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Fast multidimensional model for the simulation of Raman amplification in plasma
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We present Leap, a simulation model for Raman amplification in plasma, combining an envelope treatment
of the laser fields with an electrostatic particle-in-cell solver. The code is fully two dimensional, with the model
readily extendible to three dimensions, and includes dispersive and refractive effects. Simulations carried out for
Raman amplification in a plasma channel show that guiding of both the pump and the probe contribute to the
evolution of the probe, resulting in a shorter, more intense pulse.
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I. INTRODUCTION

Raman amplification in plasma has been suggested as a
possible method to realize the next generation of ultrashort, ul-
traintense laser pulses [1]. As plasma supports fluences several
orders of magnitude greater than conventional amplification
media, it greatly reduces the size of the system by reducing
or even avoiding the need to compress the amplified pulse.
“Damage” to the gain medium is not a concern, as the excited
plasma wave used to couple the pump and probe laser pulses
is itself generated by their interaction.

As such, Raman amplification has been the focus of many
experimental [2–5] and theoretical [6–10] works. However,
for simulation of parameters relevant to experiments, there is
typically some tradeoff between the computational overhead
and the completeness of the model. Particle-in-cell (PIC)
models offer the most complete treatment [10], but require
significant computational resources. Three-wave models are
the fastest [6], but omit particle effects such as wave breaking.
Envelope-PIC models have been successfully used in other
areas of laser-plasma interactions [11,12] and have been
developed for the treatment of Raman amplification [7,13],
with the goal of including most of the relevant physics
with a significantly lower computational overhead than full
PIC codes. Here we present the development of the Leap
model—an envelope-PIC treatment which builds on previous
works by including multidimensional effects, dispersion, and
refraction in the context of Raman amplification.

The paper is arranged as follows: Section II discusses the
laser solver, with Sec. III discussing the electrostatic solver.
The two are coupled through the plasma response, detailed in
Sec. IV. A case study investigating amplification in a plasma
channel is made in Sec. V to illustrate the applicability of
the code, with conclusions drawn in Sec. VI. The numerical
treatment of the laser and electrostatic solvers are discussed in
Appendixes A and B, respectively.

II. LASER SOLVER

We start with the wave equation, transforming into a moving
frame: τ = t , ξ = z/c − t . We limit our analysis to a single
transverse dimension y using a slab geometry. (Extension of
the model to three dimensions is, however, straightforward.)
By normalizing the transverse coordinate by a factor 1/c, we
obtain (

∂2
τ − 2∂τ ∂ξ − ∇2

⊥
)�a = χ �a, (1)

where �a is the reduced vector potential of the laser field,
�a = e �A/mc. We have made use of the quasistatic approxima-
tion for electron response, considering only the fast electron
motion due to the laser field, with χ the normalized local
plasma susceptibility, χ = ρe/ε0γm (for a homogeneous,
nonrelativistic plasma, χ = −ω2

p). We substitute for separate
pump and probe envelopes �a = a0 eiφ0 �u + a1 eiφ1 �u, where a0,
a1 are, respectively, the pump and probe envelope amplitudes,
which may be chosen complex to allow detuning from the
envelope phases, φ0 = w0(ξ + 2τ ), φ1 = −ω1ξ , which satisfy
the vacuum dispersion relation. �u is the polarization vector,
�u = (x̂ + iŷ)/

√
2 for circularly polarized light. We have

neglected longitudinal components of the laser field, consistent
for initial conditions satisfying �a · ξ̂ = 0.

We separate for the pump and probe by Fourier analyzing
and neglecting nonresonant terms:(
∂2
τ − 2∂τ ∂ξ+2iω0(∂τ−2∂ξ ) − ∇2

⊥
)
a0 = χ

(
a0+a1 ei(φ1−φ0)) ,(

∂2
τ − 2∂τ ∂ξ + 2iω1∂τ − ∇2

⊥
)
a1 = χ

(
a1 + a0 ei(φ0−φ1) ).

(2)

In an envelope treatment, counterpropagating modes mani-
fest as short-wavelength modulations of the envelope. In order
to reduce the required resolution, and consistent with the
slowly varying envelope approximation, the second derivative
in τ is often suppressed, preventing backscatter and reflection
while retaining the dispersive behavior of the laser pulse
[11,12]. Here, the use of separate envelope solvers for the
pump and probe allow this term to be neglected, lowering the
required resolution, while retaining backscatter and reflection.
We expect the influence of dispersion on the long pump
pulse to be negligible, and so additionally neglect derivatives
∂τ ∂ξa0 and self-currents χa0 in the pump evolution equation,
which simplifies the boundary conditions for the laser solver.
Retaining these terms for the probe allows effects such as
dispersion and Raman forward scattering to be modeled.

The resulting equations can be solved directly, but this
requires a high resolution as χ varies on the scale of half
a laser wavelength. This requirement for high resolution
may be avoided by introducing new averaged variables, the
average susceptibility χ̃ = 〈χ〉, and the coupling susceptibility
ψ̃ = 〈χ ei(φ0−φ1)〉:

(2iω0(∂τ − 2∂ξ ) − ∇2
⊥)a0 = ψ̃∗a1,

(3)
(−2∂τ ∂ξ + 2iω1∂τ − ∇2

⊥)a1 = χ̃a1 + ψ̃a0.
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The average susceptibility governs the refraction and disper-
sion of a single laser pulse. The coupling susceptibility is
related to the mutual index of refraction as used by Shvets
et al. [1], governing the scattering between the two pulses
and electromagnetically induced guiding [14]. It provides a
measure of the electron bunching and is equivalent to the
plasma wave amplitude used in three-wave models for Raman
scattering [6]. The calculation of ψ̃ is functionally similar to
the approach used by Hur et al. [7] to calculate the currents,
although the implementation is somewhat different.

The complete numerical implementation of the laser update
is detailed in Appendix A.

III. ELECTROSTATIC SOLVER

Envelope-PIC models have been effectively used in the
study of wakefield acceleration [11,12], removing the need
to resolve the laser wavelength. Using a Yee solver with
an additional ponderomotive term added to the particle push
allows a much lower resolution to be used, greatly decreasing
the computational overhead. However, for the case of Raman
backscattering, the smallest spatial scale is that of the excited
plasma wave. An envelope treatment of the laser fields is not
sufficient to reduce the computational overhead, as a high
spatial resolution is still required to model the plasma wave,
which, for an explicit method such as the Yee algorithm, will
in turn require a high temporal resolution.

Hur et al. [7,13] overcame this limitation by using an elec-
trostatic solver for the plasma response. The laser envelopes
were solved on a low-resolution grid, with each cell subdivided
into smaller cells used to model the electrostatic field. This
separation of scales allows a high resolution to be used for the
electrostatic solver with a long time step.

We take a similar approach, using an electrostatic solver
for the plasma response, the resolution of which may be
varied independently of the laser solver. Treating the system
as electrostatic is a reasonable approximation, as the excited
plasma wave is electrostatic, and the number of trapped
particles is necessarily small in regimes suitable for efficient
amplification.

We start with Gauss’ law for electrostatics (note the use of
normalized coordinates):

∇2ϕ(y,ξ ) = −c2ρ(y,ξ ). (4)

As we use a moving coordinate frame, the plasma wave
will extend beyond the downstream window boundary. We
therefore treat the electric field as periodic only in the
transverse y plane. A sensible choice is then a Fourier and
cyclic redundancy (FACR) method [15]. We take the Fourier
transform in y to give(

∂2
ξ − k2

y

)
ϕ̂ = −c2ρ̂. (5)

Appendix B discusses the numerical solution of this equation.

IV. PLASMA RESPONSE

Coupling between the laser and electrostatic solvers is
achieved through the plasma particles, which respond to both
ponderomotive and electrostatic forces. The electron positions

then determine the charge density used in the electrostatic
solver and the average and scattering susceptibilities used in
the laser solver.

For the case of Raman scattering, we assume stationary
ions. The electron momentum may be considered as the sum of
a slowly varying component and the fast “quiver” momentum
of the electron in the laser field. For the case of an electrostatic
plasma wave, the slowly varying momentum is equal to
the canonical momentum �P [11] to give a total momentum
�P − �amc. The canonical momentum represents the electron

response to the electrostatic and ponderomotive forces:

d �P
dτ

= −e �E − m

2γ
∇|�a|2

= −e �E − m

4γ

(∇|a0|2 + ∇|a1|2

− 2(ω0 + ω1)Im
(
a0a

∗
1 ei(φ0−φ1) )ξ̂)

. (6)

The macroparticle position depends only on the canonical
momentum, representing the equilibrium position of an
electron oscillating in the laser field. The average Lorentz
factor depends on the total momentum [12]:

γ 2 = 1 +
�P 2

m2c2
+ |�a|2

= 1 +
�P 2

m2c2
+ 1

2

(|a0|2 + |a1|2 + 2Re
(
a0a

∗
1 ei(φ0−φ1)

))
.

(7)

The charge density ρ and the average and coupling
susceptibilities χ̃ and ψ̃ are calculated by summing over all
particles:

ρ(y,ξ ) = 1

δyδξ

∑
j

∫ y+δy/2

y−δy/2

∫ ξ+δξ/2

ξ−δξ/2

f (yj − y ′,ξj − ξ ′)qjdy ′dξ ′, (8)

χ̃(y,ξ ) = 1

δyδξ

∑
j

∫ y+δy/2

y−δy/2

∫ ξ+δξ/2

ξ−δξ/2

f (yj − y ′,ξj − ξ ′)
q2

j

ε0γjmj

dy ′dξ ′, (9)

ψ̃(y,ξ ) = 1

δyδξ

∑
j

∫ y+δy/2

y−δy/2

∫ ξ+δξ/2

ξ−δξ/2

f (yj − y ′,ξj − ξ ′)
q2

j

ε0γjmj

ei�φj dy ′dξ ′,

(10)

where yj denotes the y coordinate of the j th particle, etc., with
�φj = (ω0 − ω1) ξ + 2ω0τ the difference between the pump
and probe carrier phases, φ0 and φ1, at the position of the j th
particle. δy, δξ are the cell sizes in y and ξ , and f is the particle
shape function, each of which may be chosen independently
for the electrostatic and laser solvers.
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FIG. 1. (Color online) Plots showing the plasma susceptibility χ

and the slowly varying quantities χ̃ and ψ̃ . (a) It can be seen that
the slowly varying quantities χ̃ and ψ̃ together represent the fully
resolved susceptibility, χ . χ̃ gives the average susceptibility, while
the coupling susceptibility ψ̃ gives a measure of the bunching. (b)
The coupling susceptibility is calculated as the average of the rapidly
varying quantity χ ei(φ0−φ1).

The particle shape function is an important aspect of the
model, as it allows the rapidly varying quantities χ , χ ei(φ0−φ1)

to be averaged to their slowly varying equivalents χ̃ , ψ̃ . We
chose a second-order particle shape, with a length greater than
the bunching length to ensure χ̃ , ψ̃ are smooth, as shown in
Fig. 1.

Hur et al. [7] overcame the same problem by setting the
cell size to equal the beat length 2πc/(ω0 + ω1). Summing
over a cell, the oscillatory behavior of χ ei(φ0−φ1) is removed,
leaving only the slowly varying component. This approach
works well in the linear regime, in which the laser wavelengths
are well known. However, our approach is more general,
allowing the use of arbitrary resolution. This is necessary
to allow the simulation of ultrashort pulses and has an
advantage for chirped pulses, which lead to a varying beat
length, and nonlinear regimes, in which evolution of the probe
wavenumber means the beat length is not known.

V. RAMAN AMPLIFICATION IN A PLASMA CHANNEL

Previous reduced models for the simulation of Raman
amplification range from simple three-wave models [6], which
do not include particle effects such as wave breaking, to
quasi-2D reduced PIC models [13] designed to investigate
diffraction and gain focusing. The model presented here
represents a significant advance, as it is fully two dimensional,
and includes dispersion and refraction, allowing the simulation
of effects such as self-modulation, guiding, self-focusing, and
filamentation. Such effects are clearly of great importance
if Raman amplification is to be used as an alternative to
conventional amplification techniques: if a probe diffracts
too rapidly, it ceases to be ultraintense, while if it filaments,
efficient amplification will not be achieved and the resulting
pulse will not be suitable for many practical applications.

We present a case study illustrating the capabilities of
the code. Simulation parameters have been chosen to be
similar to those used in experimental works [2,3]: a flat-top
800-nm pump pulse with a diameter of 55 μm and normalized
amplitude a0 = 0.01; a probe pulse with a FWHM (amplitude)
duration of 500 ps and diameter of 55 μm with a normalized
amplitude a1 = 0.001; interacting in 2 mm of plasma of
uniform density 1.3×1019 cm−3. The probe frequency was
chosen to be downshifted from the pump by the plasma
frequency, corresponding to a wavelength of 876 nm.

The evolution of the probe pulse is shown in Fig. 2(a), with
the pump amplitude, coupling susceptibility, and averaged
susceptibility shown for the end of the interaction. The probe
pulse is simultaneously amplified and compressed, from an
amplitude a1 = 0.001, duration 500 fs, to a1 = 0.056, duration
270 fs. The plot of the coupling susceptibility shows the
excited plasma wave breaks, which prevents further interaction
between the pump and probe. The on-axis pump amplitude de-
creases by 50%, and so both pump depletion and wave breaking
likely contribute to the compression of the probe. While esti-
mates of the energy are, by necessity, limited for a planar geom-
etry, an energy amplification of 1220 times was observed, cor-
responding to an energy transfer from pump to probe of 35%.

A simulation was then made for the case of amplification
in a plasma channel. Such schemes have been demonstrated
experimentally through the use of a plasma capillary [4], and
through the creation of a plasma channel inside a gas jet [5].
We choose a parabolic density profile with the density at the
simulation boundary 1.5 times that on axis, corresponding to
an increase of 5.6% at the probe waist. As we expect the
channel to guide the laser pulses, we set the pump diameter
to the matched value for this channel, 18.5 μm. Note that the
pump is introduced at the upstream simulation boundary, and
so the evolution of the pump up to that point is not modeled.
Full PIC simulations covering the entire interaction region
have been carried out by Trines et al. [10]. The pump power
is maintained, giving a pump amplitude of a0 = 0.017. The
results of the simulation are shown in Fig. 2(c). An increase
may be seen in both pulse amplification and compression,
with the amplified probe amplitude a1 = 0.106 and duration
165 fs. Less pump depletion is observed than for the case
of flat plasma, with an on-axis reduction of 40%, although
the energy gain is somewhat higher, with an increase of
1360 times, corresponding to an energy-transfer efficiency
of 40%.
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FIG. 2. (Color online) Plots showing the influence of a plasma channel on Raman amplification: (a) flat plasma, 55-μm pump, (b) flat
plasma, 18.5-μm pump (nonphysical), and (c) plasma channel, 18.5-μm pump. The evolution of the probe is shown, along with the pump,
coupling susceptibility and averaged susceptibility corresponding to the final probe snapshot. For comparison to typical experimental values,
coordinates are given in micrometers (transverse) and picolightseconds (longitudinal).

In order to ascertain to what extent this marked difference in
the probe evolution is due to refractive guiding of the probe, we
consider a third case: an 18.5-μm pump in flat plasma. While
this situation is nonphysical, as such a pump would diffract
over the interaction length, its use in simulations allows us to
weigh the relative influence of the narrow pump in simulations
of the plasma channel. The results are shown in Fig. 2(b).
It can be seen that this combination of parameters gives an
intermediate result—amplification is greater than for the case
of a 55-μm pump in flat plasma, but remains lower than the
case of the 18.5-μm pump in a plasma channel. We may
therefore conclude that refractive guiding of both the pump
and probe contribute to the increase in amplitude observed in
the case of a plasma channel.

VI. CONCLUSIONS

The development of Leap, a simulation model for the
efficient simulation of Raman amplification in plasma, is
discussed. It combines an envelope model for the laser pulses
with an electrostatic PIC solver for particle motion, leading
to a significant reduction in computational overhead. The
discussion in this work is limited to a slab geometry, but
the model is readily extensible to three dimensions. The
envelope model includes dispersion and refraction, similar to
those used in the study of wakefield acceleration [11,12], but
with the significant addition that backscattering and reflection
may also be modeled, achieved through the use of two
counterpropagating laser envelopes and the addition of a
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coupling term. The use of an electrostatic PIC solver to allow
a separation of scales was first suggested by Hur [7], but this
work further develops this idea through the generalization of
the electrostatic solver to two dimensions, and the introduction
of higher-order macroparticles to remove the limitations on the
laser frequencies and simulation resolution.

The applicability of the code is demonstrated through the
simulation of Raman amplification in a plasma channel. It is
observed that the use of a plasma channel gives a more focused
pulse with a higher peak amplitude and a shorter duration than
amplification in a plasma of uniform density; an amplitude
amplification of over 100 times was observed for the case
of a plasma channel, and compression from 500 to 165 fs,
compared to an amplification of 56 times and compression to
270 fs for flat plasma. It is shown that both refractive guiding
of the probe and the narrower, more intense pump used in the
plasma channel case contribute to this improvement.

The model opens the possibility to simulate parameter
spaces relevant to experimental works, including the physics
of multidimensional effects, without the prohibitive com-
putational overhead associated with conventional simulation
models.
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APPENDIX A: NUMERICAL IMPLEMENTATION
OF THE LASER UPDATE

We consider the evolution of the probe as given by
Eq. (3). The full wave equation in the laboratory frame may
be factorized to reveal two counterpropagating solutions, both
of which exist for a single pulse propagating in a dispersive
medium. Here, as we have neglected the second derivative in
τ , the result is two solutions, one near-stationary in the probe
frame, the other one near-stationary in the laboratory frame:

∂τ (−2∂ξ + 2iω1)a1 = χ̃a1 + ∇2
⊥a1 + ψ̃a0. (A1)

The nonpropagating solution replaces the counterpropagating
solution, suppressing backscatter and reflection while main-
taining the dispersive behavior of the pulse. We introduce an
auxiliary field α1, allowing us to write

∂τ a1 = α1, (A2)

(−2∂ξ + 2iω1)α1 = χ̃a1 + ∇2
⊥a1 + ψ̃a0. (A3)

This scheme has the advantage that there is no numerical
dispersion in vacuum for waves propagating along the ξ axis
(as α1 = 0). We discretize these equations, using the notation
a|nm to denote quantity a at ξ = m δξ , τ = n δτ , where δξ is the
longitudinal grid spacing and δτ is the time step. For clarity,
we have dropped the notation for the position in y, as the only
transverse dependence is due to the transverse Laplacian, ∇2

⊥.
We solve these mutually dependent equations using a

leapfrog-in-time method, evaluating the field at time step n,
n + 1, and the auxiliary field at n + 1/2, n + 3/2, such that

∂τ a1

∣∣n+1/2

m
= α1

∣∣n+1/2

m
, (A4)

(−2∂ξ + 2iω1)α1

∣∣n+1/2

m+1/2
= (χ̃a1 + ∇2

⊥a1 + ψ̃a0)|n+1/2

m+1/2
. (A5)

Substituting derivatives for their Taylor expansions and
interpolating for values between grid points, we obtain

1

δτ

(
a1

∣∣n+1
m

− a
∣∣n
m

) = α1

∣∣n+1/2

m
(A6)

2

δξ

(
α1

∣∣n+1/2

m
− α1

∣∣n+1/2

m+1

) + iω1
(
α1

∣∣n+1/2

m
+ α1

∣∣n+1/2

m+1

)

= 1

4

(
χ̃

∣∣n+1
m

a1

∣∣n
m

+ χ̃
∣∣n+1
m

a1

∣∣n+1
m

+ χ̃
∣∣n+1
m+1a1

∣∣n
m+1 + χ̃

∣∣n+1
m+1a1

∣∣n+1
m+1

)

+ 1

4

(∇2
⊥a1

∣∣n
m

+ ∇2
⊥a1

∣∣n+1
m

+ ∇2
⊥a1

∣∣n
m+1 + ∇2

⊥a1

∣∣n+1
m+1

)

+ 1

2

(
ψ̃

∣∣n+1
m

a0

∣∣n
m

+ ψ̃
∣∣n+1
m+1a0

∣∣n
m+1

)
. (A7)

Note that we have assumed χ̃ |nm ≈ χ̃
∣∣n+1
m

, i.e., the average
susceptibility evolves slowly in the probe frame. This value
reflects the combined laser wake of the pump and probe;
the intensity of both the short probe and the long pump evolve
slowly in this frame, and so we can expect the same of the
associated wake terms. This reduces the memory overhead,
as the previous values of χ̃ do not need to be stored. We
also limit the interpolation of ψ̃a0 to two points, as small
errors in the growth rate have very little influence on the probe
evolution, and so a lower degree of accuracy may be tolerated
than in calculations of the probe dispersion, which may lead
to significant nonphysical growth or damping if not correctly
time centered. This reduces both the memory overhead, as
the previous values of ψ̃ do not need to be stored, and the
computational overhead, by allowing considerably simpler
calculations.

We know the upstream value of α1 is zero, as a1 = 0,
allowing us to integrate backwards from the right window
boundary. We use Eq. (A6) to substitute for values of a1|n+1

m

in Eq. (A7), and rearrange to give

(
1 + iω1δξ

2
− δτδξ

8
χ̃

∣∣n+1
m

− δτδξ

8
∇2

⊥

)
α1

∣∣n+1/2

m

=
(

1 − iω1δξ

2
+ δτδξ

8
χ̃

∣∣n+1
m+1 + δτδξ

8
∇2

⊥

)
α1

∣∣n+1/2

m+1

+ δξ

4

(
χ̃

∣∣n+1
m

a1

∣∣n
m

+ χ̃
∣∣n+1
m+1a1

∣∣n
m+1

)

+ δξ

4

(∇2
⊥a1

∣∣n
m

+ ∇2
⊥a1

∣∣n
m+1

)

+ δξ

4

(
ψ̃

∣∣n+1
m

a0

∣∣n
m

+ ψ̃
∣∣n+1
m+1a0

∣∣n
m+1

)
. (A8)

The presence of the transverse Laplacian on the left-hand
side requires that an implicit method be used, with an entire
slice (constant ξ ) evaluated simultaneously. While Eq. (3) is
equivalent to that used by Cowan et al. [12], the introduction
of an auxiliary field allows the use of simpler numerical
techniques: in the two-dimensional case treated here, the
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problem takes the form of a tridiagonal matrix and is solved
using the Thompson algorithm.

APPENDIX B: ELECTROSTATIC SOLVER

Taking Eq. (5) and substituting for the derivative using
Taylor expansions, we obtain

ϕ̂|m+1 + ϕ̂|m−1 = (2 + δξ 2k2
y)ϕ̂|m − c2δξ 2ρ̂|m. (B1)

If the upstream boundary conditions are known, this equation
may be solved directly by integrating backward from the
boundary. However, this is not the case here: while ϕ at ξ = ∞
may be taken as zero, this does not give the value of ϕ at the
window boundary. We instead follow the method developed
by Buneman [15]. The treatment here corresponds to the case
of a purely imaginary ω in that work, allowing the equations
to be recast in a simplified form.

Choosing eκ + e−κ = 2 + δξ 2k2
y , i.e., cosh(κ) = 1 +

δξ 2k2
y/2, we may factorize Eq. (B1) to give

(ϕ̂|m+1 − e−κ ϕ̂|m) − eκ (ϕ̂|m − e−κ ϕ̂|m−1) = −c2δξ 2ρ̂|m.

(B2)

Defining ϑ |m = ϕ̂|m − e−κ ϕ̂|m−1, we can write

ϑ |m+1 − eκ ϑ |m = −c2δξ 2ρ̂|m. (B3)

This is solved using a two-pass method, with ϑ calculated
from right-to-left and ϕ̂ calculated from left-to-right:

ϑ |m = e−κ (ϑ |m+1 + c2δξ 2ρ̂|m), (B4)

ϕ̂|m = ϑ |m + e−κ ϕ̂|m−1. (B5)

As the charge density for all points beyond the upstream
boundary is zero, it follows that ϑ at the upstream boundary
is zero, allowing the right-to-left pass. However, the moving-
window geometry results that plasma beyond the downstream
boundary has been perturbed, and so the charge density is
unknown. Despite this, from the quasineutral nature of plasma,
we estimate ϕ at the downstream boundary to be zero. Any
error in this boundary condition will have a diminishing
influence as we advance the solution in ξ , as | e−κ | < 1. This
contrasts to the case of solving Eq. (B1) directly, where errors
in the boundary condition can have an increasing influence
while advancing in ξ (due to incorrect values of ∂ξϕ). ϕ is then
found by taking the inverse Fourier transform.
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