown in Fig. 13
at three locations along the stagnation line together with the
corresponding adapted ξ grids. One can see that the incoming
VDF is very narrow in ξ space and the VDF behind the
shock becomes very broad. Near the wall, the VDF has
another distinct feature: a jump around the ξn = 0 surface.
The reflected part (at ξn < 0) is being smeared by collisions
among particles due to the large value of gas density at the
cold wall. The corresponding VDFs for Ma = 30 are shown in
Fig. 14.

We have carried out preliminary validation studies of the
developed ToT-Boltzmann solver. Figure 15 compares the ToT
solver results with Direct Simulation Monte Carlo (DSMC)
results for gas macroparameters along the stagnation line.
The DSMC results were obtained with the UFS-DSMC solver
[56] using the HS collision model. Despite using different
collision models in the two solvers, we observed surprisingly
good agreement between the gas density, mean velocity, and
temperature along the stagnation line, except for a region in
front of the shock. The difference in the temperature profiles
in this region can be attributed to the use of the BGK model in
the ToT solver (see also Fig. 9, left).

C. Transport of light particles

In this section, we illustrate the AMPS technique for the
linear Boltzmann equation. We first consider elastic collisions
of light particles (electrons) or massless particles (photons)
with cold heavy particles (atoms) using the collision operator
in the Boltzmann-Lorentz form (4). These collisions modify
direction of a particle velocity but conserve its modulus (|ξ |),
or kinetic energy. We also consider inelastic collisions of
electrons with atoms in weakly ionized plasma and emission of
optical phonons in semiconductors. The numerical techniques
for treatment of the Boltzmann-Lorentz collisional operator
have been studied in a large number of works (see, e.g.,
Ref. [57] and references cited therein). Based on some prior
works, it was argued [57] that finite difference schemes with
Cartesian discretization are not suitable for the Boltzmann-
Lorentz operator because they cannot preserve equilibrium
states with a reasonable velocity mesh; the discretization errors
could only be reduced by refining velocity mesh, which led to
prohibitive computational cost. We show that the local velocity
grid adaptation can drastically reduce computational cost
compared to uniformly refined grids used in prior works and
enable solving these challenging problems. Detailed studies
of conservation properties of the Boltzmann-Lorentz operator
on octree velocity meshes can be a subject of future efforts.
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1. Particle penetration through a thin film

We now present examples of the numerical solution of
the linear Boltzmann equation with the Boltzmann-Lorentz
collisional operator to describe radiation (photon) transport or
penetration of light particles (electrons) through thin films.
Consider a planar beam of photons or electrons incident
normally on a thin film of thickness L. Details of the reflection,
absorption, and penetration, and the angular spectrum of the
reflected and transmitted particles are determined by single
scattering events [58]. The probability of single scattering
is defined by the angular dependence of the collision cross
section, σ (θ ). Different approximations of σ (θ ) used for
various applications can be found in [59]. The momentum
transfer cross section,

σtr = 2π

∫ π

0
σ (θ )(1 − cos θ ) sin θdθ,

defines the value of the collision frequency ν = N |ξ | σtr ,
and the particle mean free path, λ = 1/(Nσtr ). For isotropic
scattering, the transport collision frequency coincides with the
total collision frequency, which accounts for scattering in all

possible angles:

σt = 2π

∫ π

0
σ (θ ) sin θdθ.

In our computational studies, we used isotropic scattering
(σ = σ0 = const) and anisotropic scattering with a simple,
step-function law:

σ (θ ) =
{

σ0, θ < θmax

0, θ > θmax
.

With decreasing θmax, the ratio σt/σtr increases sharply
(e.g., σt/σtr∼200 for θmax = π/6).

Simulations were performed in 1D3V phase space for a
uniform density of scatterers (N = const). The incoming VDF
was assumed to be a Gaussian-shaped particle beam:

f (x,ξ ) = C0 exp
{−[

(ξx − u0)2 + ξ 2
y + ξ 2

z

]
/T0

}
for ξx > 0 at x = 0,

where C0 = n0/(πT0)3/2. A free-exit boundary condition was
assumed at x = L:

f (x,ξ ) = 0 for ξx < 0 at x = L.

Most of the prior studies of this problem assumed a
monoenergetic beam and so were done in (x,μ) phase space,

FIG. 13. Adapted velocity mesh and VDF contours for Ma = 20, Kn = 0.1 at different locations: free stream (left), inside shock wave
(middle), and near the wall (right).
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with μ being the cosine of the velocity angle. Studies are
typically carried out for different collisionality degrees ranging
from low (large λ/L ratio) to high (small λ/L ratio). Dealing
with a 3V Cartesian ξ grid, we model a monoenergetic beam
by assuming the incoming VDFs in the limit u2

0/T0 � 1. In
our numerical studies, we chose n0 = 1, u0 = 9.12, and T0 =
1, with the ratio u2

0/T0 ∼ 80 (corresponding to Ma = 10 in gas
dynamics). The collisionality parameter λ/L varied from 1/2
to 1/20. At t = 0, no particles are assumed to be present inside
the computational domain. As the injected beam penetrates
into the film, the particles are scattered according to assumed
scattering law. Dynamic grid adaptation in ξ space based
on gradients of the VDF is carried out during our transient
computations without grid adaptation in r space. Below, we
present converged solutions for f (t = ∞,x,ξ ).

Figure 16 shows the spatial distributions of the particle
density, n(x), at different values of λ/L for isotropic and
anisotropic scattering. One can see that for both types of
scattering the density profiles flatten for larger values of λ/L.
As expected, the profiles obtained for isotropic and anisotropic
scattering become close for low values of λ/L (strong scatter-
ing), and they differ most significantly at intermediate values of
λ/L (moderate scattering). The calculated profiles for different
λ/L look very similar to those obtained in Ref. [57] using a
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finite-element representation of the Boltzmann-Lorentz and
Fokker-Planck-Lorentz operators for monoenergetic beam.
Quantitative comparison is not readily possible because we
used a nonmonoenergetic beam in our simulations. Although
our studies provide confidence in the present method, detailed
validation of the Boltzmann-Lorentz operator implementation
is in order.

Scattering laws are expected to have a profound impact
on the angular distribution of the light particles. Figure 17
shows the VDFs near the injection point (x = L/40) and at
the exit (x = L) for isotropic scattering. At the injection point,
only the injected beam is present for ξx > 0 together with the
scattered particles for ξx < 0. At the exit location, there is
a smaller amplitude unscattered beam together with a broad
scattered wing for ξx > 0; there are no particles with ξx < 0.
One can observe that the grid adaptation allows capturing the
fine details of the angular distributions at different locations
inside the film.

Figure 18 shows the corresponding results for anisotropic
scattering at θmax = π/6. In a close proximity of the injection
point (x = L/40), the VDF for ξx > 0 consists of an injected
beam and a scattered part. The scattered part is much broader
compared with isotropic scattering, and fills about half of the
ξx > 0 semisphere. This is due to the much stronger small-
angle scattering at the same collisionality degree λ/L (based
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FIG. 17. (Color online) VDF slices at ξz = 0 and adapted ξ mesh at x = L/40 (left) and x = L (right) for isotropic scattering at λ/L = 1/6.
Insets show isosurfaces of VDF in 3V ξ space at some representative values.

on transport collisional cross section; recall that σt/σtr∼200
for θmax = π/6). This leads to an increased number of
small-angle scattering becoming important even close to the
injection point. At the exit location, the VDF also differs
significantly from that obtained assuming isotropic scattering.
The particles fill the ξx > 0 semisphere almost uniformly,
due to the increased role of small-angle scattering. This, in
turn, results in a diffusionlike process, which corresponds to a
random walk of the particles over the collision sphere.

We finally demonstrate the impact of the scattering laws
on the angular distribution of particles at the exit (so-called
focalization effect [60]). The computed angular dependences
shown in Fig. 19 demonstrate very different shapes: a peaked
one for isotropic scattering and a broad one for anisotropic
scattering. The predicted dependences closely resemble those
obtained using the Boltzmann-Lorentz and Fokker-Plank
operators in the limit of a monoenergetic particle beam [60].

To summarize this section, we have applied the AMPS
technique for 1D3V problems associated with scattering of

light particles from a thin film. We have calculated spatially
resolved angular distributions of the particles using properly
refined velocity grids and demonstrated that AMPS offers
great advantages in terms of computational time and memory
savings to help solving challenging problems in this field.

2. Electron kinetics in semiconductors and gas discharges

In this section, we demonstrate the benefits of the developed
method for simulations of electron kinetics in electric fields
(external force) under effect of elastic and inelastic collisions
with a lattice (for semiconductors) or gas atoms (for gas
discharges). In particular, we consider in detail electron
streaming in semiconductors associated with formation of
highly anisotropic VDFs [61]. Modeling of this phenomenon
is rather difficult by the conventional methods.

To model the streaming phenomenon, we consider a
simplified 0D3V problem, to study effects of electric fields
and collisions on VDF formation by neglecting transport

FIG. 18. (Color online) ξz = 0 slices of VDF and adapted ξ mesh at x = L/40 (left) and x = L (right) for anisotropic scattering and
λ/L = 1/6. Insets show isosurfaces of VDF in 3V ξ space at some representative values.
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in configuration space. The electric field is assumed to be
steady and directed along the x axis. Both elastic and inelastic
collisions are assumed to be isotropic and described by the
linear operators (4) and (5), correspondingly. We assume
that the characteristic time τ for elastic scattering is much
larger than the time τ0 for inelastic scattering associated with
emission of optical phonons. Then there are two regions in
velocity space in which scattering has a completely different
character; these regions are separated by a constant-energy
surface, ε(p) = h̄ω0, where h̄ω0 is the energy of the optical
phonon. If the lattice temperature T � h̄ω0, then in the passive
region, ε(p) < h̄ω0, the scattering is purely elastic and is
due to impurities and acoustic phonons. Meanwhile, in the
active region, ε(p) > h̄ω0, the dominant process is emission
of optical phonons. In the simplest model, the boundary
separating the two regions is a sphere of radius ξ0 = √

2h̄ω0/m

in velocity space.
We consider a range of electric fields E such that τ0 �

τE � τ , where τE = mξ0/eE is the time required for electron
acceleration from ε = 0 to ε0 = h̄ω0. The problem of finding
VDF under these conditions is fully defined by the two ratios:
τE/τ0 and τE/τ . The streaming conditions correspond to
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FIG. 21. Linear plots of VDF for E/E0 = 0.25, at different values of ν/νE . Left plot is VDF as a function of ξx for ξy = ξz = 0 and right
plot is VDF as a function of ξy for ξx = ξ0/2 and ξz = 0.

E/E0 � 1, where E0 = mξ0/τ0 is a characteristic electric
field. For our simulations, we have chosen a ratio E/E0 = 0.25
(or, equivalently, τE/τ = 4), where the electrons are expected
to form a sharply anisotropic, needle-shaped VDF.

We have carried out simulations for different values of
ν/νE to determine the impact of elastic collisions on the
VDF shape. Figure 20 shows simulation results for three
values of ν/νE ratio of 0 (no elastic collisions), 1 (moderate
elastic collision frequency), and 10 (large elastic collision
frequency). The VDF contour plots are shown on ξz = 0
slices with white circles corresponding to the spheres |ξ | = ξ0

separating the active and passive regions. In addition, linear
plots of the computed VDFs are presented in Fig. 21 along ξx

(for ξy = ξz = 0) and along ξy (for ξx = ξ0/2 and ξz = 0).
One can see that without elastic collisions a very narrow
(needle-shaped) VDF is formed along the ξx axis in the
passive region (|ξ | < ξ0), which, therefore, represents a strong
streaming. In the active region, the VDF falls off sharply with
a rate ∼τE/τ , which determines the needle width [61]. The
VDF falls off as f ∼ |ξ⊥|−1 in the transversal direction (here,
ξ⊥ = ξy). At ν = 0, the VDF oscillates (slightly) in time due

to the transit-time resonance at frequency νE . When moderate
elastic collisions are included (ν/νE = 1), the needle-shaped
part becomes thicker and its maximum shifts towards low
velocities; the VDF outside the inelastic sphere decreases.
When strong elastic collisions are considered (ν/νE = 10), the
VDF becomes almost isotropic and its velocity dependence
becomes close to ∼|ξ |−1, as predicted by the theory in
Ref. [61]. When elastic collisions are included, the VDF
converges in time without oscillations.

In weakly ionized plasmas of gas discharges, the corre-
sponding collision processes are elastic collisions of electrons
with neutral species, electronic excitation of atoms and
molecules, and excitation of molecular vibrational levels,
which are described by the collisional integrals (4) and (5). For
typical fields maintaining the plasmas, conditions E/E0 � 1
are satisfied for the vibrational excitation of molecules. The
VDF formation under strong electric fields was studied in
[62]. Results of our simulations for E/E0 = 2 and 4 with
no elastic collisions (ν/νE = 0) shown in Fig. 22 resemble
those of [62]. It is seen that the VDF consists of a small
needle-shaped component at low velocities and a wide halo
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at larger velocities. As the ratio E/E0 increases, the needle
component diminishes, but it can still be traced at higher
velocities even for E/E0 = 4. Future work can include
quantitative comparisons of the numerical computations with
the theory developed in [62].

We have, therefore, demonstrated that the developed
methodology allows producing robust results for arbitrary
ratios of the elastic and inelastic collision frequencies over
a wide range of electric fields. It offers a noise-free alternative
to Monte Carlo methods for simulations of transient processes
in semiconductors, nanostructures, and gas discharges. Im-
plementation of realistic angular dependencies of differential
cross sections for anisotropic scattering and ionization pro-
cesses appears to be not difficult.

VI. CONCLUSIONS

We have introduced a tree-of-trees (ToT) concept for
solving multidimensional kinetic equations by the discrete
velocity method (DVM) with adaptive mesh in phase space
(AMPS). An initial demonstration of this methodology has
been carried out for the Boltzmann kinetic equation with
nonlinear and linear collision integrals for elastic and inelastic
collisions. Mapping procedures have been developed to enable
computations of the advection operator in configuration space
on locally adapted velocity grids. Second-order accuracy
in configuration and velocity spaces and in time has been
achieved.

The presented FV DVM scheme for unstructured grids in
configuration space was found to be analogous to the FV
LBM schemes in almost all aspects (except for different ways
of selecting discrete velocity sets). This connection makes
the present work useful to the LBM community working on
developing accurate and efficient methods for unstructured
grids. Other mutual connection includes the implementation
of boundary conditions using immersed boundary methods
(IBMs).

We have computed the bilinear collisional operator for the
discrete Boltzmann equation on adaptive velocity meshes (for
the hard sphere model). Our algorithm employs several recent
innovations, such as the importance sampling, multipoint
projection, and variance reduction methods. Computations
using well-validated baseline methods of computing the
discrete Boltzmann collisional integral have shown very good
accuracy and superior efficiency of the developed method.
We have implemented efficient algorithms for calculating the
linear Boltzmann-Lorentz collision integrals (for both elastic
and inelastic collisions) of hot light particles in a Lorentz gas
and the BGK collision integral on adaptive velocity meshes.

The developed AMPS methodology has been demonstrated
for problems of hypersonic rarefied flows, light-particle

transport through thin films, and charged particle kinetics
in plasmas and semiconductors. In particular, we considered
several transient and steady-state problems in phase spaces of
variable dimensionality:

(1) Hard sphere collisions: relaxation of particle beams,
transient (0D3V);

(2) Advection + collisions: hypersonic flows (2D2V); su-
personic shock waves (1D3V and 1D2V); transport of light
particles, electrons, or photons (1D3V);

(3) Advection + external forces: ions and electrons in colli-
sionless plasma sheath (1D1V);

(4) Collisions + external force: electron kinetics in semi-
conductors and plasmas (0D3V).

For these problems, we have demonstrated that the AMPS
technology allows minimizing the number of cells in phase
space to reduce computational cost and memory usage and
enables solving challenging kinetic problems. The initial
implementation of this technology allows achieving speed by
almost two orders of magnitude. Higher gains are expected
for larger scale and higher-dimensionality problems, but extra
work is required to optimize algorithms and implement parallel
capabilities for solving full 3D3V problems.

We have carried an initial comparison of the ToT method-
ology with alternative methods using unsplit grids in phase
space. The ToT method has clear advantages for kinetic solvers
with binary collisions local in r space. The ToT method is
also beneficial for computing moments of VDF by simply
traversing a ξ -space tree in each r cell. For unsplit phase space
grids, calculation of VDF moments becomes cumbersome
because overlapping grid levels are not all at the same r-space
resolution [13].

Clearly, any type of structure-in-structure representation,
while favorable to the velocity-space-only operators, is less
favorable for other operators, e.g., streaming in configuration
space. The ToT approach is analogous to the alternate direction
binary grids of higher dimensionality. This allows one to
consider and extend the methods developed for configuration-
space-only grids (dimension up to 3) to phase spaces of
dimension up to 6. Although full flexibility of the ToT structure
allows consistent mesh adaptation in phase space, additional
research is required to develop synchronized mesh adaptation
and VDF mapping over r and ξ grids. The developed methods
appear to be particularly attractive for hybrid fluid-kinetic
solvers because similar numerical techniques are used for both
kinetic and hydrodynamic models.
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