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Cancellation properties in Hall magnetohydrodynamics with a strong guide magnetic field
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We present a signed measure analysis of compressible Hall magnetohydrodynamic turbulence with an external
guide field. Signed measure analysis allows us to characterize the scaling behavior of the sign-oscillating flow
structures and their geometrical properties (fractal dimensions of structures). A reduced numerical model, valid
when a strong guide magnetic field is present, is used here. In order to discuss the effect of the Hall term, different
values for the ion skin depth are considered in the simulations. Results show that as the Hall term is increased, the
fractal dimension of the current and vorticity sheets decreases. This observation, together with previous analysis
of the same fields, provides a comprehensive description of the effect of the Hall force on the formation of
structures. Two main processes are identified, namely, the widening and unraveling of the sheets.
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I. INTRODUCTION

Magnetohydrodynamics (MHD) is a reasonable theoretical
framework to describe the large-scale dynamics of a plasma.
However, when a more detailed description is needed (for
instance, when the physical context favors the development of
small scales) it is most appropriate to consider two-fluid mod-
els. Two-fluid effects can be considered through a generalized
Ohm’s law that includes the Hall current, which is required for
phenomena with characteristic length scales comparable to or
smaller than the ion skin depth c/ωpi (c is the speed of light and
ωpi is the ion plasma frequency). Among its manifestations, the
Hall current causes the magnetic field to freeze in the electron
flow instead of being carried along with the bulk velocity
field (in an ideal plasma). Another important feature of the
ideal Hall MHD description is the self-consistent presence of
electric fields parallel to the mean magnetic field. Hall MHD
has recently been invoked in advancing our understanding of
phenomena ranging from dynamo mechanisms [1], magnetic
reconnection [2–4], and accretion disks [5,6] to the physics of
turbulent regimes [7–10].

In many cases of interest, such as in fusion devices or
geophysical and astrophysical plasmas, a strong externally
supported magnetic field is present. For such cases, an
alternative reduced model was proposed, an extension of the
previously known reduced MHD (RMHD) model to include
the Hall effect (the RHMHD model) [11–13]. In this approxi-
mation, the fast compression Alfvén mode is eliminated, while
the shear Alfvén and the slow magnetosonic modes are retained
[14]. The RMHD equations have been used to investigate a
variety of problems such as current sheet formation [15,16],
nonstationary reconnection [17,18], the dynamics of coronal
loops [19–22], and the development of turbulence [23].
The self-consistency of the RMHD approximation has been
analyzed in Ref. [24]. Moreover, numerical simulations have
been used to assess the validity of the RMHD equations by
directly comparing its predictions with compressible MHD

equations in a turbulent regime [25]. The validity of the
RHMHD model has also been studied in the same way [12].

The properties of small-scale structures in magnetohy-
drodynamic and Hall magnetohydrodynamic turbulence have
recently been studied extensively. Particular attention has been
paid to the geometrical properties of current sheets in Hall
magnetohydrodynamics (HMHD), as these structures are as-
sociated with magnetic flux reconnection and magnetic energy
dissipation, processes of utmost importance in astrophysics
and space physics [10,26–28].

However, studies have provided conflicting results so far,
so the debate on the effect of the Hall term on the generation
of turbulent structures is still open. For example, some recent
numerical simulations have indicated that current sheets in the
presence of the Hall effect become wider than in MHD (see,
e.g., [29]), while other studies have shown the presence of
thinner structures [30].

Previous studies of turbulent HMHD have shown that the
peak of the spectrum of the current density is located at a
wave number corresponding to the inverse of the ion skin
depth [1,8,31,32]. Since this peak can be associated with the
average thickness of the current sheets, the shift of the peak
was interpreted as a thickening of the current sheets with
increasing Hall effect [33]. This result is in good agreement
with experimental observations, which confirm that the current
sheets thickness in the presence of the Hall effect is indeed
given by the ion skin depth [34].

In contrast, other studies have observed the formation of
thinner structures when the Hall effect increases, suggesting
that HMHD is more intermittent than MHD [30]. This was
also observed in solar wind turbulence, e.g., using the Cluster
spacecraft magnetic data [35,36]. Incidentally, other instances
of solar wind observations of high-frequency magnetic field
fluctuations from the same spacecraft indicated that while large
scales are compatible with multifractal intermittent turbulence,
small scales show non-Gaussian self-similarity [37].
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Using the set of simulations that will be studied here, in
a previous paper the effect of the Hall term was analyzed
in terms of global magnitudes (e.g., the mean square current
density 〈j 2〉 and vorticity 〈ω2〉), characteristic times of the
flow, energy cascade, and qualitative features of the flow
structures (current sheets) [29]. The Hall term turned out
to affect mostly the scales between the Hall scale and the
dissipation scale. This produces an enhancement of the energy
transfer in such a scale range and therefore the accumulation
of energy decreases. This corresponds to an effective shift
of the dissipation scale toward smaller scales. This was
estimated by observing an increasingly sharp steepening of
the energy spectrum in the Hall range, when the separation
between the Hall scale and the dissipation scale is larger.
This suggests the possible generation of smaller scales when
the Hall effect increases. Qualitative observation of current
sheets showed that they become wider as the Hall effect
increases; however, within them, smaller structures seem to
emerge.

In another paper [38], a detailed and rigorous study of
intermittency was performed. In the presence of the Hall
effect, field fluctuations at scales smaller than the ion skin
depth become substantially less intermittent, with scaling
properties close to self-similarity. The quality of the numerical
simulations was also tested, according to the stringent criteria
of Wan et al. [39].

The quantitative measure of the intermittency is crucial to
understand the distribution of dissipation in magnetofluids and
plasmas and can also provide constraints for the theoretical
study of phenomena such as magnetic energy dissipation and
reconnection. Following recent results as briefly summarized
above, it is thus not clear whether Hall magnetohydrodynamic
small-scale structures are thinner than in MHD, making
HMHD more intermittent than MHD, or, on the contrary,
they are more space filling, causing intermittency to decrease
because of the Hall effect. The main purpose of the present
paper is to quantitatively evaluate the characteristics of the
small-scale structures and their features with respect to the
magnitude of the Hall effect.

In order to gain more insight into the actual effect of the
Hall term on flow structures, here we study the geometrical
properties of the vorticity and current field, using an explicit
and quantitative approach. Our study focuses on the estimation
of the cancellation exponents, as introduced by Ott et al.
[40]. Such exponents provide a simple characterization of
the flows and are phenomenologically related to the fractal
dimension of the typical structure [41]. Finally, corroborated
by the aforementioned studies, we show that the Hall effect
affects current sheets mainly in two ways. On the one hand,
the current (and vorticity) sheets widen, while on the other
hand they unravel, reaching a more complex structure. This
fragmentation, which could be seen as the formation of
microsheets, turns out to be increasingly evident as the Hall
effect increases.

The present paper is organized as follows. In Sec. II the set
of equations describing the reduced Hall MHD is described.
The details of the numerical simulations are given in Sec. III.
In Sec. IV the main idea of the cancellation analysis technique
is introduced. Finally, the results are presented in Sec. V and
discussed in Sec. VI.

II. REDUCED MHD AND HMHD MODELS

For a compressible flow, the HMHD equations can be
written (in dimensionless form) as

∂u
∂t

− u × ω = −∇
(

u2

2
+ ργ−1

M2
S (γ − 1)

)
+ 1

M2
A

J × b
ρ

+ ν
∇2u
ρ

+
(

δ + 1

3
ν

)∇(∇ · u)

ρ
, (1)

∂A
∂t

− u × b = −ε
J × b

ρ
− ∇φ + η∇2A, (2)

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∇ · A = 0. (4)

In these equations, u is the velocity field, ω is the vorticity field,
J is the current, b is the magnetic field, ρ is the density of the
plasma, and A and φ are the magnetic and electric potentials,
respectively. A barotropic law is assumed for the plasma, with
the pressure given by p = Cργ , where C is a constant and
γ = 5/3. Equation (4) is the Coulomb gauge, which acts as a
constraint that fixes the electric potential in Eq. (2). The control
parameters of the system are the sonic Mach number MS , the
Alfvén Mach number MA, the viscosities ν and δ (here we
consider ν = δ), and the resistivity η. In our study, the most
important control parameter is the Hall coefficient ε = ρii/L,
where ρii is the ion skin depth and L is the characteristic scale
of turbulence. When ε = 0, the equations above result in the
well known compressible MHD equations.

In the presence of a strong guide field, Eqs. (1)–(4) can
be written using the reduced approximation often used in
magnetohydrodynamics (see, e.g., [42,43]). The approxima-
tion assumes that the magnetic field can be written as

b = B0ẑ + b′, (5)

where B0 is the intensity of the guide magnetic field aligned
with the ẑ direction and b′ is such that |b′|/B0 � 1.

For convenience, when writing the dimensionless equations
we assume, without loss of generality, that B0 = 1. We then
decompose the velocity and magnetic field fluctuations in
terms of scalar potentials as

u = ∇ × (ϕẑ + f x̂) + ∇ψ (6)

and

b′ = ∇ × (aẑ + gx̂). (7)

Equation (7) ensures that the magnetic fields remain
divergence-free, while Eq. (6) gives us a compressible flow.
The potentials f and g allow for dynamical components of the
fields parallel to the guide field and ψ describes an irrotational
component of the velocity field.

Then Eqs. (1)–(4) can be written as (for the details see
[11–13,29])

∂u

∂t
= ∂b

∂z
+ [ϕ,u] − [a,b] + ν∇2u, (8)

∂ω

∂t
= ∂j

∂z
+ [j,a] − [ω,ϕ] + ν∇2ω, (9)
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∂a

∂t
= ∂(ϕ − εb)

∂z
+ [ϕ,a] − ε[b,a] + η∇2a, (10)

∂b

∂t
= βp

∂(u − εj )

∂z
+ [ϕ,b] + βp[u,a]

− εβp[j,a] + ηβp∇2b, (11)

where

u = −∂yf, (12)

ω = −∇2
⊥ϕ, (13)

b = −∂yg, (14)

j = −∇2
⊥a, (15)

and the notation [A,B] = ∂xA∂yB − ∂xB∂yA is employed for
the Poisson bracket. The potential ψ was eliminated from
these equations using the equation for the pressure. Finally,
βp = βγ/(1 + βγ ) is a function of the plasma beta. As in
the previous set of equations, these equations become the
compressible RMHD equations when ε = 0.

III. NUMERICAL SIMULATIONS

The simulations analyzed in this work are similar to those
described in Ref. [29]. We use a standard parallel pseu-
dospectral code to evaluate the nonlinear terms and solve the
equations numerically [44]. A second-order Runge-Kutta time
integration scheme is used. The magnetic field fluctuations in
all simulations are less than 10% of the external magnetic field
value, so we are in the range of validity of the RHMHD model.
Periodic boundary conditions are assumed in all directions of
a cube of side 2πL (where L ∼ 1 is the initial correlation
length of the fluctuations, defined as the length unit). The runs
performed throughout this paper do not contain any magnetic
or velocity external stirring terms, so the RHMHD system
is let to evolve freely. To generate the initial conditions, we
excite initially Fourier modes (for both magnetic and velocity
field fluctuations) in a shell in k space with wave numbers
1 � k � 2, with the same amplitude for all modes and with
random phases. Only plane-polarized fluctuations (transverse
to the mean magnetic field) are excited, so the initial conditions
are Alfvén mode fluctuations with no magnetosonic modes.
In the set of simulations, the spatial resolution is 5122 grid
points in the plane perpendicular to the external magnetic field
and 32 grid points in the parallel direction. In fact, higher
resolution is required in the planes perpendicular to B0, with
respect to the parallel direction. This is due to the fact that
the dynamics of the system generates structures mostly along
the direction perpendicular to B0. The kinetic and magnetic
Reynolds numbers are defined as R = 1/ν and Rm = 1/η,
respectively, based on unit initial rms velocity fluctuation,
unit length, and dimensionless values for the viscosity and
diffusivity. For all the runs, we used R = Rm = 1600 (i.e.,
ν = 1/1600 and η = 1/1600). We also considered a Mach
number MS = 1/4 and an Alfvén Mach number MA = 1.

Four values of the Hall parameter are considered, namely,
ε = 0 (the MHD case), 1/32, 1/16, and 1/8. Data from
simulations with such values of ε are labeled as runs 1, 2,
3, and 4, respectively. As the numerical domain used has size

2π (see above), these values correspond respectively to ion
skin depths with associated wave numbers kε = ∞, 32, 16,
and 8 and to scales of ρii = 0, 0.03, 0.06, and 0.125.

Figures 1 and 2 show examples of current components.
The left-hand panels show, for each run, two-dimensional cuts
in the perpendicular plane of one perpendicular component
jx (Fig. 1) and of the parallel component jz (Fig. 2) for one
snapshot of the simulation in the statistically steady state (when
t = 4.5). The same field is plotted in the right-hand panels
with an arbitrary tilt angle in order to highlight the chaotic
alternation of positive and negative fluctuations of the fields.
From visual inspection, it is evident that structures become
more fragmented as ε increases. Figure 3 shows the total
energy spectra E(k), integrated on spheres of radius k, for the
four runs. The ion skin depth scale is also indicated. Despite
the limited wave vector range not allowing the observation
of power law scaling, the large-scale part of the spectra is
compatible with the typical Kolmogorov scaling α = 5/3. For
the largest ε (run 4), a secondary scaling region emerges at
scales smaller than the ion skin depth, compatible with the
typical power law spectrum for reduced Hall MHD, α = 7/3.

It was recently stressed that well resolved numerical
simulations are necessary in order to accurately quantify
high-order statistics and intermittency in MHD [39]. In
particular, it has been claimed that if the flow is not properly
resolved, a partial thermalization of the small scales may result
in artificial Gaussian statistics and an artificial decrease of
the intermittency. Wan et al. [39] also argued that a MHD
simulation can be considered well resolved if the kurtosis
of the current is independent of the spatial resolution. In
order to evaluate the sensitivity to the grid resolution of our
system, two different realizations are performed with higher
spatial resolution of 7682 × 32 and 5122 × 64 grid points,
respectively. Using the same set of parameters, diagnostics
such as structure functions, scaling exponents, and probability
distribution functions of field fluctuations are used to show
that scaling and intermittency properties are not affected by
resolution. In the MHD and HMHD runs analyzed here, the
requirement of kurtosis convergence is fulfilled, at least up to
the level of expected statistical fluctuations. It is thus possible
to conclude that the simulations are well resolved and satisfy
the stringent criteria of Wan et al. [39]. The resolution analysis
is shown in detail in Ref. [38].

IV. SIGNED MEASURE AND CANCELLATION EXPONENT

As discussed in the Introduction, turbulent plasmas are
often characterized by the scale-dependent formation of
energetic and localized structures. These represent regions
where the dissipation of energy is enhanced and are believed
to be responsible for the anomalous scaling of the structure
functions. Intermittency and multifractality are strictly related
to their presence [45]. Structures such as current sheets
and vorticity filaments are extensively observed in numerical
simulations [30,46–50]. Solar wind measurements have also
revealed the presence of structures of different types (current
sheets, rotational discontinuities, and vortices) in measured
plasmas [51–54]. Since structures can be seen as smooth
regions embedded in a highly fluctuating field, their presence
and characteristics will influence the statistical properties of
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FIG. 1. The left panels show slices of the perpendicular current component jx (in adimensional units; see Sec. II for the normalization
used) in the perpendicular plane for the four different values of ε used in this work (ε increasing from top to bottom). The right panels show
the same fields, seen at an arbitrary tilt angle, highlighting the presence of alternate sign structures at all scales. In these panels, the scale of
grays is arbitrary.
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FIG. 2. The left panels show slices of the parallel current component jz (in adimensional units; see Sec. II for the normalization used) in
the perpendicular plane for the four different values of ε used in this work (ε increasing from top to bottom). The right panels show the same
fields, seen at an arbitrary tilt angle (arbitrary grayscale).
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FIG. 3. (Color online) Total energy spectra for the four runs (see
the legend). The vertical lines represents the values of the inverse
ion skin depth for the three runs with nonvanishing Hall term.
Phenomenological predictions for the MHD range and the Hall range
are also indicated.

the scale-dependent changes of the sign of the field gradients.
It is thus appropriate to investigate the scaling properties of
the sign of the field fluctuations. In this paper we make use
of a convenient tool based on the concept of sign-singular
measure [40], which is described below.

Let f (r) be a scalar field with zero mean, defined on a d-
dimensional domain Q(L) of size L. In analogy to probability
measures, for each interval Q(l) ⊂ Q(L) of size l it is possible
to introduce a signed measure as the (normalized) mean of the
field over the subset

μ(l) =
∫
Q(l) dr f(r)∫

Q(L) dr|f(r)| . (16)

As opposed to positive defined probability measures, the
signed measure retains information on the field fluctuation
sign. The measure is said to be sign singular if for any
size of a subset QA(l) for which μA(l) �= 0 there exists
a subset QB(l′) ⊂ QA(l) such that the measure μB(l′) has
opposite sign to μA(l). This indicates that the measure changes
sign on an arbitrarily fine scale [40]. In analogy to the
multifractal measure, it is possible to partition the domain in
disjoint subsets of size l, {Qi(l) ⊂ Q(L)}, and to compute the
measures μi(l) over each subset of the partition. Then the sign
singularity of the measure can be quantitatively characterized
by introducing the cancellation exponent κ , that is, the scaling
exponent of the cancellation function defined as

χ (l) =
∑
Qi (l)

|μi(l)| ∼ l−κ , (17)

where the sum is extended to all disjoint subsets Qi(l).
For a field with both positive and negative structures em-

bedded in a fluctuating field, when the size of the subset Qi(l)
is large cancellations between small structures of opposite sign
occur within each box, resulting in a small contribution to the
signed measure. However, as the boxes become smaller and
reach the typical size of the structures, each box is more likely
to contain a single sign-defined structure, reducing the level
of cancellations. The cancellation exponent represents thus a
quantitative measure of the efficiency of the field cancellations.
For example, a smooth field with no sign singularity has
a constant cancellation function (κ = 0), whereas for a
stochastic process κ = d/2 [55]. More generally, if a field

g(r) is homogeneous with a Hölder scaling exponent h, that is,
if 〈‖�g(l)‖〉 = 〈‖g(r + l) − g(r)‖〉 ∼ lh, then the cancellation
exponent of its derivative f ≡ dg/dr is κ = 1 − h [55,56].
Thus the cancellation exponent can be related to the properties
of structures. Furthermore, a simple geometrical argument,
based on the separation of the field in correlated (the structures)
and uncorrelated (the background field) subsets, allows us
to establish a phenomenological relationship between the
cancellation exponent and the fractal dimension D of the
typical dissipative structures of the flow

κ = (d − D)/2 (18)

(see, e.g., [41] for details). It should be kept in mind that,
because multifractality is ubiquitous in MHD turbulence, the
use of one fractal dimension cannot capture all the features of
the scaling. Nonetheless, D still represents a useful indicator
for the geometrical characteristics of the mean intermittent
structures of the flow. Cancellation analysis has been per-
formed in the past to describe the formation of structures
in two-dimensional MHD plasmas [41,57] and successfully
applied to solar active regions, where the time evolution of
the properties of the photospheric current has allowed the
prediction of the occurrence of large flares [58–60]. In this
paper we show results of the cancellation analysis of the fields,
with the aim of pointing out the effect of the Hall term on the
spatial structure of the small-scale fluctuations.

V. RESULTS

For our analysis, we consider four snapshots of RHMHD
simulations, performed using four different values of the Hall
parameter ε, as indicated in Sec. III. All the snapshots are taken
in a statistically steady state of the system, occurring at t =
4.5. The fields analyzed here are the three components of the
current j and of the vorticity ω, already shown in Figs. 1 and 2.
In order to estimate the cancellation functions, we divided the
simulation domain of size L3 = (2π )3 in subsets of variable
size lx × ly × lz with lx = ly = l⊥ and lz = l‖. Note that, in
order to maximize the number of possible integer partitions,
about 1% of the L3 = (2π )3 domain has been trimmed. This
procedure does not affect the results.

Figure 4 shows an example of two-dimensional cuts of the
signed measure computed for the parallel component of the
current jz in the plane x-y for ε = 1/16 and for four different
partition box sizes. As expected, the coarse graining of the
partition leads to cancellations at larger scales, so small-scale
structures (the current filaments clearly evident at small scales)
gradually disappear. Similar behavior is seen for all fields
components and for any value of the Hall parameter larger
than zero. In the absence of the Hall effect, structures are
smoother and well resolved and the effect of cancellations is
less evident.

From the signed measures, the cancellation functions (17)
have been computed for all components of the current j and
of the vorticity ω as a function of the two scale parameters
l⊥ and l‖. Figure 5 shows two examples, for two different
components jx (left panel) and jz (right panel) at ε = 1/16.
The different curves of each panel refer to three different values
of the parallel scale l‖. While scaling properties are present
in the perpendicular direction l⊥, the cancellation function
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FIG. 4. (Color online) Signed measure μ as estimated for jx in the y-z plane, shown for run 3 (ε = 1/16), for four different partition box
sizes (top left, l⊥ = 0.12; top right, l⊥ = 0.04; bottom left, l⊥ = 0.016; and bottom right, l⊥ = 0.002.

decrease with the parallel scale l‖ is somewhat smoother and
less defined, as will be discussed later. This is due to the fact
that in RHMHD the turbulent cascade is mainly developed in
the planes perpendicular to the mean magnetic field. For this
reason, we will mainly concentrate on the scaling properties in
the perpendicular planes, by selecting one particular parallel
scale (l‖ = 0.03), and leave the discussion of the parallel
scale decay to Sec. VI. However, we have tested the results
for different parallel scales and no significant difference was
observed. Figure 6 shows two examples of the variation with
ε of the cancellation functions of the current for a fixed value

of l‖ = 0.03. For the perpendicular component of the current
jx (left panel), the change of the scaling properties with the
Hall parameter is evident. In contrast, the changes are more
subtle for the parallel current jz. When appropriate, power
law fits of the cancellation functions χ (l⊥) = Al−κ

⊥ have been
performed through a least-squares method. Two examples
of fit are displayed in Fig. 7. For a visual test, the cancellation
functions have been compensated by dividing them by the
fitted power law l−κ

⊥ , as plotted in the bottom panels of
the figure. In this representation, power law scaling ranges are
seen as flat regions of the compensated plots. Compensated
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FIG. 5. (Color online) Cancellation function χ (l⊥) versus the scale parameter l⊥. The examples given here refer to the current perpendicular
component jx (left panel) and parallel component jz (right panel) for ε = 1/16.
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FIG. 6. (Color online) Cancellation function χ (l⊥) for the current perpendicular component jx (left panel) and parallel component jz (right
panel) for four values of the Hall parameter ε (see the legend) at l‖/2π = 0.03.

plots and fitting power laws are represented by solid lines for
the Hall range and double-dashed lines for the MHD range. As
can be seen in the examples given in Fig. 7, the cancellation
functions suggest the presence of power law scaling, and
therefore sign singularity, in a range of perpendicular scales
corresponding to the inertial range of the energy spectra (cf.
Fig. 3). This holds for all fields and Hall parameters and is
the signature of the MHD turbulent cascade among structures
of different size [41]. A second power law range emerges at
small scales when the strength of the Hall term increases, as in
the case shown in the right panel of Fig. 7. This suggests that
a secondary sign singularity is present, with fragmentation of
dissipative structures along the scales, presumably due to the
nonlinear Hall cascade. The small-scale power law is observed
for the current and vorticity components lying on the plane
perpendicular to B0, while for the parallel components the
secondary sign singularity only appears for the largest value
of ε analyzed here. This is in agreement with the emergence of
a small-scale power law range in the energy spectra (see Fig. 3),
compatible with the HMHD phenomenological spectral index.

As mentioned in the previous section, values of the
cancellation exponents provide information on the spatial

structure of the fields. In order to discuss more easily the
analysis results, the cancellation exponents are converted into
the typical fractal dimension of the structures, as D = 3 − 2κ .
Values of D are then displayed in Fig. 8 as a function of ε for
the three components of the current [Figs. 8(a) and 8(c)] and
of the vorticity [Figs. 8(b) and 8(d)] so that the influence of
the increasing Hall effect on the scaling can be evaluated.
In the following, we will use the notation D

(f )
⊥ for the

fractal dimension estimated for the perpendicular cancellation
function χ (l⊥) and D

(f )
‖ for the parallel cancellation function

χ (l‖), where f = j,ω indicates the field under study. When
the superscript (f ) is omitted, we are indicating both fields.
It is also possible to introduce a parameter for estimating
the global fractal dimension of the fields by averaging the
three values D

(f )
i of the fractal dimension obtained for the ith

component of each field f , D
�(f )
⊥ = (D(f )

x + D
(f )
y + D

(f )
z )/3

(we have temporarily suppressed the subscript ⊥ in this
formula to simplify the notation). We remind the reader
that in the RHMHD configuration, most of the nonlinear
structures are generated in the plane perpendicular to B0.
Therefore, the parallel components of the current jz and
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FIG. 7. Examples of fit of the cancellation function, shown here at ε = 0 for jz (left panel) and at ε = 1/8 for jx (right panel). The power
law fits χ (l⊥) = A(l⊥/2π )−κ are superimposed (one in the left panel, two in the right panel). The ion skin depth is indicated by the dashed line
in the right panel. The bottom part of the right plot shows the compensated cancellation functions χ (l⊥)/A(l⊥/2π )−κ .
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FIG. 8. (Color online) Fractal dimension D⊥ estimated through Eq. (18) for the three components of current [for (a) the MHD range and
(c) the Hall range] and vorticity [for (b) the MHD range and (d) the Hall range], labeled with different colors and line style (see the inset). The
indicators D�

⊥ (see the text) are also plotted for (e) and (f) the two fields (black lines).

vorticity ωz, which depend on the perpendicular components
of the magnetic and velocity fields, are of particular interest.
The perpendicular components jx , jy , ωx , and ωy , in contrast,
include both the perpendicular and parallel components of
the magnetic and velocity fields. This results in mixing the
turbulent perpendicular dynamics with the quasilinear parallel
dynamics, so the results are not easily interpreted.

In the MHD inertial range, marked “MHD” in the figures,
the estimated fractal dimension for the parallel component of
the current is almost constant, showing a weak decrease from
D

(j )
⊥ = 1.5 in the MHD regime to D

(j )
⊥ = 1.4 in the Hall regime

[red plot in Fig. 8(a)]. Similar values, but with the opposite
weak trend, are observed for the vorticity ωz [Fig. 8(b)]. Such
values of D are representative of severely disrupted, almost
filamented current sheets. The relative independence of D

(j )
⊥

on the Hall parameter for the parallel components of vorticity
and current is consistent with the fact that in the MHD inertial
range, the Hall term is not expected to play a relevant role
since it should only be effective at smaller scales.

For the current perpendicular components [green and blue
plots in Fig. 8(a)], D

(j )
⊥ starts around 2 (indicating current

sheets) with no Hall effect. As the Hall term is turned on,
the dimension first weakly increases to about D

(j )
⊥ � 2.2

and then steadily decreases back to D
(j )
⊥ � 2, showing that

structures are becoming more complex. This suggests that
inertial range fields are reacting to the onset of the Hall effect,
probably in response to the inertial range modification. For
the vorticity components perpendicular to B0 [green and blue
plots in Fig. 8(b)], the effect of the Hall term is even more
evident, causing a decrease of the dimension from D

(ω)
⊥ � 2.3
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FIG. 9. Cancellation function χ (l‖) for jx at ε = 1/16 and for
l⊥/2π = 0.002. A power law fit is superimposed. The bottom
part of the plot shows the compensated cancellation function
χ (l‖)/A(l‖/2π )−κ .

to D
(ω)
⊥ � 1.5, indicating fragmentation of the vorticity sheets.

The global fractal dimensions D�
⊥ are shown in Figs. 8(e) (for

the current) and 8(f) (for the vorticity) for both the MHD and
Hall ranges. For the current in the MHD range, the structure’s

fractal dimension is roughly constant for all values of the Hall
effect. Vorticity, in contrast, shows a more evident decrease
of the global fractal dimension with ε, from D

�(ω)
⊥ � 2.3 to

D
�(ω)
⊥ � 1.5. This result shows that the magnetic field and

velocity are decoupled in the MHD range, so their structures
have different fractal properties.

We now turn our attention to the range of scales smaller than
the ion skin depth, where the Hall term becomes relevant when
ε becomes larger. The results here are very similar for both
current and vorticity, suggesting that velocity and magnetic
fields decouple only in the MHD range. If no Hall cascade
is present (ε = 0), the small-scale range is characterized by
smooth fluctuations (for which we assume D⊥ = 3) for all
components of the fields, as expected when dissipation is
active and numerically well resolved. This is reflected in the
absence of a power law, or sign singularity, in the transition
from the MHD range toward the constant cancellation function
value for smooth fields (χ = 1 → κ = 0 → D = 3) at small
scales. As the Hall effect comes into play, the perpendicular
components of the current and vorticity start to develop a
(poorly defined) power law range, with cancellation exponents
κ increasing with ε. The scaling of the cancellation function
indicates the presence of strongly persistent structures in the
range of scales larger than the typical dissipative scales. In
terms of fractal dimension [green and blue plots in Figs. 8(c)
and 8(d)], a decrease is observed from D⊥ = 3 to D⊥ � 2.4,
indicating that the smooth fields in the MHD regime (run 1)
are developing toward more complex, broken structures (runs
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FIG. 10. (Color online) Fractal dimension D of the parallel cancellation function for the three components of (a) and (c) current and (b)
and (d) vorticity. The overall indicators D�

‖ are also plotted for (c) and (d) the two fields.
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2–4). In contrast, for the parallel component of the current
and vorticity the sign singularity in the Hall range is only
observed at ε = 1/8. At this value of the Hall parameter, the
field is no longer smooth (as for dissipative range), but rather
shows the presence of quasi-two-dimensional sign persistent
structures [red plots in Figs. 8(c) and 8(d)]. At these small
scales, the global fractal dimension calculated for the current
and the vorticity steadily decreases from D�

⊥ = 3 to D�
⊥ � 2.3

as the Hall term coefficient increases, confirming once more
that the turbulent structures are being fragmented by the
nonlinear Hall cascade.

Finally, we quickly review the results obtained for the
scaling in the parallel direction. Figure 9 shows an example
of cancellation functions of the current jx as a function of
the parallel scale χ (l‖) and for l⊥/2π = 0.002. As evident,
the power law range is severely reduced because of the
lower resolution of the numerical simulations in that direction.
However, we have fitted the cancellation functions with the
usual power law, obtaining the cancellation exponents κ and
therefore the fractal dimensions D. These are shown in Fig. 10
as a function of the Hall parameter. As expected from the
RHMHD model, for both fields the component parallel to the
magnetic field has almost constant D‖ � 2.2 [see the red plots
in Figs. 10(a) and 10(b)]. In contrast, for the two components
on the perpendicular plane, D‖ increases with ε from very
small values (D‖ � 0.8) to about D‖ � 1.9 [green and blue
plots in Figs. 10(a) and 10(b)], similarly to what is observed
for the perpendicular cancellation functions. The global fractal
dimension increases from D�

‖ = 1.3 to D�
‖ = 2.

VI. CONCLUSION

In this paper, a set of simulations of a RHMHD flow
realized with different values of the Hall parameter ε was
analyzed by using the sign-singular measure. Scaling of the
cancellation function was observed in two distinct ranges of
scales, corresponding to the MHD and Hall MHD ranges.
This is interpreted as the presence of an active nonlinear
turbulent cascade generating structures (i.e., parts of the
fields with persistent sign) on all scales. The cancellation
exponents, measured by fitting the cancellation functions with
power laws, indicate the degree of cancellation occurring
between structures of opposite sign and are related to the
gross fractal dimension of the typical turbulent structures
in the flow. In the MHD range, current structures are only
weakly sensitive to the Hall effect, showing slightly decreasing

fractal dimension in particular in the perpendicular current
components. The vorticity structures have a more evident
fragmentation, suggesting that the velocity and magnetic field
may have decoupled dynamics in this range. In the Hall
range, current and vorticity have similar behavior, showing
increasingly unraveled structures. The nonlinear Hall term
is thus responsible for disruption and unraveling of the
MHD current sheets and for the generation of smaller-scale
structures.

The results obtained here, together with previous
analysis [29,38], provide a comprehensive approach that helps
answer the basic question: Do the current sheets get wider
or narrower with the Hall effect? We can conclude that the
Hall term has a dual effect on the current sheets at different
scales. On the one hand, it increases the macroscale of the
sheets by proportionally increasing their characteristic size.
On the other hand, it causes these structures to unravel, which
corresponds to generating microstructures on smaller scales.
The decrease of the fractal dimension is a manifestation of the
emerging microscales, while the widening of the macroscale
of the sheet produces an increase of the filling factor of these
microstructures and the subsequent reduction of the observed
intermittency [38].

These results may settle both the numerical and observa-
tional debate about the widening vs narrowing of the current
sheets, which was probably due the extremely complex nature
of the structures. Therefore, a more comprehensive analysis,
based on multiple approaches to the same set of data (global
magnitudes, characteristic times, energy cascade, intermit-
tency, and geometrical and fractal properties), is desirable in
order to fully understand the effect of the Hall term on the flow
dynamics and in particular on the fractal characteristics of the
current sheets. This work, along with Refs. [29,38], may be an
example of such a comprehensive approach.
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P. Demoulin, Astrophys. J. 521, 889 (1999).
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[54] D. Sundkvist, A. Retinò, A. Vaivads, and S. D. Bale, Phys. Rev.

Lett. 99, 025004 (2007).
[55] S. I. Vainshtein, Y. Du, and K. R. Sreenivasan, Phys. Rev. E 49,

R2521 (1994).
[56] A. L. Bertozzi and A. B. Chhabra, Phys. Rev. E 49, 4716 (1994).
[57] J. P. Graham, P. D. Mininni, and A. Pouquet, Phys. Rev. E 72,

045301(R) (2005).
[58] V. B. Yurchyshyn, V. I. Abramenko, and V. Carbone, Astrophys.

J. 538, 968 (2000).
[59] V. I. Abramenko, V. B. Yurchyshyn, and V. Carbone, Sol. Phys.

178, 35 (1998).
[60] L. Sorriso-Valvo, V. Carbone, P. Veltri, V. I. Abramenko,

A. Noullez, H. Politano, A. Pouquet, and V. B. Yurchyshyn,
Planet. Space Sci. 52, 937 (2004).

063107-12

http://dx.doi.org/10.1063/1.2991395
http://dx.doi.org/10.1063/1.2991395
http://dx.doi.org/10.1063/1.3514203
http://dx.doi.org/10.1063/1.3514203
http://dx.doi.org/10.1063/1.3159862
http://dx.doi.org/10.1063/1.3159862
http://dx.doi.org/10.1017/S002237780001638X
http://dx.doi.org/10.1086/164837
http://dx.doi.org/10.1086/175013
http://dx.doi.org/10.1086/177663
http://dx.doi.org/10.1086/177663
http://dx.doi.org/10.1086/307563
http://dx.doi.org/10.1086/171620
http://dx.doi.org/10.1086/171620
http://dx.doi.org/10.1086/312390
http://dx.doi.org/10.1086/312390
http://dx.doi.org/10.1103/PhysRevLett.92.194501
http://dx.doi.org/10.1103/PhysRevLett.92.194501
http://dx.doi.org/10.1086/590653
http://dx.doi.org/10.1063/1.1602698
http://dx.doi.org/10.1063/1.1602698
http://dx.doi.org/10.1063/1.1705652
http://dx.doi.org/10.1063/1.1705652
http://dx.doi.org/10.1063/1.2128573
http://dx.doi.org/10.1063/1.2128573
http://dx.doi.org/10.1029/1999JA001001
http://dx.doi.org/10.1103/PhysRevLett.95.055003
http://dx.doi.org/10.1029/1999JA001007
http://dx.doi.org/10.1029/1999JA001007
http://dx.doi.org/10.1063/1.4717728
http://dx.doi.org/10.1063/1.4717728
http://dx.doi.org/10.1063/1.4754151
http://dx.doi.org/10.1086/339850
http://dx.doi.org/10.1086/339850
http://dx.doi.org/10.1017/S0022377806004624
http://dx.doi.org/10.1017/S0022377806004624
http://dx.doi.org/10.1103/PhysRevE.82.036406
http://dx.doi.org/10.1103/PhysRevE.82.036406
http://dx.doi.org/10.1063/1.2203950
http://dx.doi.org/10.1016/j.pss.2007.05.022
http://dx.doi.org/10.1086/524056
http://dx.doi.org/10.1103/PhysRevLett.103.075006
http://dx.doi.org/10.1063/1.4807378
http://dx.doi.org/10.1063/1.4807378
http://dx.doi.org/10.1063/1.3474957
http://dx.doi.org/10.1063/1.3474957
http://dx.doi.org/10.1103/PhysRevLett.69.2654
http://dx.doi.org/10.1103/PhysRevLett.69.2654
http://dx.doi.org/10.1063/1.1420738
http://dx.doi.org/10.1088/0031-8949/1982/T2A/009
http://dx.doi.org/10.1063/1.861310
http://dx.doi.org/10.1016/0010-4655(93)90103-J
http://dx.doi.org/10.1016/0010-4655(93)90103-J
http://dx.doi.org/10.1063/1.871393
http://dx.doi.org/10.1063/1.871393
http://dx.doi.org/10.1063/1.871473
http://dx.doi.org/10.1063/1.871473
http://dx.doi.org/10.1103/PhysRevLett.83.1155
http://dx.doi.org/10.1103/PhysRevLett.83.1155
http://dx.doi.org/10.1063/1.859060
http://dx.doi.org/10.1063/1.4773205
http://dx.doi.org/10.1088/0741-3335/41/3A/071
http://dx.doi.org/10.1088/0004-637X/702/1/537
http://dx.doi.org/10.1088/0004-637X/702/1/537
http://dx.doi.org/10.1029/2008GL035454
http://dx.doi.org/10.1103/PhysRevLett.99.025004
http://dx.doi.org/10.1103/PhysRevLett.99.025004
http://dx.doi.org/10.1103/PhysRevE.49.R2521
http://dx.doi.org/10.1103/PhysRevE.49.R2521
http://dx.doi.org/10.1103/PhysRevE.49.4716
http://dx.doi.org/10.1103/PhysRevE.72.045301
http://dx.doi.org/10.1103/PhysRevE.72.045301
http://dx.doi.org/10.1086/309139
http://dx.doi.org/10.1086/309139
http://dx.doi.org/10.1023/A:1005050708191
http://dx.doi.org/10.1023/A:1005050708191
http://dx.doi.org/10.1016/j.pss.2004.02.006



