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Analytical model for the radio-frequency sheath
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A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that
is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant
cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum
conservation, and Poisson equations are combined in a single integro-differential equation for the square of the
ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention
is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals
in the sheath equation appear in the screening function which considers the relative contribution of the temporal
mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite
insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios
of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general
analytic expression for the screening function is introduced. By means of this expression approximate analytical
solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact
numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition,
the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and
currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An
essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is
derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the
self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to
be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges.
The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of
highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced
in the collisionless case. The analytical results are compared to experimental data from the literature obtained by
laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and
pressures. Very good agreement is found throughout.
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I. INTRODUCTION

One of the most common methods of plasma generation
is to apply a radio-frequency (rf) voltage to two electrodes,
typically two parallel planar discs, in a vacuum chamber
filled with a certain gas or gas mixtures at low pressures.
While one electrode is connected to the rf power supply
via a matching network, the other electrode is either the
grounded wall or a second electrode of similar size, typically
in a plan-parallel configuration. The matching network usually
contains a capacitor in series with the discharge that prohibits
any dc current. This kind of capacitively coupled plasma (CCP)
has found wide application in industry, i.e., for etching of
nanostructures in semiconductors or deposition of thin films
as in solar-cell manufacturing. The physics of these discharges
is strongly dominated by the nonlinear dynamics of the space-
charge sheaths that develop in front of the electrodes [1,2].

Numerous investigations have studied the sheath dynamics
either experimentally or theoretically [e.g., [3–66]. In par-
ticular, the effect of the dynamics on the formation of ion
energy distributions at the surface and nonlocal heating of
the electrons has found special interest. Simulations, based
on either Particle-in-Cell/Monte-Carlo (PIC/MC) or fluid
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models, have strongly contributed to the understanding of the
underlying mechanism. Analytical models have often concen-
trated on certain aspects, e.g., nonlocal (stochastic) heating of
electrons or the shape of the ion energy distribution. For these
purposes strongly simplified analytical model systems have
been constructed or in other cases more advanced analytical
models are solved analytically up to a certain point where,
from then on, numerical techniques are applied for solving
differential equations or evaluating infinite sums. Only few
attempts have been made to describe the sheath dynamics
fully analytically. The most prominent examples are the
Godyak-Sternberg [19] and the Lieberman models [11–13].

In a fluid dynamic picture, the dynamics of the sheaths is
described by the continuity and momentum balance equation
for ions, Poisson’s equation for connecting the field with
the space charge, and the Boltzmann factor for the electron
density. The light electrons are basically instantaneously in
equilibrium with the applied voltage while the heavy ions,
at sufficiently high inertia and radio frequencies, react only
to the temporal mean field. This leads to a monotonously
decreasing ion density from the bulk towards the electrode
and an oscillating electron front. When the sheath voltage
reaches its minimum, electrons fill almost the entire sheath
and the space charge is very small. At the maximum voltage
the electrons are basically repelled from the sheath and a large
positive space charge develops.
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Although this dynamic behavior is qualitatively rather
obvious, a quantitative theoretical description of the sheath
dynamics is quite challenging. First, the voltage from the
power supply is divided between the two sheaths, the bulk,
and the so called series or blocking capacitor, which is usually
an integral part of the impedance matching unit between the
power supply and the discharge. For asymmetric conditions at
the two sheaths, e.g., a small electrode in a chamber with a large
wall area, a dc voltage, the so called self-bias, develops across
the discharge. This is possible because the same dc voltage,
but with the opposite sign, is established across the series
capacitor. This self-bias is a consequence of the interaction
between the two sheaths and the blocking of any dc current
by the series capacitor. While for a single frequency discharge
the applied voltage wave from is usually sinusoidal, this is not
necessarily the case for the individual sheath voltages. Second,
heavy ions respond only to the time averaged field in the sheath.
This field is determined by Poisson’s equation, which requires
knowledge of the temporal average of the electron density.
However, this average can only be calculated if the dynamic
of the electron density is known. As a consequence, iterative
integration techniques are usually applied in order to solve the
coupled system of equations.

Godyak and Sternberg [19], as well as Lieberman, have
avoided these difficulties by considering an isolated sheath
with a known sinusoidal current wave form [11,12]. The
spatial electron density distribution is simplified by a step
profile. Further, the equations are solved analytically for the
case of negligible collisionality, i.e., ions do not interact with
the neutral gas background. A collisional extension of the
model is solved numerically by Godyak and Sternberg [19]
and analytically under certain assumptions by Lieberman [12]
and also Vallinger et al. [15]. These models have greatly
contributed to the understanding of the rf sheath dynamics
and, in particular, Kawamura et al. have applied his model
successfully to calculating stochastic electron heating [55].
Brinkman has developed a more advanced fluid model that
requires knowledge of the sheath voltage instead of the current
and takes into account also ion-neutral collisions [46,47].
Further, a realistic spatial electron distribution is included.
However, the model is only half analytical and requires
iterative numerical solution. Similarly, Riemann and Biehler
have performed in depth kinetic studies using the Boltzmann
equation with particular focus on the ion energy distribution
but again need numerical techniques for integration of the
differential equations in the end [9,10]. Most recently Chabert
and Turner have proposed a novel fully analytical model for
the collisionless sheath where they demonstrate that the fluid
equations can be integrated easily if the mean electron density
is assumed as a constant fraction of the ion density [44]. This
ignores the strong spatial variation of the fractional electron
density. Further, like in the Lieberman model, the ion density
diverges at maximum sheath extension. Another recent model
is proposed by Elgendy et al. [67], which is an analytical
approximation to the half-analytical Brinkmann model for the
collisionless as well as the collisional sheath [46,47]. Both
novel analytical models are again based on a known current
wave form.

Here a novel approach is introduced that provides simple
analytical expressions for all sheath quantities. The model

is based on the applied rf voltage wave form and not the
current. The applied voltage wave form is separated into two
individual sheath voltage wave forms and the self-bias on the
basis of a cubic charge-voltage relation for the sheaths. The
first two moments of the Boltzmann equation and Poisson’s
equation are combined in a single integro-differential equation,
the sheath equation. This equation contains as a key quantity
the screening function that describes the screening of the
positive ion space charge in the sheath by the time averaged
electron charge. This function is approximated by Chabert and
Turner in their work [44] as a constant but here the full spatial
variation is considered. The sheath equation has two control
parameters representing the ion collisionality in the sheath and
the Debye length at the sheath edge. In addition, the maximum
sheath extension is used as normalization length. The equation
is solved numerically and analytically using certain approx-
imations. Comparison of the analytical results with iterative
numerical solutions of the sheath equation and experimental
data from the literature show excellent agreement. The model
presented in this work offers opportunities for either further
investigations of the sheath physics, e.g., determination of ion
energy distribution functions or stochastic electron heating, or
incorporating it in multidimensional fluid dynamic simulation
codes, which often do not resolve the sheath and require some
sheath model linked to the boundary.

The remaining part of the paper is organized as follows.
First, the basic differential equation for the ion drift velocity

is derived (Sec. II A). Boundary conditions are discussed in
Sec. II B. In order to enhance readability of the main text,
proofs of certain assumptions made in the model are moved to
an appendix. In particular, in Appendix A the derivation of an
approximate momentum balance equation and the error caused
by the underlying assumptions are discussed in comparison
to the exact kinetic solution for a linear electric field. The
derivation of a sinusoidal sheath voltage for discharges of
various symmetries and with an applied sinusoidal single-
frequency rf voltage is presented in Appendix B. The sheath
differential equation is solved numerically in Sec. II C. Details
on determining a universal form for the screening function are
mostly moved to Appendix C. In Sec. II D further important
sheath quantities are calculated from a known solution for
the ion drift velocity, e.g., the spatial ion density profile, the
dynamic space charge, or the time averaged and dynamic
voltages and electric fields. Subsequently, the Child-Langmuir
laws, i.e., the relation between the time averaged sheath voltage
and current, are derived separately for the collisionless case as
well as the collisional case (Sec. II E). In the final two sections
(Secs. II F and II G) approximate analytical solutions for the
collisionless case as well as the collisional case are derived.
Some key integrals are solved approximately in Appendix D.
The numerical and analytical solutions are compared and the
results are discussed in Sec. III for the collisionless case as well
as the collisional case (Sec. III A). A simple transition formula
connects these extremes (Sec. III B). Section III is closed with
a comparison of the analytical model with experimental data
from the literature on time averaged and time resolved sheath
electric fields (Sec. III C). Finally, the results are summarized
and an outlook on further tests, extensions, and applications
of the model is given (Sec. IV).
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FIG. 1. Basic scheme of the density profiles in the sheath,
including notations and coordinate systems used in the model. Details
are explained in the text.

II. DERIVATION OF THE RF SHEATH MODEL

A. The basic rf sheath equation

The model for a planar rf sheath is based on the following
simplifying assumptions.

(a) Ions are massive enough to respond only to the time
averaged sheath electric field. (ω � ωpi, where ω is the
(fundamental) rf angular frequency and ωpi is the mean ion
plasma frequency).

(b) Ions in the sheath undergo only charge exchange
collisions.

(c) These collisions take place with a constant cross section
σ or mean free path λ.

(d) The electron density distribution can be represented by
a step function (Fig. 1).

(e) The sheath potential becomes zero at the time of the
sheath collapse.

(f) Ionization within the sheath is neglected.
These assumptions are quite standard and have been

discussed in the literature before [17,35,57,61]. Certainly,
the neglect of elastic collisions (b) and the assumption of a
constant cross section for charge exchange (c) are introducing
some error. The strongest deviation can be expected at low
energies near the sheath edge, where the cross section is
changing rather strongly. The step profile in (d) is defined
by the condition that the number of electrons beyond the
step position equals the integral difference between the ion
and electrons densities on the other side [19,29,33,51]. The
approximation is naturally precise for the calculation of the
total space charge but introduces an error around the temporary
sheath edge when applied to calculating the electric field
or the voltage, in particular at the extremes. The extension
of the electron density around the temporary sheath edge
position is determined by the electron temperature Te. In this
sense, the step profile represents the limiting case of zero
electron temperature. Consistently, this limiting case is also
applied to the minimum potential at the time of the sheath
collapse (e). The step model has also consequences for the
boundary condition for the oscillating field at the point of the
instantaneous sheath edge as well as for time averaged field
at the point of maximum sheath extension. This is discussed
in detail the subsequent Secs. II B and II D. Ionization in the
sheath can be neglected at low pressures (f) but at higher

pressures secondary electrons can ionize and multiply within
the sheath. This limits the upper pressure range to typically
p < 100 Pa. The convenient consequence of this assumption
is conservation of the ion flux within the sheath.

Essential for the model of a planar sheath is the one-
dimensional momentum balance equation for ions with charge
exchange collisions. This fluid equation is effectively a first
order differential equation for the square of the drift velocity
W = u2/u2

0, where u0 is the drift velocity by which ions enter
the sheath at its maximum temporal extension sm:

W ′ + βW = F̄ (ξ ), W (ξ = 0) = 1. (1)

Here F̄ (ξ ) = Ē(ξ )/E0 is the normalized time averaged electric
field with E0 = miu

2
0/(2esm), where mi is the ion mass.

Physically, E0 is the homogeneous field necessary to accelerate
in free fall an ion initially at rest over the full length of the
sheath to its initial velocity u0. Therefore, the time averaged
electric field in the sheath Ē(ξ ) is much larger except very close
to the maximum sheath extension where the field vanishes. The
parameter β = πsm/λ counts the average number of collisions
in the sheath and is therefore a measure of the collisionality.
Equation (1) is not exact but an approximation to the first
moment of the corresponding Boltzmann equation. Derivation
of this equation and the accuracy of the approximation are
discussed in detail in Appendix A. Unless stated otherwise
the coordinate system used in the calculation has its zero
position at the maximum sheath extension and the length scale
is normalized to this value as shown in Fig. 1 (ξ = 1 − x/sm,

i.e., 0 � ξ � 1). In this coordinate system, the electric field is
always pointing in the direction of increasing ξ .

This equation can now be differentiated once in order to
combine it with Poisson’s equation via the derivative of the
time averaged electric field. Poisson’s equation for the time
averaged field reads

∂F̄

∂ξ
= esm

E0ε0
(ni − n̄e). (2)

The electron density is given in the frame of the step model by
the ion density ni and the Heaviside function θ :

ne(ξ,t) = ni(ξ )θ [ξs(ϕ) − ξ ]. (3)

Here ξs(ϕ) is the momentary sheath edge which varies with
the rf phase ϕ = ωt. The integral for the time average can now
be carried out directly. However, care has to be taken about
the monotonous intervals of the sheath voltage wave form. In
case of a single rf, the integral can be limited to one half of
the rf period. For multifrequency discharges the average has
to be carried out over multiple subintervals. Now the integral
average of the electron density becomes

n̄e = ni(ξ )
1

π

∫ π

0
θ [ξs (ϕ) − ξ ] dϕ = ni(ξ )

ϕ(ξ )

π
. (4)

The relation ϕ(ξ ) can be obtained by integrating Poisson’s
equation twice over the entire sheath and combining this with
the a priori known temporal form of the sheath voltage. In
the following, the case of a single frequency rf discharge is
considered where the sheath voltage Vs can be represented by
a certain power k of a sinus function, i.e., Vs = V̂ |sin (ϕ/2)|k .

The sheath voltage wave form and the justification for
this particular wave form are discussed in more detail in
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Appendix B in connection with the charge-voltage relation of
the sheath. In case of an infinitely asymmetric discharge, where
the self-bias equals the amplitude of the applied rf voltage
V0, one finds k = 2 and V̂ = 2V0. On the other hand, for
symmetric discharges, where the self-bias vanishes, the sheath
voltage can be well approximated by a power of k ≈ 3 and
V̂ = V0. The fact that the model assumes knowledge of the
sheath voltage makes it quite distinct form the Lieberman or
the Godyak/Sternberg models where knowledge of the current
wave form is assumed.

The sheath voltage is obtained by integrating Poisson’s
equation twice and applying a partial integration in order to
remove one of the two integrals:

V̂ sink

(
ϕ

2

)
= es2

m

ε0

∫ 1

ξ

(1 − ξ ′)ni(ξ
′)dξ ′. (5)

Obviously, the extreme values are related in the following way:

V̂ = es2
m

ε0

∫ 1

0
(1 − ξ ′)ni(ξ

′)dξ ′. (6)

Further, at this point it is useful to replace the ion density by
the velocity variable W using the continuity equation (n =
ni/n0 = 1/

√
W, where n0 is the ion density at sm). Now by

combining Eq. (6) with Eq. (5) one can solve for ϕ, which
determines the average electron density in Eq. (4). By taking
the derivative of Eq. (1) and combining it with Eqs. (2) and
(4), a single compact equation for the square of the ion drift
velocity can now be formulated:

W ′′(ξ ) + βW ′(ξ ) = γ 2 g(ξ )√
W (ξ )

, (7)

where g/
√

W represents the normalized space charge. The
screening function g(ξ ) = 1 − n̄e/ni describes the screening
of the ion density in the sheath by the time averaged electron
density:

g(ξ ) = 2

π
arccos

{[
1 −

∫ ξ

0
1−ξ ′√
W (ξ ′)dξ ′∫ 1

0
1−ξ ′√
W (ξ ′)dξ ′

]1/k}
. (8)

In the final step use has been made of the relation
π/2 − arcsin (x) = arccos(x). Obviously, g(0) = 0, i.e., at
the position of maximum sheath extension where quasineu-
trality holds, and g(1) = 1, i.e., at the electrode where
the electron front resides only for an instance. Be-
tween these extremes a smooth and monotonous transi-
tion is made. Equation (7) depends on two dimensionless
parameters:

β = π
sm

λ
and γ =

√
2

c

sm

λD

. (9)

Here λD =
√

ε0kTe/(e2n0) is the Debye length at the maxi-
mum sheath extension and c = u0/uB. uB = √

kTe/mi is the
Bohm velocity and k the Boltzmann constant. It should be
noted that the introduction of the Debye length and the electron
temperature is not a necessity as γ can also be expressed
directly by u0 and the other parameters. However, in this way
the physical meaning of γ becomes more obvious. While β

represents the collisionality of the sheath, i.e., the pressure
dependence, γ represents the plasma density dependence, i.e.,

rf power dependence. The factor c considers the fact that the
velocity by which ions enter the sheath at the maximum sheath
extension is not necessarily identical to the classical Bohm
velocity. When ion-neutral collisions become important c < 1
will apply. Effectively, the factor c2kTe is a single parameter
in the model.

A typical parameter range for the collision parameter is 0 �
β � 30. The lower limit corresponds to the collisionless sheath
at very low pressure. The upper limit is given by the increasing
role of ionizing collisions by secondary electrons within the
sheath at higher pressures (typically at p > 50–100 Pa).
Typical values for the density parameter are in the range
15 < γ < 100. The lower limit is set by the fact that already
a sheath at the dc floating potential has about sm/λD ≈ 10.

The upper limit can be found by arguing that a characteristic
Debye length is about λD ≈ 0.1 mm and the sheath extension
will rarely exceed about sm = 7 mm. For fixed values for u0

and sm, the proposed range for γ corresponds to a density
variation by already more than a factor of 40. Variation of
the sheath width with the density extends the density range
effectively to about a factor 100. For low-pressure discharges
λD � λ applies, which is equivalent to β � γ.

Although the basic rf sheath equation (7) has a very
compact form, it cannot be integrated analytically. Even
numerical integration can only be performed iteratively since
the screening function g contains an integral over W which
extends over the entire sheath length; i.e., the solution needs
to be known in order to carry out the integral.

B. Boundary conditions

Equation (7) is a second order equation but only one
boundary condition, W (0) = 1, has been specified so far. The
value of W ′(0) relates to the electric field at the boundary
by Eq. (1). Therefore, the correct boundary condition results
from a full discharge model combining the sheath with the
bulk plasma and taking into account also changes in the ion
mobility. In particular, an entirely self-consistent boundary
condition would require including the real spatial profile of
the electron front. As a consequent of the step model with
vanishing space charge at the maximum sheath extension the
right hand side of Eq. (7) is zero at the boundary. Conse-
quently, W ′′ (0) = −βW ′ (0) � 0 follows. For any β > 0 this
is inconsistent since W ′′ � 0 should apply at the sheath edge.
However, a systematic expansion shows that the right hand
side of Eq. (7) increases in the vicinity of the boundary like√

ξ so that the sign of the curvature changes to positive almost
immediately. Using the expansion and the boundary condition
defined below, one can identify the turning point of the
curvature at ξc ≈ 0.62ṽ (1) (β/γ )2 ≈ 0.4 (λD/λ)2 � 1, with
ṽ (1) ≈ 0.1 − 0.2 defined below by Eq. (17). In agreement with
numerical solutions typical values for ξc are in the range 10−3

to 10−2. In conclusion, the differential equation automatically
corrects the error on a very short length scale so that the
initial inconsistency does not really matter. Constructing,
however, a fully self-consistent boundary condition would
require substantial extension of the model. This is not very
practical and fortunately not entirely necessary. For a high
voltage sheath, the second boundary condition has, in fact,
very little influence on the sheath properties further down
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into the sheath. For practical purposes it might be sufficient
to define a reasonable simple second boundary condition
that ensures some basic requirements of the sheath density
profile. Therefore, what follows should be viewed rather as a
motivation than a derivation.

One has to demand that the ion sheath density decreases
smoothly and monotonically. This requires n′′ � 0. Expressing
again the ion density by 1/

√
W and making use of Eq. (7) to

substitute the second order derivative, one finds

W ′ � −β

3
W +

√(
β

3
W

)2

+ 2

3
γ 2

g√
W

. (10)

In the vicinity of the sheath edge one might still approximate
W ≈ 1, while g must have values in the range 0 < g < 1.

Further, considering the possible parameter range discussed
above one might neglect the terms containing β in comparison
to the term containing γ . This motivates

W ′ �
√

2r

3
γ. (11)

Here r is a number between 0 and 1. Empirically, one
finds r = 3/8 for the entire parameter range of β and
γ . Using the minimum value, the approximate form of
the second boundary condition becomes W ′(0) = γ /2. This
corresponds to an initial density gradient of n′(0) = −γ /4
or ∂n/∂x = n0/(23/2√cλD) or, equivalently, to an ambipolar
field proportional to kTe/λD, which has the natural scaling for
λD � λ and is also used in the Godyak/Sternberg model [19].
Further, use of the minimum value is equivalent to a vanishing
curvature of the density around the sheath edge. Since the
curvature is concave in the bulk but convex within the sheath
the transition is naturally located here.

Although this second boundary condition is essential
for performing the numerical integration of the differential
equation, it is actually quite uncritical for the final solution.
Numerical tests show that even in the extreme and unrealistic
case W ′ (0) = 0 [corresponding to n′ (0) = 0] the solutions
always relax quickly to the solutions for the above boundary
condition over a small fraction of the sheath length. As shown
below, the approximate analytical solutions do not depend on
this boundary condition but, nevertheless, show very good
agreement with the numerical solutions using it.

C. Numerical solution and the screening function

All numerical calculations in this work are carried out by
using the commercial software MATHEMATICA. This includes
the numerical integration of the differential equation as well as
solution of certain integrals defined in the following section.

In the following only the case of a fully asymmetric
discharge is investigated, i.e., a discharge setup where the
grounded area is much larger than the powered electrode
area. In this case the sheath voltage is represented exactly by
k = 2 (Appendix B). The sheath equation can now be solved
iteratively. Initially the screening function g is specified by
setting in the integral W = W (0) = 1, i.e., assuming a constant
ion density in the sheath. This rather drastic initial assumption

yields then

g(0)(ξ ) = 2

π
arccos (1 − ξ ) . (12)

With this initial form g(0)(ξ ) now the differential
equation (7) can be integrated to yield a first order solution
W (1)(ξ ). This solution can then be used in the integrals in
order to calculate an improved form of the screening function
g(1)(ξ ), which again leads to an improved solution W (2)(ξ )
and so forth. Convergence is very fast and the final form
of g does not deviate very strongly from the simple initial
form. For any choice of parameter combinations there is no
noticeable difference between the first order form of g(1) and
the following higher orders g(j>1). Correspondingly, there is
no significant difference between the second order solution of
W and any higher orders. A typical example is shown in Fig. 2.
The root-mean-square average σ for the relative deviation of
g(j ) and W (j ) from the infinite solution (j → ∞, where j is
the number of iterations) shrinks exponentially with the same
exponent. In the above example it is σ = 0.107 × 0.044j−1 for
W (j ), where j is the number of iteration, i.e., σ = 4.7 × 10−3

in second order. These numbers vary little for the entire
parameter range of γ and β.

Further, the particular form of g depends only very weakly
on the choice of the governing parameters β and γ (Fig. 3). A
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FIG. 2. Numerical iteration of the differential equation for the
rf sheath (β = 10, γ = 30) using five iteration steps (top, screening
function g; bottom, normalized square of the ion drift velocity W ).
The initial forms g(0) and W (0) by which the iteration starts are
indicated by the dashed lines. All subsequent solutions of g(j>0) are
effectively on top of each other. Only for W can the first order solution
W (1) be identified as a separate curve but already the second and all
higher orders W (j>1) are also all on top of each other.
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FIG. 3. Comparison of the approximate analytical form of the
screening function ga (dashed line) and exact numerical solutions
(solid lines) for combinations of two values of the density parameter
(γ = 15 and 50) and three values of the collision parameter (β = 0,

3,and 10): (a) β = 0, γ = 15, (b) β = 0, γ = 50, (c) β = 3,

γ = 15, (d) β = 3, γ = 50, (e) β = 10, γ = 15, (f) β = 10,

γ = 50. The order is from bottom to top: (e), (c), (a), (f), (d), (b).

reasonable universal approximation is found in Appendix C:

g(ξ ) ≈ ga(ξ ) = ξν ≈ ξ 3/8. (13)

The empirical power law is motivated by the approximate
behavior of the initial form of g as given by the right hand
side of Eq. (12). This choice of ga is compared to the
exact self-consistent numerical solution for various parameter
combinations in Fig. 3. The lower value of γ = 15 corresponds
to an extremely low rf voltage (sheath width of only 10 λD).
Here the collisionless case is on top of ga and the difference in-
creases with collisionality, i.e., increasing β. The high value of
γ = 50 is more typical (sheath width of 35 λD). There the
collisionless case shows the strongest deviation while the
highly collisional case is basically on top of ga . One can
conclude that increasing β shifts the curves downwards (higher
effective exponent) and increasing γ has the opposite effect
(lower effective exponent). Therefore, the choice made here for
the universal analytical form ga is a compromise that provides
a reasonable approximation within a wide parameter range.

In Appendix C it is shown how generally an optimized
exponent ν can be found from the numerical result for g. With
this optimized exponent excellent agreement with the original
form of g is achieved. Depending on γ and β, the optimized
values for ν vary only within a narrow range and the universal
average value of ν = 3/8 is reasonably chosen; i.e., the actual
variation of ν around this value has little effect on the final
result.

Naturally, using ga as the starting configuration in the
iteration leads to a correspondingly faster convergence and
even smaller deviations between the first and the higher order
solutions for W . With very good accuracy one can now
even avoid the inconvenient iteration procedure and integrate
the differential equation directly. Within the parameter range
defined above the relative differences are only few percent.
However, the main use of ga in this work is for obtaining
approximate analytical solutions as shown below.

D. Calculation of further quantities

Once a solution for W is found, other quantities can
be calculated in a straightforward manner. Naturally, the
normalized ion density [n (0) = 1] is given by n = 1/

√
W.

The normalized space charge 0 � q � 1 in the sheath
[normalized to Q0 = en0smq̃(1)] as function of the position
of the temporary sheath edge is given by

q(ξ ) = 1 − q̃(ξ )

q̃(1)
, (14)

with

q̃(ξ ) =
∫ ξ

0

dξ ′
√

W (ξ ′)
. (15)

The normalized sheath voltage 0 � v � 1 [normalized to
V0 = en0s

2
mṽ(1)/ε0 = γ 2E0sm/c2ṽ(1)] is

v(ξ ) = 1 − ṽ(ξ )

ṽ(1)
, (16)

with

ṽ(ξ ) =
∫ ξ

0

1 − ξ ′
√

W (ξ ′)
dξ ′. (17)

The two functions q̃(ξ ) and ṽ(ξ ) are called the charge function
and the voltage function, respectively. With these definitions
the screening function becomes

g(ξ ) = 2

π
arccos[

√
v(ξ )]. (18)

The normalized mean electric field is given by Eq. (1).
This brings back naturally the question of boundary conditions
since Eq. (1) implies that the time averaged field at maximum
sheath extension is defined by F̄ (0) = βW (0) + W ′ (0) 	= 0.

However, the actual value might, in fact, be quite different
since here, first, the finite extension of the electron front
leaves a finite space charge and, second, the acceleration of
ions to the Bohm speed is actually a quite complicate process.
For instance, Riemann calculates for the dc collisional case
an electric field at the Bohm point of FB = 0.88β3/5γ 2/5

(using the present normalization) [49,50]. On the other hand,
Brinkman shows that the Bohm point moves into the sheath
at high collisionality so that it becomes unrelated from the
start of the space-charge region [64]. This means the point
of maximum sheath extension as defined in this model is
not necessarily the Bohm point, as discussed already above.
Anyway, it is not the intention of this work to engage in the
discussion of quantities at the Bohm point and the step model
is, in fact, badly suited to do so. Since the field at the edge
is substantially smaller than the fields within the sheath here
the field at the temporary sheath edge and consequently also
the value for the temporarily averaged field at the point of
maximum sheath extension is set simply to zero. Therefore,
the small actual value of the field at the edge, in reality, is
ignored. In conclusion, the time averaged field is determined
by integrating either the left hand side or the right hand side
of Eq. (7) from zero to a point ξ within the sheath. Clearly, the
question of the detailed quantitative values of the ion velocity
and the field at the boundary is an aspect that could be improved
further. However, such investigation would go well beyond the
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scope of this work and also the limitations of the simplified
model presented here.

Now the dynamic electric field in the sheath for ξ � ξs can
be expressed as follows:

F (ξ,ξs) = γ 2[q̃(ξ ) − q̃(ξs)]. (19)

Apparently, the maximum field is found at the electrode and
the field strength is generally increased with ξs approaching
zero, i.e., expanding sheath extension. The absolute maximum
field strength is γ 2q̃(1). The functional relation between the
sheath edge position and the rf phase is determined in the
following.

The normalized sheath voltage can be approximated by a
cubic charge-voltage relation [Appendix B, Eq. (B5)]:

v(q) = q2 + (a − 1)q2(1 − q). (20)

The relation is dominated by the quadratic term and
the cubic correction parameter a is given by [Appendix B,
Eq. (B7)]:

a = 3 − q̃(1)

ṽ(1)
. (21)

It is shown in Appendix B that the cubic correction parameter
accounts for the spatial inhomogeneity of the ion density
within the sheath. The parameter can range between 1 for
a homogenous ion density profile and 2 for an infinitely steep
profile.

Inversion of the cubic equation (20) provides q (v) , where
the normalized sheath voltage wave form v (ϕ) is again
assumed to be a known function of the rf phase ϕ = ωt. Since
Eq. (20) has only a single real root, the relevant solution is

q(v) = a

3(a − 1)

[
1 − 2cos

(
1

3

{
arccos

[
1 − 27(a − 1)2

2a3
v (ϕ)

]
+ π

})]
. (22)

Differentiation of Eq. (22) with respect to ϕ gives the normalized displacement current density j [normalized to j0 = en0smωq̃(1)]:

j (ϕ) = 3(a − 1)

2a2

sin
(

1
3

{
arccos

[
1 − 27(a−1)2

2a3 sin2
(

ϕ

2

)]+ π
})

sin (ϕ)√
1 − [1 − 27(a−1)2

2a3 sin2
(

ϕ

2

)]2 . (23)

However, the displacement current density can also be deter-
mined exactly in a parametric representation without using the
cubic charge-voltage relation:

j (ξs) = ∂q

∂ϕ
=

∂q

∂ξ

∂v
∂ξ

∂v

∂ϕ
= ṽ(1)

q̃(1)

√
v(ξs)[1 − v(ξs)]

1 − ξs

. (24)

The rf phase ϕ is related to the dynamic sheath edge position
ξs via the sheath voltage:

ϕ(ξs) = 2arcsin[
√

v(ξs)]. (25)

In this way a parametric presentation of the displacement
current as a function of the rf phase is possible by varying
the dynamic sheath edge position between zero and one.
Further, symmetry can be applied to extend the range from the
first half cycle 0 � ϕ � π to the entire period 0 � ϕ � 2π,

i.e., j (ϕ) = −j (2π − ϕ) . This presentation is particularly
useful in order to calculate the current density without making
approximations and can be applied to the numerical as well
as the analytical solution of the sheath equation. If the sheath
edge position as a function of the rf phase is known, Eq. (24)
becomes even an explicit expression for the current:

j (ϕ) = 1

2(3 − a)

sin(ϕ)

1 − ξs(ϕ)
. (26)

Here the explicit form of the sheath voltage is used and the
ratio ṽ(1)/q̃(1) is replaced with the cubic correction parameter
[Eq. (21)]. However, even for the analytical solutions presented
below, deriving an exact analytical expression for ξs (ϕ) is
not possible. Instead, an approximate relation for ξs (q) is
introduced in Appendix D, where the cubic charge-voltage
relation provides q(v) via Eq. (22). Finally, the known sheath

voltage is v = sin2 (ϕ/2) so that this closes the chain to obtain
ξs (ϕ) . The approximate expression for ξs (q) are discussed
further in Secs. II F and II G in connection with the analytical
solutions.

The relation ξs (ϕ) is also important for calculating the
temporally and spatially resolved dynamic electric field
in the sheath. Last, but not least, the sheath edge ve-
locity can be deduced by differentiating ξs with respect
to ϕ. From the definition of the normalized sheath volt-
age, one finds ∂ξs/∂ϕ = −∂v/∂ϕṽ(1)

√
W (ξs)/ (1 − ξs) =

∓√
v (1 − v)ṽ(1)

√
W (ξs)/ (1 − ξs) , where the latter sign de-

pends on whether the sheath is expanding or contracting. This
velocity is the essential parameter for the stochastic heating of
electrons [46,53–56,60].

In summary, all static and dynamic sheath quantities can
be derived analytically once the solution for W (ξ ) has been
determined. In addition to the above quantities, also a relation
between the temporal means of the sheath voltage and the
current density, i.e., the ion current density, can be derived.
Such a relation is generally known as the rf equivalent to the
Child-Langmuir law, originally derived in the dc case for space
charge limited currents in tubes [1,2]. The rf Child-Langmuir
laws for the collisionless as well as the collisional case are
derived in the following section.

E. The rf Child-Langmuir law

The normalized mean sheath voltage (normalized to
V0 = E0sm) is found by integrating Eq. (1):

v̄ = W (1) − 1 − W ′(0) + β

[∫ 1

0
W (ξ )dξ − 1

]
. (27)
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This relation can be used to construct the rf equivalent to
the Child-Langmuir law. This generally means the relation
between the mean current density, i.e., the ion current density
j̄ = en0u0, and the mean sheath voltage V̄ (the capital letter
indicates the non-normalized value). In particular for the
extreme cases of the collisionless sheath (β = 0) and the highly
collisional sheath (β � 1) this can be carried out in a simple
way.

For the collisionless case, Eq. (7) needs to be integrated
twice in order to calculate the voltage, where one of the
two integrations can again be carried out by using partial
integration:

v̄ = W (1) − 1 − W ′(0) = γ 2
∫ 1

0

(1 − ξ )g(ξ )√
W (ξ )

dξ

=
[

γ 2

p1(γ )

]2/3

. (28)

The definition of p1 is motivated by the fact that Eq. (7)
indicates that

√
W ∝ γ 2/3 so that p1 can be expected to vary

only weakly with γ :

p1(γ ) =
(∫ 1

0

γ 2/3(1 − ξ )g(ξ )√
W (ξ )

dξ

)−3/2

= γ 2

[W (1) − 1 − W ′(0)]3/2
. (29)

For an exact solution of the sheath differential equation (7) both
alternative definitions are exactly identical and the right hand
side is clearly the simpler form for evaluation. However, this
identity does not necessarily apply to an approximate solution
which is derived in the subsequent section. Both alternatives,
the integral and the direct calculation, are compared at the end
of Sec. III A.

Returning now to non-normalized values and rearranging
Eq. (28) gives directly the Child-Langmuir law:

j̄ = p1(γ )ε0

√
2e

m

V̄ 3/2

s2
m

. (30)

The numerical value of p1 can be determined from either the
numerical solution or the analytical approximation given in
Sec. II F. As shown in Sec. III A, p1 decreases in fact with γ and
varies within the relevant parameter range between 1.6 and 1.0.
For very large values p1 converges to 133/142 = 0.94. A rea-
sonable average value is p1 = 1.2, which is found for γ = 40.

This is significantly larger than the factor of 0.82 obtained by
Lieberman [11]. However, Lieberman’s calculation is based
on the assumption of a sinusoidal current and not a sinusoidal
voltage, which might explain the difference.

In case of high collisionality, a function p2 (γ,β) =
p1 (γ,β)

√
β/2 can be defined if the integral definition for

p1 is used:

p2(γ,β) =
[∫ 1

0

(
4γ 2

β

)1/3
(1 − ξ )g(ξ )√

W (ξ )
dξ

]−3/2

. (31)

Alternatively, one could also in this case use integration of the
right hand side of Eq. (7) but this leads to an additional integral
over W , which is not necessarily easier to solve. By neglecting
terms not containing β � 1 in Eqs. (8) and using the universal

expression for the screening function g ≈ ga = ξ 3/8, one can
integrate easily for W and insert the result in Eq. (31):

p2(γ,β) ≈
√

11

3

⎡
⎣∫ 1

0

(1 − ξ ) ξ 3/8( 11β

12γ 2 + ξ 11/8
)1/3 dξ

⎤
⎦

−3/2

. (32)

For very large values γ 2/β one can reasonably neglect the
first term in the denominator. Then the integral becomes
trivial and independent of all parameters. This is actually the
motivation for the particular definition of p2. The asymptotic
value of p2 = √

23/3 253/576 ≈ 1.2 is effectively identical to
the average value for the collisionless case. However, generally
also p2 is not a constant but can be expected to vary weakly
with the control parameters by the ratio γ 2/β. Details are
discussed in Sec. III.

With the above definition of the p2 the collisional Child-
Langmuir law becomes

j̄ = p2ε0

√
2e

m

V̄ 3/2

s2
m

√
4λ

πsm

. (33)

The additional square root factor (2/
√

β) represents the
collisional reduction of the ion flow. Formally, Eq. (33)
becomes identical to Eq. (30) for the collisionless case at
β = 4 or λ/sm = π/4, i.e., at a mean free path of little less
than the maximum sheath width, which is quite reasonable.
However, one should keep in mind that formula (31) is derived
under the assumption of high collisionality, i.e., β � 1, and
the transition region of β ≈ 1 is not necessarily correctly
represented.

F. Collisionless analytical solution

In the collisionless case (β = 0) only the second derivate
remains on the left hand side of Eq. (7). Using again the
approximate analytical form for the screening function g ≈
ga = ξ 3/8, the differential equation for W reads

√
WW ′′ = γ 2ξ 3/8. (34)

An analytical solution to this nonlinear differential equation
of the Emden-Fowler type [68] can be found by a simple power
ansatz W = Aξl, where A and l are constants. Although this
ansatz solves the differential equation exactly for l = 19/12
and A = γ 4/3 (144/133)2/3 , it does not fulfil the boundary
conditions since it involves W (0) = 0 and W ′ (0) = 0. Further,
it has no integration constant to adjust. As a rough approxi-
mation one can simply add 1 to this solution so that at least
the first boundary condition is met and a divergence of the
ion density n(ξ ) = 1/

√
W (ξ ) at the sheath edge is avoided.

Although then the differential equation is no longer satisfied,
the error caused by this approximation is small and differences
are noticeable only close to the sheath edge. The approximate
solution in the collisionless case is then

W (ξ ) ≈ 1 +
(

144

133

)2/3

γ 4/3ξ 19/12. (35)

Adding similarly a term ξγ /2 to the exact solution in order
to fulfil also the second boundary condition leads to a strong
overestimation of the values for W . This actually demonstrates
also the weak local effect of the second boundary condition
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which has a negligible influence on the solution further into
the sheath.

With this expression for W the integrals for calculating the
charge and voltage functions q̃ and ṽ can be solved:

q̃(ξ ) = ξF

[
1

2
,
12

19
,
31

19
, −
(

144

133
γ 2

)2/3

ξ 19/12

]
, (36)

ṽ(ξ ) = q̃(ξ ) − ξ 2

2
F

[
1

2
,
24

19
,
43

19
, −
(

144

133
γ 2

)2/3

ξ 19/12

]
.

(37)

Here F is the hypergeometric function. Although this function
and its properties are well tabulated, for practical purposes it is
nevertheless desirable to have approximate formulas available
based on more elementary functions. Such approximations
with excellent accuracy are provided in Appendix D. However,
in the discussion of the results presented in Sec. III the above
exact forms are used throughout.

It is not possible to derive an explicit analytical expression
for the sheath edge position as a function of phase from
Eq. (37). Instead, Eq. (36) is inverted approximately. Then
ξs is expressed as a function of q via Eqs. (14) and (36),
q as a function of v via Eq. (22), and finally v as function
of ϕ via Eq. (B17). Details of the approximations made in
this chain of transformations in order to invert Eq. (36) are
given in Appendix D. The approximation made in the second
step is the use of the cubic charge-voltage relation. The final
result is

ξs (ϕ) =
[

(κ1 {1 − q [v (ϕ)]} + 1)38/5 − 1

(κ1 + 1)38/5 − 1

]12/19

, (38a)

κ1 = (2.828γ 4/3 + 1)5/38 − 1. (38b)

Apparently, the form of the equation ensures exactly the
required values at the extremes, i.e., ξs (0) = 1 and ξs (π ) = 0.

It should be noted that the initially more obvious alternative of
directly inverting Eq. (37), which would avoid the detour over
q, leads to analytically unsolvable algebraic equations and is
not feasible.

G. Collisional analytical solution

In the collisional case (β � 1) the second derivate W ′′ in
Eq. (7) can be neglected in comparison to the term βW ′. Again
using the analytical approximation for the screening function
g ≈ ga = ξ 3/8, integration becomes straightforward:

W (ξ ) = (1 + αξ 11/8)2/3. (39)

In the collisional solution the dependence on the two gov-
erning parameters can be expressed by a single parameter
α = (12/11) γ 2/β ∝ n0/λ. With increasing pressure, usually
also the plasma density increases while the ion mean free
path decreases. Therefore, both effects multiply and a strong
increase in the effective parameter α with pressure can be
expected. Naturally, this solution is independent of the second
boundary condition.

Like in the collisionless case, the form of W (ξ ) does not
allow an exact analytical evaluation of the integrals defining
the charge and voltage functions q̃ and ṽ. In order to obtain at

least approximate analytical expressions, the same strategy as
above is repeated:

q̃(ξ ) = ξF

(
1

3
,

8

11
,
19

11
, − αξ 11/8

)
, (40)

ṽ(ξ ) = q̃(ξ ) − ξ 2

2
F

(
1

3
,
16

11
,
27

11
, − αξ 11/8

)
. (41)

Similar to the collisionless case, here the sheath edge position
can also be calculated approximately as a function of q (details
are given in Appendix D):

ξs(ϕ) =
[

(κ2 {1 − q [v(ϕ)]} + 1)22/13 − 1

(κ2 + 1)22/13 − 1

]12/11

, (42a)

κ2 = [1.864α2/3 + 1]13/22 − 1. (42b)

Remarkably, the general structure of the analytical approxi-
mations for q̃ and ṽ is very similar to the collisionless case,
although, the coefficients are different.

The numerical factors in the analytical solutions derived
above for the collisionless as well as the collisional case are
resulting from the universal exponent of ν = 3/8 for the single
frequency, fully asymmetric discharge. Solutions for arbitrary
exponents can be found at the end of Appendix C where
also the sensitivity of the solutions to small variations in ν

is discussed.
While in the collisionless case, the part containing the first

derivative vanishes exactly for the limiting case β = 0, in the
collisional case, the second derivative would vanish totally
only for the unrealistic case β → ∞. The two approximations
are therefore quite complementary. By neglecting the second
derivative in the analytical approximation, the remaining
differential equation is solved exactly in the collisional case
while in the collisionless case an approximation is necessary
to solve an exact differential equation. Finally, the neglect of
the second derivatives leads to a dependence of the solution
on only one effective parameter α.

H. Transition formula

In a systematic approach, the solution for W can be
expanded into an infinite series of functions with terms being
proportional to increasing powers of the collision parameter
β. Then the sheath differential equation can be expanded and
sorted into groups of equations proportional to powers of β.
The zeroth order equation represents the fully collisionless
case and is naturally identical to Eq. (34) solved above.
However, already the first order equation is an inhomogeneous
second order differential equation with the equivalent of a
“frequency” term that shows a complex spatial dependence.
This equation does not have an analytical solution. On the
other hand, if numerical integration has to be applied anyway
there is no point in not solving directly the full original Eq. (7).

Nevertheless, a more heuristic approach turns out to be
successful. The solutions for the extreme cases of collisionality
both have the characteristic to diverge in the regions where they
do not apply. This motivates a transition formula based on an
inverse power scaling:

1

Wχ
= 1

W
χ

1

+ 1

W
χ

2

. (43)
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Here, W1 and W2 are the analytical solutions for the col-
lisionless and the collisional cases, respectively. A similar
approach is made in [67]. In order to meet the first boundary
condition W (0) = 1 by this transition formula, the integration
constants for the individual solutions are determined by
W1/2 (0) = (1/2)1/χ . Empirically, χ = 2 is found to be the
optimum value. The transition formula, in fact, applies well
for the entire range of collisionality.

III. DISCUSSION OF THE SOLUTION

In this section the various characteristic sheath quantities
are explicitly calculated and the numerical solutions are
compared to the analytical approximations. Generally, good
agreement between the numerical solutions and the analytical
approximations is found for β � 1 (collisionless case) and
β � 10 (collisional case), respectively. This corresponds to
pressures of typically p � 1 Pa and p � 10 Pa. For the inter-
mediate range the approximate analytical transition formula
provides reasonable agreement. In this section, two character-
istic collisional parameter cases, β = 0 and β = 6π ≈ 19, are
investigated for the same density parameter γ = 30

√
2 ≈ 42

(Sec. III A). In the collisional case this corresponds to an
effective parameter α = 104. The intermediate range is briefly
discussed in Sec. III B. Finally, in Sec. III C the analytical
solutions are compared to experimental data from the literature
based on laser electric field measurement in the sheath.

Before comparing the various solutions in detail, a further
comment, supplementing the discussion in Appendix C, can
be made on the second boundary condition and the use
of a universal screening function ga . By the two analytical
solutions derived above an understanding on the insensitivity
of the screening function g to variation of γ and β can be
developed easily. Generally, the structure of the differential
equation (7) allows removing of γ 2 from the equation by
applying a transformation W̃ = W/γ 4/3. Then the density
parameter γ appears in the solution only via the boundary
condition W̃ (0) = 1/γ 4/3. Apparently, for large values of γ

the boundary value of W̃ goes to zero. This is equivalent
to W rising steeply and becoming effectively independent of
the boundary condition. In this case, the dependence on γ is
mainly given by a multiplying factor γ 4/3, which originates
from the differential equation and not from the boundary
condition. If now in the integral for the voltage function ṽ(ξ )
the initial value is ignored, this multiplying factor cancels
out in the calculation of the normalized sheath voltage v

by the normalizing factor ṽ(1). Therefore, only a very weak
dependence of g on γ via the initial value of W has to be
expected. In the highly collisional case the same argument
applies to β since it appears only within the effective parameter
α which is also just a multiplying factor within the differential
equation. However, in the transition region of small but not yet
negligible β a similar argument cannot be developed. However,
here the influence of β on the solution is relatively weak and
so again there is no significant impact on g.

A. Collisionless and collisional solutions

The screening function g(ξ ), the normalized drift velocity
squared W (ξ ), and the ion density n(ξ ) are shown in
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FIG. 4. Screening function: exact numerical solution (solid line),
universal analytical approximation (dashed line). The line above
the universal analytical approximation represents the collisionless
case (β = 0, γ = 30

√
2) and the line below the collisional case

(β = 6π, γ = 30
√

2).

Figs. 4, 5, and 6, respectively. Very good agreement is found
throughout. The drift velocity and the density are especially
very well approximated by the analytical solution. In the
collisionless case, the increase in W represents directly the
increase in the ion energy. Since ions enter the sheath typically
with energies of the order of eV, the value for W at the
electrode of about 150 corresponds to a few hundred eV,
which is a typical value for capacitive discharges. From
Eq. (36) the scaling of W , and thereby of the ion energy at the
electrode, can be conveniently deduced as W (1) ≈ 1.05γ 4/3.

Correspondingly, the decrease of the ion density towards the
electrode scales like γ −2/3. In the present example this yields
a density decrease by one order of magnitude. Naturally, in
the collisional case the increase of the drift velocity and the
decrease of the density is lower. Remarkably, the square of the
drift velocity increases almost linearly in the collisional case.
This visible behavior can be deduced directly from Eq. (39),
which gives a scaling of ξ 11/12, i.e., very close to linear.

In the collisional case, deviations result from the error made
by neglecting the second derivate of W in Eq. (7). The ratio
of the second derivative term to the first derivative term is

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100
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Ξ

W
Ξ

FIG. 5. Square of normalized drift velocity: exact numerical so-
lution (solid line); analytical approximation (dashed line). The upper
pair of lines represents the collisionless case (β = 0, γ = 30

√
2)

and the lower pair the collisional case (β = 6π, γ = 30
√

2).
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FIG. 6. Ion density: exact numerical solution (solid line); analyt-
ical approximation (dashed line). The lower pair of lines represents
the collisionless case (β = 0, γ = 30

√
2) and the upper pair the

collisional case (β = 6π, γ = 30
√

2).

generally negligible. However, very close to the maximum
sheath extension where W has still not increased strongly there
is indeed some smaller contribution (Fig. 7). As discussed
already in Sec. II B, at maximum sheath extension the right
hand side of the differential equation becomes zero so that there
the ratio is exactly −1. From this initial point, the ratio almost
immediately crosses zero at about ξc ≈ 0.62ṽ(1) (β/γ )2 ≈
0.03 � 1 and then exhibits the local extreme discussed above.
In summary, the overall behavior supports the approximation
made in the analytical solution.

The mean electric field can be calculated in two ways: The
natural way would be via integration of the left hand side
of Eq. (7), i.e., F̄ (ξ ) = W ′(ξ ) − W ′ (0) + β [W (ξ ) − W (0)] .

For the analytical solution this is not without problems since
the approximation does not fulfil the boundary condition
for the first derivative W ′ (0) = γ /2 and in the collisional case
the first derivative is neglected after integration, i.e.,F̄ (ξ ) =
β [W (ξ ) − W (0)] . As a consequence, in the collisional case
F̄ scales similar to W, which explains the remarkably close to
linear behavior shown in Fig. 8, i.e., F̄ ∝ ξ 11/12.
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FIG. 7. Ratio of the two terms on the left hand side of the
sheath differential equation calculated from the numerical solution for
β = 6π, γ = 30

√
2. The second derivative is contributing slightly

only close to the maximum sheath extension.
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FIG. 8. Mean electric field: exact numerical solution (solid line);
analytical approximation based on integration of the left hand side
of Eq. (7) (dotted line) and on integration of the right hand side
(dashed line). The lower set of lines represents the collisionless
case (β = 0, γ = 30

√
2) and the upper set the collisional case

(β = 6π, γ = 30
√

2). In the collisional case the dashed and dotted
lines are effectively on top of each other.

Alternatively, the field can be calculated via integrating
the right hand side F̄ (ξ ) = γ 2

∫ ξ

0 g(ξ ′)/
√

W (ξ ′)dξ ′, which
avoids the problems at the edge in the collisionless case.
Effectively, this means integrating Poisson’s equation. Ap-
parently, integration of the left side is closer to the numerical
solution in the collisionless case but shows an artificial zero
crossing very close to the edge (Fig. 8). This artifact is, in
fact, avoided by integration of the right side but differences
are more pronounced close to the electrode due to the slight
underestimation of the screening function g in the analytical
solution. In the collisional case both alternatives are identical.
Generally, the analytical solutions compares very well with the
numerical solution which again justifies the approximations
made in the derivation.

The cubic correction parameter a is only weakly dependent
on the density parameter γ in the collisionless case (Fig. 9).
The exact numerical result based on Eq. (21) is fully
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FIG. 9. Cubic correction parameter a as a function of the density
parameter γ : numerical values (dots) and analytical approximation
(solid line), both based on Eq. (21). Curves start at the relevant lower
limit of γ � 15. The dashed line represents a reasonable average
value of a = 1.55.
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FIG. 10. Cubic correction parameter a calculated by Eq. (21) as
a function of the effective parameter α = (12/11) γ 2/β: numerical
values for γ = 42 (dots) and γ = 84 (triangles) and analytical
solution (solid line). The dashed line represents a reasonable average
value of a = 1.34, which is close to the exact value for the parameter
case investigated in this section of a = 1.36. Some of the numerical
points for the two different values of γ effectively overlap.

reproduced by the analytical result. Considering that the
relevant parameter range starts at γ � 15, a constant value ap-
plying in good approximation for all γ is about a = 1.55. This
value is also close to the value obtained for the density param-
eter of γ = 42 used in the examples of this section (a = 1.56).

In the collisional case, the cubic correction parameter
a should be a weakly dependent function of the effective
parameter α. In Fig. 10 the cubic correction parameter a

is calculated via Eq. (21) for various values of β and two
different values of γ , i.e., the γ value used generally in this
section and a value larger by a factor 2. For the same α there is
not much difference between the two cases of γ and a varies
only within a very narrow range (1.27 � a � 1.40), when α

is varied over an order of magnitude. Also, here the analytical
solution agrees well with the numerical data. Generally, the
value of a is smaller than in the collisionless case and the
cubic correction is less pronounced. A general average value is
about a ≈ 1.34, which is also close the exact value for the
parameter combination investigated (α = 104) in this section.
The mean value for the collisional case is smaller than for the
collisionless case since a is a measure of the inhomogeneity
of the ion density in the sheath, which is more pronounced in
the collisionless case.

The charge-voltage relation is shown in Fig. 11. As
expected, the relation is not simply quadratic, which would
be represented by the diagonal. Excellent agreement is found
between the numerical and the analytical solutions where the
curves are indistinguishable. Also good agreement is provided
by the cubic charge-voltage relation [Eq. (20)] using a cubic
correction factor determined from the analytical solution via
Eq. (21). In the collisionless case a = 1.56 results and in
the collisional case the factor is a = 1.36. In fact, in the
collisional case the cubic form is indistinguishable from both,
the numerical as well as the analytical solutions. As discussed
above, the cubic correction is less pronounced in the collisional
case. This explains also partly the success of the pure quadratic
approximation made in the past since this approximation was
applied mostly to the collisional case.
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FIG. 11. Charge-voltage relation: numerical solution (solid line);
analytical solution (dashed line); and cubic form of the charge-voltage
relation from Eq. (20) (dotted line). The upper set of lines belongs
to the collisionless case (β = 0, γ = 30

√
2, and a = 1.56). Here the

dashed and the solid lines are effectively on top of each other but
the dotted line is slightly off. The lower set of lines belongs to the
collisional case (β = 6π, γ = 30

√
2, and a = 1.36): Here all three

lines are effectively on top of each other.

The dynamics of the instantaneous sheath edge position ξs

is presented in Fig. 12. There is very little difference between
the numerical and the analytical solutions. The numerical as
well as the analytical solutions are parametric presentations of
the form ϕ [v (ξs)] . Further, as explained above with the help of
the cubic approximation, an explicit analytical representation
also is plotted. Generally, the collisionless case shows lower
values of the normalized sheath edge coordinate than the
collisional case, i.e., the fractional space-charge region for the
same voltage is more extended in the collisionless case. This is
a natural result of the lower ion density in sheath for the colli-
sionless case. Further, the figure clearly shows the asymmetry
between the extremes. While the dynamic sheath edge spends
a rather long time close to the point of maximum sheath
extension, it hits the electrode during collapse only for an
instance.

Comparison of the dynamic electric field [Eq. (19)] as a
function of phase and spatial coordinate shows again very good
agreement between the numerical result and the analytical
solution for all phases (Fig. 13). The field amplitude is
significantly larger in the collisional case, although the value
for the density parameter γ is the same. Clearly, collisional
friction in the sheath causes higher field amplitudes. Generally,
the curvature of the field is smaller than in the collisionless
case, which is a consequence of the less rapid decrease of
the ion density due to friction. This leads, in particular, to
the rather significant difference in the structure of the time
averaged field (Fig. 8). The dynamic structure of the fully
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FIG. 12. Dynamics of the instantaneous sheath edge position ξs

as function of the rf phase ϕ = ωt : numerical result (solid line) and
analytical result (dashed line) using both a parametric presentation
by ϕ [v(ξ )], and explicit analytical approximation (dotted line). The
upper set of lines represents the collisional case (β = 6π, γ = 30

√
2)

and the lower set the collionless case (β = 0, γ = 30
√

2). For both
sets all three lines are effectively on top of each other. It should be
noted that for a given phase the same voltage applies in both cases of
collisionality.

analytical result is also shown in Fig. 14 for the collisionless
case. Clearly the development of the instantaneous sheath edge
position can be identified. Further, the temporal variation of the
electric field at the electrode is displayed. The result for the
collisional case looks quite similar, although the amplitude
is higher and the curvature is slightly different, as shown
in Fig. 13.

The dynamics of the electric field at the electrode defines
also the displacement current density (Fig. 15). The numerical
solution and the analytical solution are indistinguishable when
using a parametric presentation via Eqs. (25) and (26). The
explicit expression based on the approximate determination
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FIG. 13. Dynamic electric field in the sheath as a function
of position and for three different rf phases. Here the phase is
characterized by the temporary position of the sheath edge which is set
to ξs = 0, 1/3, and 2/3: numerical result (solid line); analytical result
(dashed line). In all cases the solid and dashed lines are effectively on
top of each other. The field is zero for positions ξ < ξs . For a given
sheath edge position, the higher field strengths correspond to the
collisional case (β = 6π, γ = 30

√
2) and the lower field strengths to

the collisionless case (β = 0, γ = 30
√

2).
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FIG. 14. (Color online) Dynamics of the normalized electric field
in the sheath as a function of position and rf phase using the fully
analytical result for the collisionless case (β = 0, γ = 30

√
2).

of the sheath edge position as a function of the rf phase
slightly underestimates the current at the time of sheath
collapse but generally follows very closely the numerical
solution. Also the explicit expression based only on the cubic
charge-voltage relation is quite close, although deviations are
slightly stronger than for the explicit alternative using the
sheath edge position. For both explicit expressions, the only
input parameter considering the particular sheath properties
is the cubic correction parameter a. However, as shown
above, this parameter is effectively a constant (a ≈ 1.55) not
depending on the density parameter γ . Therefore, it can be
concluded that the also the current wave form is effectively not
depending on the density parameter γ . Comparison is made in
Fig. 15 and good agreement is found.

Remarkably, the extremes of the current are not located at
the time of the sheath collapse but they appear with a significant
phase shift �ϕ ≈ ±1. A closer look at Fig. 14 shows that the
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FIG. 15. Normalized displacement current as a function of the rf
phase for the collisionless case (β = 0, γ = 30

√
2): numerical solu-

tion (solid line); analytical result using a parametric representation
as a function of ξs (dashed line); analytical result using an explicit
approximate expression for the sheath edge position (dotted line);
and analytical result based only on the cubic charge-voltage relation
(dash-dotted line). The solid and the dashed line are effectively on
top of each other.
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extremes in the temporal slope of the electric field are also not
located at the sheath collapse. The shift of the locations for
the extremes can be understood by identifying alternatively
the current density as the product of the ion density times the
sheath edge velocity. For a homogeneous ion density profile,
the displacement current would simply be given by the speed
of the sheath front and extremes would be located at the
collapse (Fig. 12). However, since the density is increasing
with distance from the electrode, the current peaks when the
sheath is already quite extended (ξs ≈ 0.3). As a consequence,
the current density is almost constant over the entire width
of the sheath and falls off sharply only close to the point
of maximum sheath extension. At the collapse, the sign of
the current density changes instantaneously as a consequence
of the assumption of total asymmetry. For any finite value
of the symmetry parameter (ε > 0), i.e., finite electrode to
ground area ratio, the current is zero at the collapse with the
slope depending on the symmetry parameter. This is discussed
in more detail in Appendix B and in comparison with the
experiment. In the collisional case all solutions are effectively
indistinguishable. Further, the phase shift effect becomes
negligible so that the current is closer to a cosine wave form
(with half the rf frequency). Otherwise, shape and amplitude
are quite similar so that a separate plot is not shown here.

The coefficient p1 (γ ) for the collisionless rf Child-
Langmuir law is calculated as function of the density parameter
γ in Fig. 16 according to the definitions given by Eq. (29).
While both definitions, representing integration of the left
and right hand sides of the sheath Eq. (7), give indeed
identical values for the numerical solution, the results differ
for the approximate analytical solution. When integrating, the
universal exponent for the screening function g = ga = ξ 3/8 is
used and the integral for the right-hand side solution is carried
out numerically. However, the left-hand side yields an explicit
expression by the analytical approximation for W [Eq. (35)].
The figure shows that the latter form is indeed closer to the
numerical result. The asymptotic analytical value for large
γ is p1 = 133/142 = 0.94 and the numerical solution is, in
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FIG. 16. Coefficient p1 (γ ) for the collisionless rf Child-
Langmuir law as a function of the density parameter γ : numerical
solution (dots); analytical solution using integration of the left hand
side (solid line); and right hand side (dotted line) of the sheath
equation [Eq. (29)]. The asymptotic valued of 133/142 = 0.94 is
shown by a dashed line. Curves start at the minimum value of γ = 15.
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FIG. 17. Coefficient p2 for the collisional rf Child-Langmuir law
as a function of the effective parameter α = (12/11) γ 2/β: numerical
values for γ = 42 (dots) and γ = 84 (triangles) and analytical
approximation (solid line). The dashed line represents the asymptotic
analytical value p2 = 1.22 for very large α. Some of the numerical
points for the two different values of γ effectively overlap.

fact, converging to this value. Clearly, p1 is not a constant
but varies with γ quite noticeably. An average constant value
(within about ±20%) for the relevant range of γ can be set at
p1 ≈ 1.2. This value is also very close the exact value for the
choice of γ = 42 used in this section.

Like in the collisionless case the coefficient p2 for the
collisional rf Child-Langmuir law is not exactly a constant but
decreases with the control parameter, in this case α (Fig. 17).
For large values p2 approaches indeed the asymptotic analyti-
cal value. The numerical values calculated for two different
values of γ are very close, which demonstrates that the
coefficient is indeed only a function of the effective parameter
α. Generally, analytical and numerical values are close.

B. Intermediate solution

In the intermediate range between the exactly collisionless
and the strongly collisional sheath the transition formula
[Eq. (43)] can be applied. In Fig. 18 the result is shown for
the same density parameter as used above and four different
collision parameters in the transition range. Very good agree-
ment is found throughout. Similarly, all derived quantities like,
e.g., the density show comparable good agreement between the
numerical and the analytical solutions.

C. Comparison to experimental data

Electric field profiles obtained by laser electric field
measurements in rf discharges are available in the literature for
various gases and pressures. Spatially and temporally electric
fields are obtained by measuring the Stark splitting of Rydberg
states of the respective atoms. Here data from our earlier work
are used [57,60] that were measured in the so called GEC
reference cell [69], which has a small aspect ratio of powered
to grounded electrode area so that the discharge is strongly
asymmetric, i.e., symmetry parameter ε � 1. In fact, in all
cases the measured sheath voltages can be very well approxi-
mated by the square of a sine function as is exactly the case for
ε = 0, the particular case investigated in this work. Therefore,
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FIG. 18. Square of normalized drift velocity: exact numerical
solution (solid line); analytical approximation (dashed line). The
different cases are all calculated for the same density parameter
γ = 30

√
2 and various values of the collision parameter β = kπ

with k = 0.1, 0.5, 1.0, 2.0 (from top to bottom) representing the
transition region between the collisionless and the collisional regime.

the main effect of the finite value of the ε is on the displacement
current, which is demonstrated later in this section. A more
detailed discussion on the effect of discharge symmetry and
the definition of the symmetry parameter ε can be found
in Appendix B. Further details on the experiments and the
measurement techniques can be found in the original literature.

Comparison of the analytical solutions of the rf sheath
model for ε = 0 is made with the mean electric field in three
different gases (krypton, helium, and hydrogen) under rather
different conditions. Temporally averaged field profiles are
calculated from the published temporally resolved field pro-
files. The temporally resolved fields for the collisional case are
compared to measurements in krypton and simulations using
the Brinkmann sheath model. Actually, hydrogen should be
out of the range of applicability of the present model since (a)
field reversal appears [59,65,66,70], (b) there is non-negligible
ionization within the sheath due to the field reversal, and (c)
ions have a complicated collisional dynamics between H+,
H2

+, and H3
+ [71]. Nevertheless, the measurement technique

in hydrogen is the most precise and sensitive one (minimum
field 5 V/cm) and it is instructive to see the comparison for this
molecular gas. Helium has a lower sensitivity (minimum field
130 V/cm) but otherwise the precision is similar to that seen
with hydrogen. The measurement technique used in krypton
has a similar sensitivity (minimum field 100 V/cm) as the one
in helium but data are less precise, as can be seen by the rather
larger scattering of the data points in Fig. 22. In all figures
shown in this section the non-normalized length scale x is
always the distance to the electrode, as indicated in Fig. 1.

In the krypton case at p = 1 Pa the counter electrode in
the GEC cell is replaced with a quartz cylinder which further
enhances asymmetry so that the self-bias is equal to the rf
voltage amplitude, i.e., ε ≈ 0. The EEDF is measured by a
Langmuir probe close to the sheath edge [60]. The effective
electron temperature for the Bohm velocity is inferred from
the ensemble average of the inverse energy as defined by
the generalized Bohm criterion (kT (eff)

e = 2/ 〈1/ε〉) [72]. This
effective value is kT (eff)

e = 2.6 eV, which is close to the
effective temperature of the cold part of the EEDF of 2.3 eV.
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FIG. 19. Mean sheath electric field as a function of the distance
from the powered electrode x for three different cases: krypton at
p = 1 Pa (dots), helium at p = 50 Pa (squares), and hydrogen at
p = 80 Pa (triangles). The solid lines represent the fields calculated
by integrating the left hand side of Eq. (7) using the analytical solu-
tions: helium and hydrogen collisional solution, krypton collisionless
solution. In case of krypton, the dashed line represents alternative
integration of the right hand side of Eq. (7).

The hot part in the tail of the distribution function has an
effective temperature of 7 eV. The corresponding electron
density is n0 = 2.0 × 1015 m−3. Due to the low pressure the
sheath is assumed to be collisionless. Further, it is assumed
that c = 1; i.e., the initial ion velocity equals the classical
Bohm velocity. From these data the Debye length and thereby
γ = 57.5 is calculated. Further, the normalization factor for
the electric field follows via E0 = c2kTe/(2sm) to E0 =
1.17 V/cm. The only free parameter which can be adjusted
within a very narrow range is the sheath width sm, which
is set to sm = 1.07 cm. In the collisionless case, the mean
electric field can be calculated from the analytical solution in
two alternative ways, as discussed above in Sec. III A. Both
alternatives are very close to each other and compare almost
perfectly with the measured data (Fig. 19). Clearly, the mean
electric field has a concave shape. It might seem surprising
that no information on the sheath voltage is required for the
comparison. However, with the initial ion velocity and density
being fixed, the sheath voltage follows directly from the sheath
width; i.e., the sheath voltage increases with the sheath width.
Therefore, the only free parameter here is the maximum sheath
width, which is effectively fixed too by the measurement. The
same applies to the other cases discussed below.

In case of helium the pressure is much higher and the
sheath is clearly collisional. The defining parameters are p =
50 Pa, n0 = 1.9 × 1015 m−3 [57], σ = 15 × 10−20 m2 [73],
and ε = 0.23. The symmetry parameter ε is inferred from the
measured self-bias and the amplitude of the applied rf voltage
via Eq. (B9). In this case, the electron temperature is not known
and is chosen as a further fit parameter as kTe = 3.5 eV, while
the maximum sheath extension is set to sm = 0.67 cm. The
parameter c is again set to c = 1 as it combines with the
temperature to one effective parameter. In reality one would
expect an initial ion velocity lower than the Bohm velocity so
that the temperature would be correspondingly higher. With
these parameters γ = 29.7, β = 37.9, α = 25.4, a = 1.30,

and E0 = 2.61 V/cm results. Also here the agreement is very
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good and in contrast to the collisionless case the field is
effectively linear as predicted generally for the collisional case.
Very close to the electrode some small deviations might be
identified. They can be related either to measurement errors
caused by the close vicinity to the electrode surface of less
than 1 mm or to some finite dynamics of the light helium ions
in the high field region. Nevertheless, the deviations are very
small and not really of relevance.

Hydrogen is a special case, as mentioned above. The data
from the measurement are p = 80 Pa, n0 = 3.0 × 1015 m−3,

and ε = 0.13 (inferred from the measured self-bias and the
voltage amplitude) [57]. The cross section for charge exchange
collisions for H2

+ ions is, in fact, rather constant for ion
energies above 3 eV at σ = 10 × 10−20 m2 [74] and is chosen
as the relevant cross section in the model. However, it is
clear that this is a substantial simplification since initially
only H3

+ ions enter the sheath and then a complicated
conversion dynamics between the different ion species sets
in [58,71]. From a Langmuir probe measurement, the electron
temperature is only roughly known as an average value for
the entire EEDF of 〈kTe〉 ≈ 2.0 eV [57]. The value used
for the Bohm velocity in the fit is slightly lower at kTe =
1.55 eV (for c = 1) and the maximum sheath width is set
to sm = 0.53 cm. This gives γ = 44.3, β = 32.0, α = 67.1,

and E0 = 1.46 V/cm. The general agreement is again very
reasonable and the mean field is effectively linear even in this
case. Some systematic deviations might be identified, which
are probably real since here the measurement error is certainly
the smallest of all three cases. One can even see the smooth
transition to zero field strengths at the edge, which is caused
by the extended distribution of the electron front due to a finite
electron temperature.

The helium measurements are analyzed also with respect
to the displacement current density. In the experiment, the
displacement current density is inferred from differentiating
the measured fields at the electrode surface with respect
to time. Comparison with the model using the same input
parameters as above shows very good agreement with the data
resulting from the differentiated field at the electrode (Fig. 20).
For the analytically current density the formula resulting from
the cubic charge-voltage relation is used with the analytically
calculated cubic correction parameter of a = 1.30 and scaling
parameter for the absolute amplitude of q̃(1) = 0.512. The
results using either Eq. (23) for the fully asymmetric discharge
(ε = 0) or the derivative of Eqs. (B14) and (B15) for the
experimental symmetry parameter of ε = 0.25 are compared.
Apparently, the latter case is in even better agreement with the
experimental points. Remarkably, the small but finite value of
the symmetry parameter ε removes the artificial discontinuity
of the displacement current at the time of the sheath collapse,
as discussed in more detail in Appendix B.

The helium data allow also a quite precise determination
of the charge-voltage relation. Here a new analysis of the
published field and sheath voltage data was performed. By
Poisson’s equation the positive space charge in the sheath is
directly proportional to the electric field at the electrode. The
normalized charge q is then given by the measured electric
fields extrapolated to the electrode surface and normalized to
the maximum value. The sheath voltage is calculated by the
integral over the sheath electric field using an extrapolation
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FIG. 20. Absolute displacement current density for the helium
discharge at 50 Pa as determined from the experimental data (dots)
and the analytical sheath model using the same input parameters as in
Fig. 19 in the cubic charge-voltage relation. The cases ε = 0 (dashed
line) and ε = 0.23 from the experiment (solid line) are compared. The
experimental data points are inferred from a direct differentiation of
the electric field at the electrode.

to zero at the low-field end. Here again normalization by
the maximum value is applied. Naturally, the error in the
experimental charge and voltage data is larger for the lower
values. The analytical relation uses the same input parameters
as listed above (Figs. 19 and 20). Also here experimental
data and analytical calculation are in very good agreement
(Fig. 21). Clearly, all experimental data are above the diagonal,
indicating a cubic correction to the dominant quadratic term.
The cubic charge-voltage relation using the calculated cubic
correction parameter a = 1.30 is basically indistinguishable
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FIG. 21. Charge-voltage characteristic for the helium discharge at
p = 50 Pa: dots (measurement); analytically calculated characteristic
using the same data as in Figs. 26 and 27 (solid line); cubic charge-
voltage relation using the calculated cubic correction parameter a =
1.30 (dashed line). The solid and the dashed lines are effectively on
top of each other.
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from the analytical solution. The relatively small value
explains the moderate deviation from a pure quadratic relation.
The high collisionality in this case leads to only a moderate
decrease of the ion density towards the electrode surface by
only a factor 0.42 [57]. Correspondingly, the cubic correction,
which accounts for the inhomogeneity of the ion density in the
sheath, is small.

The dynamic electric field is compared in the collisional
case of a krypton discharge at p = 10 Pa. As in the 1 Pa case
the counter electrode is replaced with a quartz cylinder leading
to ε ≈ 0. From the EEDF measured by a Langmuir probe close
to the sheath edge [75] the effective electron temperature for
the Bohm velocity is inferred as above from the ensemble
average of the inverse energy as defined by the generalized
Bohm criterion. This effective value is kT (eff)

e = 1.1 eV, which
is only 5% lower than the effective temperature of the cold
part of the EEDF. The corresponding electron density is
n0 = 7.3 × 1015 m−3. For comparison, the average electron
temperature defined as 2/3 of the mean energy is kT (av)

e =
1.9 eV. Again c = 1 is used due to the lack of knowledge
about the exact value. The charge exchange cross section is
σ = 40 × 10−20 m2 [76]. The maximum sheath width is set
to sm = 0.520 cm. This gives γ = 82.4, β = 15.7, α = 473,

and E0 = 1.01 V/cm, as well as a cubic correction parameter
of a = 1.41. The maximum surface charge density calculated
by the model of Q = 1.35 × 10−6 C m−2 compares very well
with the experimental value of Q = 1.3 × 10−6 C m−2.

Figure 22 shows a comparison of the calculated temporally
and spatially resolved field data from the analytical model
and the experimental points. Good agreement is obtained
throughout considering the measurement errors exhibited by
the scattering of the data. Remarkably, the analytical field
profiles are effectively identical to the profiles calculated by the
Brinkmann sheath model (Fig. 23) [60]. Only at very low field
strengths close to the temporary sheath edge do differences
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FIG. 22. Comparison of spatially and temporally resolved electric
fields in a capacitive rf discharge in krypton at p = 10 Pa. The points
are experimental values obtained by laser electric field measurements
at different phases of the rf cycle: ϕ = 0.639 (squares), ϕ = 1.83
(triangles), ϕ = 3.37 (stars), ϕ = 4.90 (dots). The aspect ratio and
the intervals of the axis are set identical to the original figure taken
from Ref. [60], as shown in Fig. 23 for comparison. Here x is the
distance to the electrode.

FIG. 23. (Color online) Original figure of the experimental data
shown in Fig. 22 and comparison to the computational results using
the Brinkmann sheath model [60].

become apparent since the Brinkmann model allows for a
smooth transition of the field in the sheath to the ambipolar
field in the bulk; i.e., it is not a simple step model but considers
the spatial distribution of the electrons around the sheath edge.

It should be noted that the time resolved comparison looks
similar for the low-pressure measurements at p = 1 Pa as one
would expect already from the time averaged measurement in
Fig. 19 and the similarity between the calculated dynamic
field structures (Fig. 14). However, due to the one order
of magnitude lower krypton atom density, scattering of the
measured data points is even stronger [60].

In conclusion, comparison of the fully analytical model to
experimental data using ab inito plasma parameters, where
available, gives excellent agreement for the collisionless as
well as the collisional case and time averaged as well as
time resolved field profiles are fully reproduced. This strongly
supports confidence in the approximations made in deriving
the sheath model.

IV. SUMMARY AND OUTLOOK

A single second order nonlinear integro-differential equa-
tion describing the ion drift velocity in an rf sheath has been de-
rived that depends on two dimensionless parameters. The first
parameter is given by the ratio of the maximum sheath exten-
sion to the Debye length at this position and is called the density
parameter. The second parameter measures the collisionality
in the sheath and is proportional to the ratio of the maximum
sheath extension to the mean free path for charge exchange.

The model assumes that the wave form of the sheath voltage
is known. The sheath voltage is calculated explicitly for the
case of a single sinusoidal rf voltage applied to the discharge.
Using a cubic charge-voltage relation for both sheaths in a
discharge of arbitrary symmetry, the individual sheath voltages
are inferred. It is shown that for all relevant cases of different
symmetries and cubic contribution to the charge-voltage
characteristic, the sheath voltage can be described by some
power of a sine function. In this work the particular case of
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a fully asymmetric discharge is investigated where the sheath
voltage is a sine function squared.

Special attention is paid to the role of the boundary
conditions at maximum sheath extension. The step model used
for the electron density profile does not allow for an exact
derivation of the ion velocity at the boundary. Nevertheless,
a reasonable boundary condition ensuring a monotonous and
smooth decrease of the ion density is motivated. It is shown
that the solution is rather insensitive to this second boundary
condition. In particular, the approximate analytical solutions
do not depend on this boundary condition but still agree very
well with the numerical solution.

Central to the new sheath model presented in this work is
the so called screening function describing the screening of
the positive ion space charge in the sheath by the temporally
averaged electron density. The screening function can be
determined self-consistently by solving the sheath differential
equation iteratively. It is found that the function has three
remarkable properties: First, the final solution is relatively
insensitive to small variations of the functional form. As a
consequence, the solution converges very rapidly. Second,
the self-consistent screening function varies only within
close limits for a wide variation of the two characteristic
sheath parameters. Third, it is shown that for any parameter
combination the screening function can be well approximated
by a simple power law with the exponent varying only within
a small range. A universal average value for the exponent
is proposed which enables approximate analytical solutions to
the sheath differential equation. Analytical solutions are found
for the collisionless case as well as for the highly collisional
case. A simple transition formula combines the two solutions
and allows application to arbitrary degrees of collisionality.
Very good agreement with self-consistent numerical solutions,
experimental data from the literature, and the Brinkmann
sheath model is found.

Further, it is shown that the charge-voltage relation can
be well approximated by a cubic relation containing a single
parameter, the cubic correction parameter. Generally, the cubic
contribution is small but more pronounced in the collisionless
case. The cubic relation is also used to calculate explicitly
the sheath position as a function of the rf phase. This is
an important quantity for calculating the dynamic field in
the sheath and might be used also in order to calculate the
stochastic heating of the electrons. Further, the rf Child-
Langmuir laws for the collisionless as well as the collisional
case are derived. Both cases are basically identical except
for an additional factor that accounts for reduction of the ion
current density by collisions in the sheath. In addition, the
formulas contain dimensionless factors which depend weakly
on the sheath parameters.

Naturally, the model should be compared to PIC/MC
simulations. In typical one-dimensional codes the discharge is
symmetric (ε = 1), in contrast to the case studied in this work
where a fully asymmetric (ε = 0) discharge is investigated.
Sheath voltages, plasma parameters, and boundary conditions
can be taken directly from the simulation in order to calculate
the dimensionless parameters for the model. The exponent for
the sheath voltage will then be different and accordingly also a
different screening function will be found. For instance, with a
typical cubic correction parameter of a = 1.5, the exponent for

the sine wave form of the sheath voltage is k = 3.3. The model
might also be extended to nonsinusoidal rf voltages, as is, e.g.,
the case in connection with the electrical asymmetry effect
[41,61–63] or for Gaussian wave packages. First investigations
in these directions already look very promising. Again, first
the individual sheath voltages are approximated in a very
similar way on the basis of the cubic charge-voltage relation.
Second, an analytical approximation for the screening function
is found. However, this is still work in progress that will be the
subject of future publications.

Although already a great number of sheath quantities has
been calculated already in this work there are still some
important quantities missing. On the basis of the calculated
temporally and spatially resolved electric fields, ion energy
distribution functions at the electrode could be inferred using,
e.g., the Monte Carlo technique first applied by Wild and
Koidl [17]. Investigations into stochastic electron heating are
another challenge. Here the calculated sheath edge velocity and
ion density profile could be combined with analytical models
presented recently in the literature [53–56].

In conclusion, the analytical sheath model allows con-
venient calculation of all relevant sheath properties. Com-
parison with experimental data shows excellent agreement
and confirms the viability of the underlying assumptions.
Nevertheless, detailed comparison with PIC simulations is
desirable. Extension of the model to symmetric discharges,
multifrequency discharges, determination of ion energy dis-
tribution functions, and stochastic electron heating should be
straightforward.
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APPENDIX A: DERIVATION OF THE SIMPLIFIED
MOMENTUM BALANCE EQUATION

The calculation starts with the stationary Boltzmann equa-
tion but then the moments are built in order to derive the fluid
equations. The use of the stationary equation including only the
time averaged functions for the ion distribution and the electric
field is justified for sufficiently high rf frequencies and high ion
inertia. For the particular case of a spatially linearly varying
field an exact solution to the stationary Boltzmann equation
was found by Lawler [77] in connection with analyzing a dc
discharge. As shown in this paper, the temporally averaged
electric field in the sheath is, in fact, close to linear in the
collisional case and deviations are still reasonably moderate in
case of the collisionless sheath. Therefore, this linear field so-
lution is of particular importance for the investigation of the rf
sheath and can be used to estimate the error made in the
approximate form of the momentum balance equation. The
stationary Boltzmann equation for the ion velocity distribution
function f (v) with the Wannier collision operator [78] for
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charge exchange collisions with a constant mean free path λ is

v
∂f

∂x
+ eE(x)

mi

∂f

∂v
= −|v|

λ
f + δ(v)

∫ ∞

−∞

|v|
λ

f dv, (A1)

where mi is the ion mass, e the charge of the ion, v the ion
velocity, x the spatial coordinate, and E the electric field.

The zero moment of the Boltzmann equation gives the
continuity equation ∂ (nu) /∂x = 0, with n representing the
ion density. The first moment can be arranged as a first order
differential equation for W = u2/u2

0, with u = 〈v〉. W is the
normalized square of ion drift velocity and u0 represents the
drift velocity by which ions enter the sheath at its maximum
temporal extension sm. Using normalized coordinates and
variables as introduced in Sec. II A and Fig. 1, the momentum
conservation equation can be expressed in a compact form:

h1(ξ )
∂W

∂ξ
+ h2(ξ )βW = F (ξ ). (A2)

Here ξ is the normalized spatial coordinate and F is the
normalized electric field. The two functions h1 and h2 are
defined as follows:

h1(ξ ) = 〈v2〉
u2

= 1 + Ti

W
and h2(ξ ) = 2

π

(
h1 + π

β

∂h1

∂ξ

)
.

(A3)

Here a normalized (normalization by miu
2
0/k) one-

dimensional local ion temperature Ti = 〈v2〉/u2
0 − W has been

defined. Both Ti and W are functions of the spatial coordinate
ξ . At this point it is tempting to set the ion temperature or at
least the gradient simply to zero as is often done when dealing
with ions in low temperature plasmas. However, this is not
the approximation proposed in this work. As shown below, at
high collisionality the thermal energy contributes about 1/3
to the total energy. The development of the ion temperature
is defined by the second moment of the Boltzmann equation.
However, adding another equation to the already complicated
system would strongly enhance complexity. Further, in order
to have explicit expressions for the transport coefficients, the
distribution function needs to be known. Assuming simply a
shifted Maxwell distribution for the ion velocity distribution
would be an approximation in itself with a doubtful accuracy
in this case.

For the particular case of a linearly varying field E = E0ξ

and assuming a finite ion flux density j but zero velocity at
the sheath edge, the Boltzmann equation has an exact solution,
which was derived by Lawler [77]:

f (w,ζ ) = f0e
−ζ

{
δ(ζ 2 − w)θ (w)

+ 1

2
[θ (w) − θ (w − ζ 2)]

e
√

ζ 2−w√
ζ 2 − w

}
. (A4)

Here the new variables ζ = βξ/π, w = mv2sm/(eE0λ
2), and

f0 = 2jmsm/(eE0λ
2) are introduced in order to give the

solution a more compact form. From this kinetic solution the
exact form of the squared drift velocity W can be calculated.

β
√

W = πζeζ

1 + π
2 ζ [I0(ζ ) + L0(ζ )]

, (A5)
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FIG. 24. The function h1 (upper solid curve) and h2 (lower solid
curve) for a linear electric field as a function of W ′/βW . The dashed
line is at 1 to indicate the value used in the fluid equation.

where I0 and L0 are the modified Bessel function of first kind
and the modified Struve function, respectively. Further, the
exact form of the functions h1 and h2 (via h1) is now also
defined:

h1 = π

2
e−2ζ [I1(ζ ) + L−1(ζ )]

{
1 + π

2
ζ [I0(ζ ) + L0(ζ )]

}
.

(A6)

It is important to note that h1 and h2 depend only on ζ =
βξ/π and not on any other parameter. This effective length
scales linearly with the collision parameter β, i.e., at high
collisionality the same result is found as at low collisionality
but on a shorter real length scale. The solution shows that W

quickly becomes a linear function of the spatial coordinate
which indicates the usual drift behavior u ∝ √

E. However,
it is actually more interesting to study the dependence on
W ′/βW, where the stroke indicates the derivative with respect
to ξ . Figure 24 shows that when the derivative part has little
influence (W ′/βW � 1) the function h2 is close to 1. On the
other hand, when the derivative dominates the behavior of the
fluid equation (W ′/βW � 1), function h1 is close to 1. In
the limit of high collisionality apparently h1 → π/2 and the
ratio of thermal energy to total energy becomes 1 − 2/π ≈
0.36. Clearly, this contribution cannot be ignored and simply
setting Ti to zero in Eq. (A2) is not a valid approximation. In
conclusion, this motivates the replacement of both functions
by simply a factor 1 in Eq. (1). The equation becomes exact at
the two extremes lim β → 0 and lim β → ∞.

The solution of the simplified fluid equation (1) for the same
linear field is

β
√

W =
√

πζ − 1 + e−πζ . (A7)

For large values of ζ , the solution converges to β
√

W = √
πζ .

Using the normalizing field defined above E0 = mu2
0/(2esm)
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FIG. 25. Error in the drift velocity by use of the simplified fluid
equation for a linear electric field (u, exact solution; ua , solution of
the simplified fluid equation) as function of the spatial coordinate.

(see Sec. II A), this is equivalent to u = √
2λeE/(πm), i.e., the

well known result for the ion drift velocity in a homogeneous
field [1,78]. Comparison with the exact kinetic solution shows
that the deviation in the drift velocity u ∝ √

W is actually
smaller than 0.83% throughout (Fig. 25). This finally justifies
the simplifying assumptions made for the momentum balance
equation. As is shown in Sec. II, the mean electric field found in
the rf sheath is actually close to linear, which further supports
justification of the approximations made here.

APPENDIX B: CHARGE-VOLTAGE RELATION
AND SHEATH VOLTAGE WAVE FORM

The sheath model is based on the assumption that the time
dependent sheath voltage wave form is known. However, in
praxis only the applied rf voltage wave form coming from the
generator is known and the self-bias and the sheath voltage
wave forms have to be determined by a model. The applied rf
voltage must be balanced by the sum of the voltages over the
sheaths at the powered electrode and ground and the voltage
drop over the bulk. In many cases the bulk voltage can be ne-
glected in comparison to the sheath voltages. Important excep-
tions are discharges at high pressures (typically p � 100 Pa),
highly electronegative discharges, or the excitation of plasma
series resonance oscillations in low-pressure, highly asymmet-
ric discharges [59,60,62,63,79]. The sheath voltages can be
determined by using the voltage balance if they are expressed
by the positive space charge in the sheath [62]:

v(q) =
∞∑

j=0

αjq
j . (B1)

Here v is the sheath voltage and q the positive space charge
in the sheath. Both quantities are assumed to be normalized to
their maximum values. Further, conservation of the total space
charge in both sheaths is assumed; i.e., qg = 1 − q if q is the

space charge at the powered electrode and qg the space charge
at the grounded electrode [61,62].

This concept has been applied successfully to the de-
scription of capacitive rf discharges, in particular to the
electrical asymmetry effect and the plasma series resonance
[59,61,62]. There the charge-voltage relation in the sheath
was assumed to show a simple quadratic dependence. A
detailed discussion of this approach was made in connection
with the so called electrical asymmetry effect [61]. The
quadratic relation would apply exactly for a homogeneous
ion density. Since the ion density is generally decreasing
towards the electrode, in reality also higher order terms of
the space charge contribute and deviations become obvious
in comparison to simulation results [41,61,63]. Here the
problem is revisited and it is shown that generally a cubic
approximation is sufficient to describe the charge-voltage
relation with high precision. Further, the cubic form will be
used to calculate the sheath voltage in discharges of various
symmetries.

The charge-voltage relation can contain no constant term
since the sheath voltage vanishes at zero space charge, i.e., at
the sheath collapse: v (q = 0) = 0. From the first derivative of
v with respect to q it follows that also the linear term does not
exist:

∂v

∂q
=
(

∂q

∂ξs

)−1
∂v

∂ξs

. (B2)

The partial derivatives can be evaluated by Eqs. (14) to (17):

∂v

∂q
= q̃(1)

ṽ(1)
(1 − ξs). (B3)

Since the space charge vanishes only when the sheath collapses
(ξs = 1), i.e., q(1) = 0, it follows that no linear term exists:

∂v

∂q

∣∣∣∣
q=0

= ∂v

∂q

∣∣∣∣
ξs=0

= 0. (B4)

Now normalization demands that v (q = 0) = 0 and
v (q = 1) = 1. Then a cubic ansatz must have the following
form:

v(q) = q2 + (a − 1)q2(1 − q). (B5)

Here a � 1 is the cubic correction parameter. For a = 1 the
relation would be simply quadratic. Apparently the cubic
correction vanishes at q = 0 and q = 1. The cubic correction
parameter can be determined from a known relation v (q) ,

e.g., from simulation, by a least mean square fit [similar to
Eq. (C1)]. Straightforward calculation yields

a = 105
∫ 1

0
q2(1 − q)v(q)dq − 2.5. (B6)

The integral can, in principle, be carried out numerically.
However, in case of the numerical solution for W , transfor-
mation from q to ξ is required and in case of the analytical
solutions an explicit expression can be found only using again
the cubic approximation. Therefore, an alternative procedure
is proposed here that avoids these problems.

The first derivative of Eq. (B5) with respect to q must
be equal to Eq. (B3). By making use of the fact that ξ = 0
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corresponds to q = 1, a follows as

a = 3 − q̃(1)

ṽ(1)
. (B7)

This fit of the slope is actually carried out at the point of
steepest decent of the ion density, i.e., where deviations from
a homogeneous density are most pronounced. Once a solution
W (ξ ) has been found, the cubic correction can be calculated
directly. Generally, the value of a depends on the two control
parameters β and γ .

Now the two sheaths in the discharge can be combined
in a voltage balance. Neglecting the bulk voltage and using
space-charge conservation to connect the charges in the two
sheaths, the following equation results:

η + vrf = φ[−q2 − (a − 1)q2(1 − q) + ε(1 − q)2

+ε(b − 1)(1 − q)2q]. (B8)

Here η is the self-bias, vrf = vrf (ϕ) the rf voltage applied
to the discharge with ϕ = ωt, φ the voltage amplitude at the
powered sheath, and ε the ratio of the amplitudes of the two
sheath voltages, the so called symmetry parameter. a and b

are the cubic correction parameters for the two sheaths. The
self-bias and the amplitude are related to the extremes of the
applied voltage wave form max(vrf ) = v+ and min(vrf ) =
v−, respectively: q(vrf = v+) = 0 and q(vrf = v−) = 0. This
leads to

φ = v+ − v−
1 + ε

and η = −v+ + εv−
1 + ε

. (B9)

The above expressions for the amplitude ratio and the self-bias
are identical to those derived earlier [61,62]. The simple reason
is that the derivation requires only the general properties of the
normalized sheath voltages v (q = 0) = 0 and v (q = 1) = 1
and conservation of the total space charge. It does not depend
on the particular form of the charge-voltage relation. As an
important consequence, the so called electrical asymmetry
effect, i.e., the formation of a self-bias by an applied voltage
wave form with different positive and negative amplitudes,
is independent of the cubic or any higher contribution to the
charge-voltage characteristic [61].

Experimentally, the symmetry parameter ε can be de-
termined from a simple measurement of the bias and the
peak voltages via Eq. (B9). The general relation between
the symmetry parameter and sheath properties is derived in
Refs. [61,62]:

ε = Isg

Isp

n̄sp

n̄sg

(
Ap

Ag

)2

. (B10)

Here Is denotes the sheath integral for the sheaths at the
powered and grounded electrodes (indicated above by the
indices p and g) and n̄s the corresponding spatial mean ion
density in the sheath. In the notation of this work the mean ion
density is obviously n̄s = n0q̃(1) and the sheath integral reads

Is = 2
ṽ(1)

q̃(1)
= 2

3 − a
. (B11)

The link to the cubic correction parameter is given by Eq. (B7).
In Ref. [61] it is shown that the sheath integral can only vary
between 1 (flat density profile) and 2 (infinitely steep profile).
This limits the possible range for a to 1 � a � 2, although at

the upper limit higher order contributions in q could become
important. For a homogeneous ion density in the sheath, a
pure quadratic relation applies (a = 1) and the sheath integral
is indeed 1. This allows also interpretation of a as a measure
of the inhomogeneity of the ion density in the sheath. A more
typical value is a = 1.5, which gives a value for the sheath
integral of Is = 1.3. The relative variation range of the sheath
integral around this value is identical to the range where a

varies. The realistic range is generally smaller than the ultimate
limits and will typically be within ±17%. Apparently, the
sheath integral is indeed rather insensitive to variations in the
ion density profile and the ratio of the two sheath integrals in
the definition of the symmetry parameter will be close to unity
for most cases as predicted in Ref. [61].

Although in general the cubic corrections for the two
sheaths can be different, it is assumed in the following that
they are identical. The cubic corrections depend mainly on
the collisionality. Therefore, if the voltages over the two
sheaths are not strongly different, i.e., if the discharge is not
too asymmetric, the two parameters will be very close. On
the other hand, in a strongly asymmetric discharge (ε ≈ 0),
the sheath voltage at ground becomes negligible. However,
neglecting the bulk voltage in the fully asymmetric and
collisionless case is not entirely correct since here the inertia
of the bulk electrons, represented by a term proportional to
q̈, together with the nonlinear charge-voltage characteristic of
the sheath can lead to strong high frequency oscillations of
the displacement current. These so called self-excited plasma
series resonance (PSR) oscillations, with typically an order of
magnitude higher frequency than the applied radio frequency,
involve also small oscillations of the sheath voltage [59].
However, these oscillations cannot affect the ion motion and
are not of interest in the context of this paper.

Under these assumptions the voltage balance equation can
be rearranged using the abbreviation r = (η + vrf )/φ:

r = −q2 + ε(1 − q)2 + (a − 1)q(1 − q)[ε − q(1 + ε)].

(B13)

This cubic equation can be solved exactly. However, since
the cubic correction can be expected to be small, a first order
perturbative solution in (a − 1) is easier to handle and still
sufficiently accurate even at the upper limit of a = 2: q ≈
q0 + (a − 1)q1, where q0 is the solution obtained for the pure
quadratic case (a = 1):

q0 = −ε + √
ε − (1 − ε)r

1 − ε
, (B14)

q1 = q0(1 − q0)[ε − q0(1 + ε)]

2[q0(1 − ε) + ε]
. (B15)

Keeping the solution at first order, the voltage over the sheath
at the powered electrode becomes

vs = −φ
{
q2

0 + (a − 1)
[
2q0q1 + q2

0 (1 − q0)
]}

. (B16)

There is no significant difference between this explicit first
order perturbative solution and the exact parametric solution
of the sheath voltage [for a single radio frequency: ϕ (q) =
arccos[vrf (q)] and vs = −φv (q) , with 0 � q � 1 and use of
Eqs. (B5) and (B13)] for the entire range of possible values for
ε and a. Remarkably, for ε = 0 (totally asymmetric discharge)
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FIG. 26. Voltage wave form over the sheath at the powered
electrode in case of a = 1 (top figure) and a = 2 (bottom figure)
for various values of the symmetry parameter ε (top to bottom): ε =
1, 0.75, 0.5, 0.25, 0. The solid lines represent the exact form given
Eq. (B16) and the dashed lines the approximation given by Eq. (B17).

the above solution becomes simply vs = −φv = −φq2
0 =

vrf − v+ � 0. This result had to be expected naturally already
from the beginning but it is a nice test of consistency here.
Therefore, in the totally asymmetric discharge there is no
cubic correction to the sheath voltage. In case of a single radio
frequency vrf = cos(ϕ), the sheath voltage at the powered
electrode becomes simply vs = −2sin2 (ϕ/2). This is the result
used in the present paper. For clarity, it should be noted that by
definition vs is negative and varies between − φ and 0, while
v is positive and varies between 0 and 1.

A closer inspection for a single frequency discharge shows
that both the symmetry parameter ε and the cubic correction
parameter a can have a significant influence on the wave form.
Nevertheless, a reasonably precise empirical approximation
to the more complicate exact form can be found, as is
demonstrated in Fig. 26:

vs ≈ −φ[sin2(ϕ/2)](1+ε/a). (B17)

In the above representation the square is explicitly separated
from the factor (1 + ε/a) since this avoids any ambiguities
possibly caused by the alternating sign of the sine function.
The amplitude φ is defined by Eq. (B10). This simplified form
for the wave form is the motivation for using a simple power
factor k for the sheath voltage in Sec. II A. Here, this factor
is identified as k = 2 (1 + ε/a) . Equation (B17) reproduces
the exact solutions for the fully asymmetric case ε = 0 with
arbitrary a (k = 2) as well as the symmetric case ε = 1 with
a pure quadratic relation a = 1 (k = 4). The power for the
symmetric case changes for a strong cubic correction of a = 2

to k = 3 so that there generally the exponent is in the range 3 <

k < 4. The negative sign of the sheath voltage at the powered
electrode results from the definition of ground at the opposite
electrode. In the main part of the paper, where only a single
sheath in a fully asymmetric discharge is considered, the sign
is taken as positive as this is more convenient.

Both parameters, ε and a, have a strong impact on the
current wave form. If the cubic correction is negligible, the
current wave form in the fully asymmetric case (ε = 0) is a
cosine function at half the radio frequency with a discontinuous
change of sign at the instant of sheath collapse at the powered
electrode, while it is a sine function at the radio frequency in
the symmetric case (ε = 1). The cubic correction is generally
adding higher harmonic components to the current. Naturally,
in all cases the current has to pass zero twice within an rf
period, corresponding to the times of collapse of the two
sheaths: q (ϕ = 0,π ) = 0,1. The slope of the normalized
current density at these zero crossings [q̈ (ϕ = 0,π )] can
be obtained easily for arbitrary values of the symmetry
parameter: (1 + a) (1 + ε) / (8ε) at ϕ = 0 (collapse of the
sheath at the powered electrode) and − (1 + a) (1 + ε) /8 at
ϕ = π (collapse of the sheath at the grounded electrode).
Therefore, the first slope becomes infinite only for ε = 0, i.e.,
for an infinitely large grounded area where the second sheath
vanishes. Experimentally, the area ratio and the symmetry
parameter are always finite and a steep but finite slope is
observed. This is the case also in the experiment discussed
in Sec. III C. Apparently, the cubic correction parameter a

contributes to the slope to a much smaller extent.
Finally, it should be noted that finite values of the sheath

potential during collapse can, in principle, be easily included.
The individual sheath voltages can always be represented by a
dynamic part, as is already done in the model, plus a constant
which represents the finite value. In the balance only the
difference of the two constants at both sheaths remains and can
be combined with the self-bias. It is straightforward to show
(for a Maxwellian distribution function) that the additional
term is given by kTe/(ek) ln(ε) as long as ε � kTe/ (eV0) � 1,

where k in the denominator has been defined above. This term
is always much smaller than the self-bias and does not change
the sheath dynamics noticeably. However, the position ξ = 1
now no longer represents the electrode surface but a position
slightly in front of it and the total individual sheath voltages are
the sum of the dynamic part discussed here and the constant
representing the finite minimum.

APPENDIX C: SCREENING FUNCTION AND OPTIMIZED
VALUE OF THE EXPONENT ν

The screening function g can be calculated numerically
as outlined in Sec. II C. However, it is desirable to have an
analytical expression available for the analytical solution of
the sheath differential equation. A simple power law provides
a convenient form for the fit as well as for further analytical
calculations. Naturally, an ansatz with g = ξν, with 0 < ν < 1
has all the characteristic properties found generally for g:
It varies monotonously between zero and one in the range
0 � ξ � 1, has a positively diverging derivate at zero, and
shows a concave curvature throughout. The exponent can be
determined from the numerical form of g by minimizing the
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integral difference squared:

∂

∂ν

∫ 1

0
[g(ξ ) − ξν]2dξ = 0. (C1)

This leads to the following transcendent equation for ν:

2ν + 1 = 1∫ 1
0 g(ξ ) ln(ξ )ξνdξ

. (C2)

Fortunately, the right hand side varies effectively linearly
with ν in the relevant range 0 < ν < 1 and can therefore be
expanded in very good approximation to first order around
ν = 0. Alternatively, one could also expand around the centre
of the interval at ν = 0.5, which leads to a more complex
final equation. However, the difference in the result for the
optimized value of ν is typically only about 1% so that the
simpler alternative is preferred. With this linearization, the
equation is easily solved for ν:

ν ≈ 2I1(1 − √
I1)

4I
3/2
1 − I2

. (C3)

I1 and I2 represent the following integrals:

I1 = −
∫ 1

0
g(ξ ) ln(ξ )dξ and I2 =

∫ 1

0
g(ξ ) ln2(ξ )dξ.

(C4)

Equation (C3) allows a fast and convenient calculation of
the optimized exponent. For instance, in case of a simple
linear scaling W ∝ ξ (neglecting the boundary condition),
which corresponds to a linear mean electric field, the scaling
factor cancels out exactly when calculating the normalized
sheath voltage v(ξ ) = 1 − ṽ(ξ )/ṽ(1) and thereby via Eq. (18)
also g(ξ ). By Eq. (C3) the optimized exponent follows as
ν = 0.338, a value close to the general choice of ν = 0.375.

Further, a typical example comparing the simple power law
with the optimized exponent to the numerical solution of
the sheath differential equation is given in Fig. 27 for the
case γ = 60 and β = 15, which gives ν = 0.391. Excellent
agreement between the numerically obtained form of g and the
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FIG. 27. Screening function g as determined numerically for
γ = 60 and β = 15 (solid line) and the approximate analytical form
ga = ξν with an exponent of ν = 0.391, optimized according to
Eq. (C3) (dashed line). Both curves are effectively on top of each
other.
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FIG. 28. (Color online) Exponent ν for the simple power scaling
approximation to the screening function g as function of the density
parameter γ and the collision parameter β. The surface representing
the values of ν is semitransparent in order to allow comparison with
the proposed universal exponent of ν = 3/8, which is represented by
a grid. The surface of the optimized ν values intercepts with the grid
at about the diagonal going from the left to the right hand corner.

fit is found not only for these particular parameters but also
throughout the entire γ and β parameter range.

It should be noted that a similar procedure can also be
applied in order to determine the exponent of the sinusoidal
wave form approximating the sheath voltage by comparison
with either experimental data, e.g., from capacitive probe
measurements, or PIC simulation results. In this case g has
to be replaced by the voltage and ξ by the absolute value
of the sinus. However, then all integrals must be evaluated
numerically.

The exponent is now determined within a wide and
characteristic range of parameters γ and β and displayed
in Fig. 28 together with the proposed universal exponent of
ν = 3/8. This figure demonstrates that, in fact, the exponent
is varying only within a narrow range. In most cases the plasma
density (γ ) increases with the neutral gas density (β), which
is represented by the diagonal where both planes intercept.
Alternatively, the numerical surface could be approximated by
some analytical function. However, the increase in complexity
does not seem to be compensated by a similar gain in accuracy.
In conclusion, in this work the exponent is set constant at a
universal value of ν = 3/8.

Finally, the sensitivity of the this result on the particular
choice of the universal value for ν should be addressed briefly.
For the characteristic parameter range discussed above one can
write ν = 3/8 ± �ν with �ν ≈ 0.05, where the minus sign
applies for the collisionless case (β = 0) and the plus sign
for the collisional case (β � 1). The analytical solutions for
arbitrary values of ν are

W (ξ ) =
⎧⎨
⎩

1 + [ 9γ 2ξ 2+ν

2(2+ν)(1+2ν)

]2/3
, β = 0,[

1 + 3γ 2ξ 1+ν

β2(1+ν)

]2/3
, β � 1.

(C5)

For large values of γ the initial value for W can be ignored
already for rather small values of ξ and a simple power
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law results for W . The exponents are (19 − 0.4) /12 for the
collisionless case and (11 + 0.4) /12 for the collisional case
with 0.4 = 8�ν. Similarly, the maximum range for amplitude
variation is only a few percent in both cases. Clearly, the effect
of small variations in ν is negligible. One could even argue
that the effect would still be small for even larger variations,
which explains partly the insensitivity of the final solution to
variations in the screening function.

By combining the above general solution (C5) with
Eqs. (16)–(18) for calculating g(ξ ) and Eq. (C3) defining
the optimum exponent ν, this value can be determined self-
consistently by using entirely the analytical solutions. Since
the deviations from the self-consistent numerical solution is
mainly caused by the use of the universal exponent this would
lead to an improvement of the accuracy of the analytical
solution. However, this concept is rather complicated and
requires numerical integration while the accuracy is already
quite satisfying using the universal value. Therefore, this
option is not further investigated here.

APPENDIX D: APPROXIMATE SOLUTIONS FOR
THE CHARGE AND VOLTAGE FUNCTIONS AND

THE DYNAMIC SHEATH EDGE POSITION

The charge and voltage functions q̃(ξ ) and ṽ(ξ ) [Eqs. (15)
and (17)] are central for calculating all the derived sheath
quantities like fields, current density, or the cubic correction
parameter. In particular, they are also essential for calculat-
ing the dynamic sheath edge position ξs(ϕ). The integrals
defining these functions can be solved exactly in terms of
the hypergeometric function [Eqs. (36), (37), (40), and (41)].
Nevertheless, for practical purposes it is desirable to express
these integrals by more elementary functions. This can be
realized in good approximation after some transformation
and subsequent expansion of the integrals. The procedure is
similar for all integrals. First the integrals are transformed into
integrals with respect to W :

q̃ [W (ξ )] =
⎧⎨
⎩

β = 0:
(

133
144γ 2

)8/19 12
19

∫ W

1
dy

y1/2(y−1)7/19 ,

β � 1: 1
α8/11

8
11

∫ W 3/2

1
dy

y1/3(y−1)3/11 ,
(D1)

ṽ[W (ξ )] = q̃[W (ξ )] −
⎧⎨
⎩

β = 0:
(

133
144γ 2

)16/19 12
19

∫ W

1
(y−1)5/19dy

y1/2 ,

β � 1: 1
α16/11

8
11

∫ W 3/2

1
(y−1)5/11dy

y1/3 .
(D2)

Now a partial integration is performed in order to remove the divergences at y = 1 in Eqs. (D1) and the nominator of the
remaining integral is expanded to first order in 1/y. This generates two new integrals which can be solved elementarily:

q̃ [W (ξ )] =
{

β = 0:
(

133
144γ 2

)8/19[ (W−1)12/19

W 1/2 + 19
5 (W 5/38 − 1) − 4

11 (W−33/38 − 1)
]
,

β � 1: 1
α8/11

[ (W 3/2−1)8/11

W 1/2 + 11
13 (W 13/22 − 1) − 11

20 (W−10/11 − 1)
]
,

(D3)

ṽ [W (ξ )] = q̃ (W ) − 1

2

{
β = 0:

(
133

144γ 2

)16/19[ (W−1)24/19

W 1/2 + 19
29 (W 29/38 − 1) − 19

7 (W−7/38 − 1)
]
,

β � 1: 1
α16/11

[ (W 3/2−1)16/11

W 1/2 + 11
37 (W 37/22 − 1) + 11

4 (W 2/11 − 1)
]
.

(D4)

Here the solutions are expressed as functions of W (ξ ) rather than ξ in order to have a more compact representation. The
approximate solutions have a very good accuracy. The error peaks around W = 1.1, i.e., at ξ � 1, with a value of about 6% and
falls quickly off for larger values of W to about 1%. Further improvement of the accuracy could be achieved by using higher
order expansion but the present accuracy should already be sufficient for all practical purposes within the frame of this work.

The straightforward way of calculating the dynamic sheath edge position ξs(ϕ) would be resolving v, respectively ṽ, for W

and then for ξ . However, neither Eq. (D3) nor Eq. (D4) can be solved analytically for W . Fortunately, the requirements on the
precision are a little more relaxed for this calculation and a cruder approximation can be made. Since again the procedure is similar
for the two extreme cases of collisionality, the calculations are carried out in parallel. First, the charge function q̃ is expanded for
large values of W , keeping only the leading term. This still gives a very good approximation for large values but fails naturally
for low values of W closer to 1. Indeed, the expansions terminate at small but finite positive values. In order to ensure the correct
value at the boundary q̃(W = 1) = 0, the asymptotic relations are ad hoc extended by appropriate constants of the order of one
added to W . For β = 0 this means W → W − 1 + 0.87838/5 and for β � 1 the extension is W → (W 3/2 − 1)2/3 − 0.69222/13.

This crude method introduces actually only a small error in determining ξs since the correction becomes noticeable only when
ξs is close to zero anyway. However, it ensures proper convergence to this value. The resulting relations are

q̃ (W ) ≈
{

β = 0: 24
5 [(W − 1 + 0.87838/5)5/38 − 0.878],

β � 1: 24
13 {[(W 3/2 − 1)2/3 + 0.69222/13]13/22 − 0.692}. (D5)

These equations can be explicitly solved for W . Then W is solved for ξ using the analytical solutions for W [Eqs. (35) and (39)]
and q̃ is replaced by its relation to q [Eq. (14)] to determine ξs (q). Since q can be expressed by the cubic charge-voltage relation
[Eq. (20)] as a function of v and the sheath voltage v is again a known function of ϕ, one finally arrives at the desired result ξs(ϕ).
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After some algebraic rearrangements, one finds

ξs(ϕ) =
⎧⎨
⎩

β = 0:
{ (κ{1−q[v(ϕ)]}+1)38/5−1

(κ+1)38/5−1

}12/19
,

β � 1:
{ (κ{1−q[v(ϕ)]}+1)22/13−1

(κ+1)22/13−1

}12/11
,

(D6a)

κ =
{

β = 0: (2.828γ 4/3 + 1)5/38 − 1,

β � 1: (1.864α2/3 + 1)13/22 − 1.
(D6b)

Comparison of Eqs. (D6) with parametric plots of the sheath edge position as a function of the rf phase, i.e., plotting ξs versus
ϕ [v(ξs)] , with 0 � ξs � 1, using the exact integrals shows excellent agreement for all parameters with undistinguishable curves
on top of each other.
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