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Quantum theory of terahertz emission due to ultrashort pulse ionization of gases

K. Schuh,* M. Scheller, J. Hader, and J. V. Moloney
Department of Mathematics, Arizona Center for Mathematical Sciences, University of Arizona, Tucson, Arizona 85721, USA

and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

S. W. Koch
College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA and Department of Physics

and Material Science Center, Philipps-University, 35032 Marburg, Germany
(Received 1 July 2013; published 5 December 2013)

A microscopic model is developed to analyze terahertz (THz) emission after ultrashort one- and two-color
laser-pulse excitations of an atomic gas. Optical Bloch equations are derived to describe the pulse-induced
ionization in the many-atom system including the Coulombic scattering of the ionized electrons. The model
captures the continuous transition between the tunneling and the multiphoton ionization regimes. Numerical
evaluations for a wide range of pulse configurations identify optimized excitation conditions for strong THz
emission.
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I. INTRODUCTION

Electromagnetic fields in the terahertz (THz) frequency
range are of interest for a wide range of applications, including
spectroscopy of organic and inorganic matter, nondestructive
testing of industrial goods, all the way to homeland security [1].
The increasing availability of high-intensity THz fields even
allows for the study of nonlinear phenomena [2–4].

Besides optical rectification of femtosecond laser pulses in
nonlinear crystals [5–7], the THz generation in ambient air
is an effective way to generate strong pulses. After the first
demonstration of THz emission from a laser-induced plasma
[8], it was shown that the efficiency for THz generation can
significantly be enhanced through the application of an electric
dc field which accelerates the photoionized electrons and, thus,
induces a transient space charge separation [9]. Recently, is has
been demonstrated that highly efficient THz generation can be
observed if two-color laser pulses are used to create the plasma.
This effect has been attributed to four-wave mixing [10–16] or
temporal asymmetries in the E fields of the pulses [17–19].

In this paper, we develop a microscopic theory that allows
us to systematically study THz generation in atomic plasmas.
We keep our analysis as general as possible since we want to
identify the mechanisms responsible for THz generation in a
wide range of experimentally relevant conditions. In order to
focus on the fundamental aspects, we evaluate the theory for an
atomic hydrogen gas as the most simple example. Furthermore,
we treat the plasma as a point source, i.e., we do not account
for detector influences or geometric effects, that have been
investigated, e.g., in Refs. [20–22]. For a point source, the
temporal change in the current leads to a dipole emission that
is proportional to the current change, which will, thus, be the
focus of our analysis.

II. MODEL

For the modeling of the optical excitation, we use a
generalized version of the optical Bloch equations [23]. In this
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semiclassical model, the optical field is described as a classical
field, whereas, the electrons are treated quantum mechanically.
Since we are interested in dilute gases at ambient pressure, we
focus our investigations on a model system with N hydrogen
atoms in the volume V . For this low-density configuration, it
is well justified to neglect many-body modifications of the
atomic continuum states, which can be classified by their
momentum �k. In this aspect, our model corresponds to the
strong field approximation (SFA) in plasma physics (see, e.g.,
Ref. [24]). Although the SFA is valid in the tunneling ioniza-
tion regime, our model also captures the essential properties
of the multiphoton regime. Thus, our model predicts strong
photon resonances and a distinct wavelength dependency of the
ionization rate as well as the appearance of momentum rings
(see, e.g., Ref. [25]). For the THz-generation investigations,
we need to compute the optically induced current dynamics in
the system. Since the bound states influence the polarization
and current only at higher frequencies, they are not relevant
in the THz regime, and it is sufficient to limit our calculation
to the hydrogen ground state 1s and the continuum states.
The omission of the intermediate states leads to a significantly
reduced ionization degree. Compared with H atoms [26], our
simplified system requires an about sixfold increased intensity
to realize the same degree of ionization. We compensate for this
shortcoming by using appropriately chosen higher intensities.

The noninteracting part of the Hamiltonian is

H0 =
∑

s

εsa
†
s as +

∑
�k

ε�ka
†
�ka�k, (1)

where a† and a are the electron creation and annihilation
operators. The transitions of electrons from the bound to a
continuum state are treated in dipole approximation (see, e.g.,
Ref. [27]). The acceleration of free electrons in an E field leads
to an additional gradient term in the Hamiltonian,

HD = − e

h̄
�E(t) �∇�k −

∑
s�k

�s�k(t)a†
s a�k + ��ks(t)a

†
�kas . (2)

The Rabi frequency is

�s�k(t) = �ds�k �EC(t), (3)
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where e is the elementary charge, �E is the physical E field,
and �EC is the complex E field, respectively. In our evaluations,
we assume a linear field polarization. The dipole matrix
elements �ds�k = 〈�s | − e�r|��k〉 determining the strength of the
respective transitions decay for large momenta k. Altogether,
our model describes the multiphoton as well as the tunneling
ionization regimes [28] and allows for arbitrary pulse shapes.

Evaluating the Heisenberg equations of motion, we obtain,
for the populations of the ground state fs = 〈a†

s as〉, the con-
tinuum states f�k = 〈a†

�ka�k〉, and the microscopic polarizations

(transition amplitudes) Ps�k = 〈a†
s a�k〉,

ih̄
d

dt
Ps�k = [εs − ε�k]Ps�k + �∗

s�k[f�k − fs] − e

h̄
�∇�kPs�k �E, (4)

ih̄
d

dt
fs =

∑
�k

�∗
s�kP

∗
s�k − �s�kPs�k, (5)

ih̄
d

dt
f�k = N [�s�kPs�k − �∗

s�kP
∗
s�k] − e

h̄
�∇�kf�k �E. (6)

The atoms are treated as a homogeneous density with the
consequence that the expectation values for all atoms are equal,
and the sum over them simply yields the atom number N . Since
we evaluate the theory in the continuum limit, at the end, only
the density of atoms is of importance.

So far, we have not included dissipative or damping terms.
However, it is well known that the current decay contributes
to the THz emission [29,30]. In our model, the dominant
contribution for this decay comes from the Coulomb electron-
ion collisions. The additional electron-electron interaction
does not influence the current directly since momentum
conservation leads to current conservation in the case of
uniform charge to mass ratios. We are also neglecting other
collective processes that influence the efficiency and spectral
details of the THz emission, i.e., plasma oscillations, electron-
neutral collisions, and geometric effects that have been studied,
e.g., in Refs. [31,32].

Ignoring the backaction of the electrons on the heavy ions,
we model the electron-ion collisions via the single-particle
Hamiltonian,

Hel-ion = −
∑
�k �k′

a
†
�ka �k′W (| �k′ − �k|). (7)

Here, we include only the continuum-state electrons since the
multiatom modifications of the single-atom bound electrons
are negligible in a dilute gas. For the interaction, we use a
screened Coulomb potential,

W (q) = 1

V

e2

ε0(q2 + κ2)
, (8)

with the permittivity ε0 and treat the screening within the
Debye-Hückel approximation [23]. This leads to an inverse
screening length,

κ =
√

4πe2

ε0
ρβ, (9)

that depends on the reciprocal of the thermodynamic temper-
ature β and the electron density ρ. Since this value changes
during the optical excitation, κ is also time dependent.

Evaluating the Heisenberg equation of motion due to the
electron-ion Hamiltonian (7) and implementing the second
Born Markov approximation [23], we obtain

df�k(t)

dt

∣∣∣∣
el-ion

= −Nion
2π

h̄

∑
�k′

δ(ε�k − ε �k′)

×W 2(| �k′ − �k|)[f�k(t) − f �k′(t)] (10)

where Nion is the number of ions and multiple-ion scattering
effects have been neglected. With this ansatz for the electron-
ion scattering, we ignore the influence of the free-electron
acceleration during the pulse, e.g., the inverse bremsstrahlung.
In the numerical evaluation, Eq. (10) has to be added to the
optical part Eq. (6).

III. NUMERICAL EVALUATION

We solve the coupled differential equations (4)–(6) and (10)
by using the fourth-order Runge-Kutta method. The summa-
tions over the continuum states �k are solved in the continuum
limit, i.e.,

∑
�k → V

(2π)3

∫
dk3. First, we study the optically

induced ionization dynamics for high-intensity femtosecond
pulse excitation with a peak intensity of 6 × 1018 W/m2. We
analyze the system response to excitation pulses with one- or
two-color carrier waves. In all cases, we choose the fundamen-
tal frequency as h̄ω = 1.5 eV (equals 827 nm and 363 THz).
In the discussion, we refer to this part as the first harmonic
component. For the two-color pulses, we add a frequency
doubled contribution, the second harmonic component, whose
amplitude is chosen as 1/3 of the first harmonic component.
Since the two-color pulses are sensitive to the phase difference
between both components, we investigate the extreme cases
where the phases of the first and second harmonics either
match at the pulse center or where they differ by π/2. Pulses
of this kind are of practical importance since they can easily
be created by second harmonic generation and their relative
phase can be adjusted precisely by exploiting the wavelength
dispersion in air [17].

Choosing 15 fs (FWHM) Gaussian excitation pulses, we
obtain the ionization dynamics shown in Fig. 1. We notice a
steplike carrier ionization with the largest increase occurring
close to the pulse extrema. During each cycle of the one-color
pulse (left panels in Fig. 2), we have two equidistant ionization
steps resulting from the symmetric positive and negative field-
amplitude parts in each cycle.

Due to its much larger positive than negative field am-
plitudes, the in-phase two-color pulse (middle panels in
Fig. 2) shows only one pronounced ionization step per cycle.
The ionization change due to the negative pulse peaks is
significantly smaller. However, as we can see in Fig. 1, the total
ionization is significantly enhanced relative to the same energy
one-color pulse due to the larger positive field amplitudes in
combination with the strong nonlinearities.

The two-color pulse with a π/2-phase difference (right
panels in Figs. 1 and 2) is asymmetric in time. The center
peak of the E field is shifted by 0.19 fs relative to the
center of the pulse envelope. Furthermore, the time between
a field maximum and the next field minimum is significantly
shorter (44%) than that between a minimum and the following
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FIG. 1. (Color online) Resulting time evolution of the carrier
ionization (upper part) for different 15 fs Gaussian excitation pulses
shown in the respective lower parts. The results for a one-color pulse
are plotted in the left panels, those for the in-phase two-color pulse are
plotted in the middle panels, and those for the two-color pulse with
a π/2-phase difference are plotted in the right panels, respectively.
In all cases, we choose the peak intensity of the fundamental carrier
wave as 6 × 1018 W/m2.

maximum. Therefore, we always observe pairs of ionization
steps bunched together.

According to Maxwell’s equations, the generation of
electromagnetic radiation is linked directly to the temporal
changes in the current density,

�j (t) = 1

V

∑
�k

f�k(t)�k eh̄

m
. (11)

To study the generation of THz fields, we evaluate the current
change in frequency space,

c(ν) =
∫

dt e2πiνt djz(t)

dt
, (12)

where we assumed a linearly polarized E field such that only
the component jz is finite.

Figure 3 shows the absolute value of the computed current
change for a peak intensity of 6 × 1018 W/m2 in the first
harmonic component. For all three excitation pulses, we
notice a dominant peak in the spectra at the fundamental
frequency (363 THz) that is caused by the acceleration of
the freed electrons oscillating with the field frequency. In the
region below the fundamental frequency, the current change
is monotonically decreasing in the case of the one-color pulse
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FIG. 2. (Color online) Magnification of Fig. 1: The arrows
indicate the alignment of the pulse peaks with the periods of rapid
ionization.

101

102

103

104

105

106

107

108

0  100  200  300  400  500

dj
/d

t (
ar

b.
 u

ni
ts

)

Frequency (THz)

-1

0

1

-10 0  10  20

FIG. 3. (Color online) Frequency spectrum of the current change,
Eq. (12), induced by the one-color pulse (blue dotted curve), by the
two-color pulse with in-phase components (red dot-dashed curve),
and by the two color-pulse with a π/2-phase difference (green solid
curve). In all cases, the peak intensity of the first harmonic component
is 6 × 1018 W/m2, and the pulse duration is 15 fs. The inset shows
the corresponding currents (in arb. units) as a function of time (in
femtoseconds).

excitation (blue dotted curve). For the two-color pulse with
matched phases (red dot-dashed curve), we also notice a
declining current change below 75 THz. In contrast, the two-
color pulse with a π/2-phase difference (green solid curve)
yields a current change that increases for small frequencies
and shows a wide slowly decaying plateau with a maximum
at 8 THz. The numerical value of the current change at 1 THz
is above 90% of the maximum, and at 0.1 THz, it is still
50%, respectively. For the high field intensity studied here,
this pulse shape is, thus, most efficient in the generation of low
THz-frequency components.

The current generation dynamics is shown in the inset of
Fig. 3. In addition to the instantaneous high-frequency current
contributions, we notice some residual quasi-dc current after
the pulse. This current decays on a picosecond time scale due
to the damping by the electron-ion interaction. This slowly
decaying current part is responsible for the low-frequency
contributions in the spectra.

To gain a better understanding of the excitation conditions
needed for efficient THz generation, we first focus on the
symmetry properties of the excitation pulses. Due to the strong
nonlinearity of the process, most electrons are ionized at times
close to the extrema of the exciting E field; compare Fig. 2.
The induced current after the pulse is then proportional to the
freed electron’s acceleration during the remaining pulse, i.e.,

jR
z (t) = e2

m

∫ ∞

t

dt ′Ez(t
′). (13)

For illustration purposes, we discuss the current generation
due to artificial pulses consisting of linear segments repre-
senting 1.5 field cycles, see the top panels in Fig. 4. Even
though such pulses are not realistic, they possess the same
basic symmetries as the investigated Gaussian pulses (shown
in Fig. 1) and allow for a simple analysis.

The bottom panels of Fig. 4 show jR
z (t) (solid curves)

induced by the corresponding pulses in the top panels. As-
suming a stepwise electron ionization at each field extremum,
the respective contribution to the quasi-dc current is given by
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FIG. 4. (Color online) Simplified model pulses (upper panels) and
the resulting current jR

z (t) (with e = m = 1) at the end of the pulse
for an electron ionized at the time t (lower panels, solid curves). The
time evolution of the current components due to one electron ionized
at a field extremum (marked by the arrows) is shown as dashed curves.
All quantities are presented in dimensionless units; see the text for
details.

the value of jR
z (textr) at the time textr of the extremum multiplied

by the number of electrons freed at the corresponding peak.
For the one-color pulse (left panels in Fig. 4), the first peak

(t = −2) yields a positive contribution to the quasi-dc current
(the value of the solid curve is indicated by the first arrow
in the lower panel). The dashed curve shows the evolution of
the current per electron ionized at this time; its value after the
pulse is identical to that of the solid curve marked by the arrow.
The other dashed curves show the analogous scenario for the
later peaks. We see that, for the central peak, jR

z (t) vanishes,
indicating a zero contributed to the total quasi-dc current.
The third and last peak causes a negative contribution that
neutralizes the contribution of the first peak since both peaks
have the same amplitude. As a consequence, this symmetric
pulse shape does not create a quasi-dc current under these
conditions.

The same is true for the in-phase two-color pulses (middle
panels in Fig. 4). In contrast, the two-color pulse with a π/2-
phase difference (right panels) produces a quasi-dc current
since the main peak as well as the combination of the two other
peaks create a finite net current determined by the remaining
acceleration jR

z (t) after the pulse. Similar features have been
discussed for two-color pulses by Kim et al. [17] and Wang
et al. [18].

Besides the pulse shape, the intrinsic dynamics of the
electronic system also contributes to the overall asymmetry
of the quasi-dc current generation process. As can be seen
in Fig. 2, the ionization maximizes not exactly at the time
of the field extrema but shortly thereafter. Furthermore, the
process is partially reversed by the subsequently decreasing
driving field. These features are an indication that the system
is close to the ultrafast adiabatic following regime [33]. Thus,
symmetrically shaped pulses also induce a finite current, which
is, however, significantly smaller than for the asymmetric
pulse shapes. In the context of the simplified pulses in Fig. 4,
this can be described as an effective shift in the ionization
times. This time shift leads to a change in the resulting
quasi-dc current in the direction opposite to the E field at
the creation time. Even if there are negative and positive
contributions, the highly nonlinear impact of the amplitude

on the ionization rate leads to a remaining net contribution to
the resulting current. In comparison to the one-color pulse, this
contribution is significantly larger for the two-color in-phase
configuration (middle panels) since the positive amplitudes are
much larger than the negative ones. The combined influence
of the original pulse asymmetry with this electron-dynamics-
induced asymmetry is referred to as “effective asymmetry.”

Returning to the analysis of the THz generation by the more
realistic Gaussian shaped pulses, we introduce the averaged
induced current change rates up to 2.25 THz,

C2 THz = 1

2.25 THz

∫ 2.25 THz

0
dν c(ν), (14)

and up to 50.25 THz,

C50 THz = 1

50.25 THz

∫ 50.25 THz

0
dν c(ν). (15)

For the idealized case of a point source, these rates are propor-
tional to the emitted far-field THz signal in the spectral range
up to 2.25 THz, respectively, 50.25 THz. In an experiment, the
2.25 THz range could be measured, e.g., by a ZnTe detector
(see, e.g., Ref. [12]).

Figure 5 shows the computed C2 THz for different peak
intensities of the excitation pulses shown in Fig. 1. As
mentioned before, we have to choose rather high intensities to
reach a given ionization degree since we omit the intermediate
bound states. As we can see, the 15 fs FWHM one-color pulse
(blue stars) is significantly less efficient for THz generation
than the two-color pulses (red crosses and green × symbols).
Even if the rate increases very fast above the ionization
threshold (around 1 × 1018 W/m2), it always remains smaller
than that of the two-color pulses due to their higher effective
asymmetry.

The impact of this asymmetry increases linearly with
the amplitude Eω (for a given Eω/E2ω) and the density
of ionized electrons I . Thus, one can fit this “asymmetry
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FIG. 5. (Color online) Calculated values of C2 THz, Eq. (14), for
the Gaussian 15 fs pulses shown in Fig. 1 (one-color blue stars,
two-color in-phase red crosses, and π/2-phase difference green ×
symbols). The simplified fits of the low THz current change rate for
the one-color pulse are shown as the blue dotted curve and, for the
two-color pulse with a π/2-phase difference, as the green solid curve,
respectively. The results for the two-color in-phase pulse are plotted
as red dot-dashed curves with (upper curve) and without (lower curve)
the four-wave mixing contribution.
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contribution” as

C
asym
2 THz ∝ A2 THzIEω. (16)

Since this contribution is dependent on the pulse shapes,
we introduce a pulse-shape efficiency factor A2 THz. This
factor is defined as the ratio of current change per ionized
electron due to effective asymmetry in a given frequency range
to the corresponding value of the one-color pulse with the
same amplitude of the first harmonic. Numerically, A2 THz is
obtained by fitting to the calculated values of C2 THz (lines)
subtracting the further subsequently discussed contributions.

Relative to the one-color case (blue dotted curve in Fig. 5),
the effective asymmetry is ten times larger for the two-color in-
phase pulse (lower red dot-dashed curve). The asymmetrically
shaped two-color pulses with a π/2-phase difference (green
solid curve) even yield a 330 times larger effective asymmetry.
Thus, they are most efficient in the creation of C2 THz at the
high intensities used in Figs. 1–3.

The comparison with the full numerical results in Fig. 5
shows that the asymmetry contributions alone do not explain
the behavior of the THz-generation rate. In fact, at medium
low intensities, the in-phase two-color pulses (red crosses)
are equally or even more efficient than the phase-shifted ones
(green × symbols). This regime is interesting for filamentation
studies, see, e.g., Refs. [21,34].

To identify the origin for this difference, we analyze the
effect of plasma assisted four-wave mixing. Here, the pulse
created plasma supports four-wave mixing between frequency
components of the same pulse. In particular, the mixing of two
photons with frequencies close to ω and one close to 2ω can
result in the generation of low-frequency photons in the THz
range. Since this process does not require a residual ionization,
even temporarily freed electrons are contributing.

As long as Eω � E2ω, the amount of temporal plasma
density is proportional to the first harmonic intensity (∝E2

ω).
The four-wave mixing itself is then proportional to ∝E2

ωE2ω,
where E2ω is the amplitude of the second harmonic. Thus, the
total four-wave-mixing contribution should scale like

Cfour wave
THz ∝ E4

ωE2ω. (17)

The upper red dot-dashed line in Fig. 5 shows Cfour wave
THz +

C
asym
THz . In reality, these contributions are not simply additive

since they may possess different phases. However, as we can
already see from our simple estimate, the four-wave-mixing
part is the dominant source for the generation of THz radiation
for in-phase two-color pulses at low and medium intensities.
This effect plays no role for the phase-shifted pulses since the
phase difference of the spectral components inhibits efficient
four-wave mixing in this case [17].

The situation changes only slightly for C50 THz as shown in
Fig. 6. Since transient ionization contributions can be expected
in this regime, we analyze the contribution,

C
temp
THz ∝ AtempE

3
ω, (18)

where Atemp is the temporal pulse-shape efficiency coefficient.
The factor E2

ω accounts for the instantaneous plasma density,
and the asymmetry is proportional to Eω. This transient effect
only leads to a short current that is far weaker than the current
due to the long lasting residual ionization and is, thus, relevant
only well below the ionization threshold. Furthermore, this
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FIG. 6. (Color online) The same as Fig. 5, however, for C50 THz.
The fits for the one-color pulse (blue dotted curve) and the two-
color phase-shifted pulse (green solid curve) include (upper curves)
or exclude (lower curves) the contribution C

temp
THz that arises from a

temporal plasma at low intensities (see the text).

contribution is significantly smaller than the four-wave-mixing
part and is, thus, negligible for the in-phase two-color case
(red symbols in Fig. 6). In contrast, it leads to an increased
efficiency at low to medium intensities, both for the one-color
and the two-color pulses with a π/2-phase difference below
the ionization threshold.

In addition to the intensity dependence, it is interesting to
study the influence of the pulse length on the THz-generation
process. Figure 7 summarizes the computed results for C2 THz

as a function of the pulse length for the fixed pulse energy, i.e.,
the product of the pulse length and peak intensity is constant.
In all cases, shorter pulses are significantly more efficient for
THz generation than longer ones. For the one-color case (blue
stars) and the two-color in-phase case (red crosses), we can
identify a “short-pulse” contribution approximated by

Cshort
THz ∝ I 3Eω. (19)
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FIG. 7. (Color online) THz current change rate C2 THz as a
function of the pulse length for Gaussian pulses. The 15 fs results
correspond to the pulses shown in Fig. 1. The computed results for
the one-color pulse are shown as blue stars, those for the in-phase
two-color pulse are plotted as red crosses, and those for the two-color
pulse with the π/2-phase difference are represented by the green ×
symbols, respectively. In all cases, the pulse energy is constant, i.e.,
the intensity increases with decreasing pulse length. The fit lines show
the short-pulse approximation discussed in the text.
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Although this is the dominant source of C2 THz for pulse lengths
less than 10 fs in the one-color (blue dotted curve) and two-
color in-phase case (red dot-dashed curve), it is in the two-color
π/2-phase difference case (green solid curve) neglectable for
pulse lengths of more than 4 fs. Nevertheless, the THz emission
profits in the last case from an increasing ionization as well
as an increasing E-field amplitude that increases C

asym
2 THz. Our

calculations for the one-color case are in qualitative agreement
with previous studies [32,35].

IV. CONCLUSION

To summarize, we present a consistent microscopic theory
for short-pulse ionization of atomic gases and the effects
of pulse-induced generation of THz radiation. We identify
plasma assisted four-wave mixing of frequency components
within one pulse as the dominant source for THz generation at
intensities below the ionization threshold and at low ionization,
which is the regime of most filamentation studies. For higher
intensities, pulse-symmetry effects are the dominant favoring

asymmetric pulse shapes. Due to the electron dynamics,
symmetric pulses also lead to an asymmetric excitation.
However, the generated THz signals due to this effect are
at least one order of magnitude smaller. Although two-color
pulses with an optimized phase relation and a pulse length
of more than 5 fs produce significantly more THz than
one-color pulses in the regime of 3–4 fs pulses, the actual
pulse shape (one color, two color) only has a small influence
on the efficiency of the THz emission. In combination
with high intensity, short pulses turn out to be the most
efficient.
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[6] C. Kübler, R. Huber, and A. Leitenstorfer, Semicond. Sci.
Technol. 20, S128 (2005).

[7] H. Hirori, F. Blanchard, K. Tanaka et al., Appl. Phys. Lett. 98,
091106 (2011).

[8] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W.
Falcone, Phys. Rev. Lett. 71, 2725 (1993).

[9] T. Loffler, F. Jacob, and H. Roskos, Appl. Phys. Lett. 77, 453
(2000).

[10] X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005
(2006).
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