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Instability of subharmonic resonances in magnetogravity shear waves

A. Salhi and S. Nasraoui
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We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a
(vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the
magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations,
we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears,
among others, the parameter ε representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä
frequency N3. For sufficiently small ε and when the magnetic field is horizontal, we perform an asymptotic
analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)].
We determine the width and the maximal growth rate of the instability bands associated with subharmonic
resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a
maximal growth rate of the form �m = (3

√
3/16)ε. This instability persists in the presence of magnetic fields,

but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a
mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the
similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity
shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation,
and, when ε is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find
that, when the Coriolis parameter (or the magnetic strength) exceeds N3/2, the instability of the subharmonic
resonance vanishes.
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I. INTRODUCTION

Gravity or magnetogravity waves are ubiquitous in various
geophysical and astrophysical systems. In the present paper,
we perform an analytical study to characterize the response
of these waves to a time-periodic forcing (i.e., a time-periodic
shear). As in many physical systems submitted to a periodic
forcing, the response of these waves can lead to the triggering
of parametric instability.

In the context of astrophysical applications, Zaqarashvili
et al. [1–3] suggested that the periodic shaking of the solar
coronal magnetic field lines due to photospheric motions
can generate a periodic shear, while in galactic disks they
suggested that spiral density waves (propagating in these
disks) can induce a periodic shear directed along the rotational
axis. The interaction between the periodic shear and the
magnetohydrodynamic waves can induce parametric instabil-
ity that enhances the angular momentum transport in disks,
heating of the solar atmosphere, and acceleration of the solar
wind.

In the context of geophysical applications, the stability of
time-periodic barotropic and baroclinic shear flows has been
addressed in several studies. For instance, in the study of
Pedlosky and Thomson [4], the baroclinic instability of the
two-layer model on the beta plane in the classical model of
Phillips [5] has been extended to include the effects of a time-
periodic shear. Poulin [6] has studied stochastic baroclinic
shear, in the context of the Phillips model, where the shear is
the Kubo oscillator [7], to mimic realistic variations that occur
in ocean currents such as the Antarctic circumpolar current.
The study of Poulin extends the work of Poulin and Flierl
[8], which focused on the stochastic Mathieu equation, into a
model relevant to geophysical fluid dynamics. The parametric

instability occurring in these shear flows can generate the
formation of vortices observed in the atmosphere and in the
ocean [9].

As shown in several studies, the use of the simple model,
which consists of superimposing a base flow that is linear in
the space coordinates and a disturbance flow that consists of
plane waves with a time-dependent wave vector, allows one
to characterize local instabilities in strained flows (see, e.g.,
Craik and Criminale [10]), such as the elliptical instability
[11,12]. Bayly [12] was the first to realize that unbounded flows
with elliptical streamlines and constant vorticity can sustain a
Floquet-type instability of certain plane-wave modes, owing
to their periodic distortion. Waleffe [13] clarified the physical
mechanism of this instability as one of vortex stretching and
determined analytically the instability growth rate which tends
to a finite value as the wavelength along the vortex axis
approaches zero (see Kerswell [14] for a review). This kind
of disturbance flow is not usual in conventional hydrodynamic
stability analysis, generally devoted to the search for normal
modes; the modes of the disturbance flow are given below in
Eq. (14) and are discussed at length afterwards. Later studies
followed, including an additional Coriolis force [15,16],
Coriolis force and density stratification [17], a magnetic field
[18], a Coriolis force and magnetic field [19,20], and with
time-dependent strains [21,22]. Such a model allows one to
include the shearing sheet approximation (see Ref. [23]) used
by many authors to study local instabilities in accretion disks
such as the magnetorotational instability (MRI) [24,25]. This
instability, which is due to the presence of a weak vertical
magnetic field, is linear and local in that it does not rely on
the presence of boundaries (see Ref. [26] for a review). In
this context, Salhi and Cambon [27] considered unbounded
stratified shear flows with basic flow combining vertical shear
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with a constant rate S0, a vertical Coriolis force with a Coriolis
parameter f = 2�, and both vertical and horizontal density
(or buoyancy) gradients with constant strengths N2

2 = −f S0

and N2
3 , respectively,

∇ × U + 2� = (0,S0,f ) , � = −f S0x2 + N2
3 x3. (1)

Therefore, the tendency for the horizontal basic buoyancy
gradient to generate streamwise vorticity was balanced by
twisting the system vorticity via the S0f term (see also
Pieri et al. [28]). This effect is often called the geostrophic
adjustment, or the thermal wind effect, in the geophysical
community [29]. A similar basic shear flow configuration
was studied by Salhi and Cambon [30]. This corresponds
to an unbounded flow subjected to spatial uniform den-
sity stratification and shear rate that is time dependent.
In addition to vertical stratification with constant strength
(N2

3 ), the base flow also includes an additional, horizontal,
time-dependent density gradient. The exact solution of the
Euler-Boussinesq equations found in Ref. [30] is time peri-
odic with period T = 2π/N3 for stable vertical stratification
(N2

3 > 0),

∇ × U = (S0 cos τ,0,0) , � = (N3S0 cos τ )x2 + N2
3 x3,

(2)

where τ is a dimensionless time. Therefore, the time derivative
of the vorticity in the spanwise direction plays a similar role
in equilibrating the buoyancy term ∇ × (�e3).

The Floquet system governing plane waves for the base flow
(2) has been computed numerically for particular orientations
of the initial wave vector [30]. One aspect of the present paper
is to extend the latter study by performing an asymptotic
analysis for small ε = S0/N3 by considering an arbitrary
orientation of the initial wave vector. We derive analytical
results characterizing the bandwidth of the instability and
its maximal growth rate �m. Similarities with the elliptic
instability are discussed. A second aspect of our study is to
investigate the effect of a horizontal magnetic field on the
gravity shear waves. Lastly, for potential geophysical and
astrophysical applications of the present analytical study, we
also investigate similarities between the effect of the Coriolis
force and the effect of a vertical magnetic field on the gravity
shear waves.

The paper is organized as follows. The formulation of
the Floquet system is given in Sec. II. In Sec. III, we
present an asymptotic analysis of the Floquet system by using
Lebovitz and Zweibel’s method [18] considering a horizontal
magnetic field. Section IV deals with similarities between the
the magnetogravity waves and gravity-Coriolis waves when
they are excited by a vertical periodic shear. Our concluding
remarks are given in Sec. V.

II. FORMULATION

We consider a stratified flow of an inviscid and nondiffusive
fluid. The governing equations are the Boussinesq-Euler
equations of fluid dynamics in a frame rotating with constant

rate � about the vertical axis (x3),

∂t u + u · ∇u = −∇p∗ − 2�e3 × u + �e3+ (∇ × B) ×B,

(3a)

∂t� + u·∇� = 0, (3b)

and the induction equation

∂t B + u·∇B = B·∇u, (3c)

with ∇·u = 0 and ∇·B = 0. Here, e3 is a vertical upward
unit vector and � = −(g/	0)	 is the buoyancy scalar, 	 is the
fluid density (and 	0 is a reference density), g is the gravity
acceleration, and

p∗ = p

	0
− 1

2
�2(x2

1 + x2
2

)
,

in which p is the pressure and (x1,x2,x3) is the Cartesian
coordinate system referred to as “azimuthal,” “radial,” and
“axial” (or vertical) directions, respectively, in reference to the
shearing sheet approximation (see Sec. IV A 3). The magnetic
field is rescaled as B → (1/

√
	0χ0)B, where χ0 is the mag-

netic permeability. Recall that the Boussinesq approximation
filters out the higher-frequency acoustic waves. This arises
from the incompressibility part of the approximation. On
other words, in the Boussinesq approximation, density (or
temperature) can fluctuate but the velocity field is assumed
to be strictly solenoidal (divergence free).

A. Base flow

We briefly review the derivation of the exact solution of
the Boussinesq-Euler equations found by Salhi and Cambon
[30]. It consists of considering unbounded flows subjected to
spatial uniform density stratification and shear rate that are
time dependent,

U(x,t) = S(t)x2e3,

�(x,t) = N2
1 (t)x1 + N2

2 (t)x2 + N2
3 (t)x3, (4)

� = �e3,

where S(t) is the shear rate, N2
i (t) (i = 1,2,3) is the buoyancy

frequency in the xi direction, and � is a constant. For example,
if we consider the case without a magnetic field and we apply
the curl to Eq. (3a), we obtain the equation for the absolute
vorticity w = ∇ × u + 2�, (see, e.g., Ref. [31]),

∂tw + (u·∇) w = (w·∇) u + ∇ × (�e3) . (5)

From Eq. (5), we deduce both the absolute vortic-
ity W = ∇ × U + 2� = S(t)e1 + 2�e3 and ∇ × (�e3) =
−N2

2 (t)e1 + N2
1 (t)e2. Then, the substitution of these forms

into Eq. (5) leads to

dS

dt
= N2

2 (t), (6)

and N2
1 (t) = 0. This means that the basic buoyancy gradient

must be perpendicular to the basic vorticity which splits with
the x1 direction, and hence � = N2

2 (t)x2 + N2
3 (t)x3. On the

other hand, the substitution of the latter form (for the buoyancy
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scalar) into Eq. (3b) leads to(
dN2

2

dt
+ S(t)N2

3 (t)

)
x2 +

(
dN2

3

dt

)
x3 = 0.

Because the latter relation must be valid for any ‖x‖, we
deduce that the vertical buoyancy frequency N3 must be
time independent, while the horizontal one, N2, satisfies the
following differential equation:

dN2
2

dt
+ S(t)N2

3 = 0. (7)

Consider stable vertical stratification, i.e., N2
3 > 0. Then the

solution of the coupled equations (6) and (7) exhibits an
oscillatory behavior,

N2
2 (t) = N2

20 cos(N3t) − A0N3 sin(N3t),
(8)

S(t) = A0 cos(N3t) + N2
20

N3
sin(N3t),

where N2
20 = N2

2 (0) and A0 = S(0). Finally, by setting
S0 cos φ0 = N2

20/N3 and S0 sin φ0 = A0 or

S0 =
√

N4
20

N2
3

+ A2
0, tan φ0 = A0N3

N2
20

,

the solution can be rewritten as

U = [0,0,S(τ )x2] , S(τ ) = N3ε sin τ,
(9)

� = N2
2 x2 + N2

3 x3 = (
N2

3 ε cos τ
)
x2 + N2

3 x3,

where ε = S0/N3 � 0 is a small parameter corresponding
to the ratio of the amplitude of the oscillating shear to the
buoyancy frequency, and τ = N3t + φ0 is a dimensionless
time where φ0 is a constant.

The base flow (9) is not barotropic since the buoyancy
gradient ∇� and the pressure gradient ∇P are not collinear
for all times,

∇P × ∇� = (�e3 − ∂t U) × ∇� = −(
N4

3 x3ε cos τ
)
e2,

and it rather remains similar to a baroclinic flow (see, e.g.,
Ref. [29]). In fact, at a given time such that τ �= �π (� ∈ N)
there are differences between the surfaces of constant scalar
buoyancy (or density) and of constant pressure in the fluid.

Consider now the case where a spatial uniform magnetic
field B = (B1,B2,B3) is also present. The substitution of the
basic velocity form (9) into the induction equation (3c) leads
to

∂τB1 = 0, ∂τB2 = 0, ∂τB3 = B2ε sin τ,

or, after integration,

B1 = B01, B2 = B02, B3 = B03 + B02ε (1 − cos τ ) ,

(10)
where B0 = (B01,B02,B03) is the magnetic field at τ = 0.
Note that the potential vorticity θ = W ·∇� is no longer
a Lagrangian invariant for the magnetohydrodynamic (MHD)
Boussinesq-Euler equations, while its counterpart, the mag-
netic induction potential

m = B·∇�, (11)

constitutes a Lagrangian invariant for a nondiffusive fluid (see
Ref. [32]). It is easier to verify that, for the fields (9) and (10),
m takes the form m = N2

3 (B03 + εB02).

B. The perturbed system

Let u, B, p∗, � be replaced by U + u, B + b, P ∗ + p, � +
θ in Eqs. (3a)–(3c), and linearize. The resulting perturbation
equations are

u̇i = −N−1
3 ∂xi

p − (ε sin τ ) u2δi3 − 2 [�e3 × u]i

+N−1
3 θδi3 + N−1

3 [(∇ × b) × B]i ,

N−1
3 θ̇ = −(ε cos τ )u2 − u3,

ḃi = N−1
3 Bj∂xj

ui + (ε sin τ ) bi, (12)

with the condition for u and b to be solenoidal, i.e., ∇·u = 0
and ∇·b = 0. Here,

ψ̇ = (
∂τ + N−1

3 Uj∂xj

)
ψ = (ε sin τ ) x2∂x3ψ

denotes the Eulerian derivative. Moreover, the linearized part
of the magnetic induction potential perturbation takes the form

N−2
3 πm = b2ε cos τ + b3 + N−2

3 Bi∂xi
θ. (13)

Solutions of the system (12) are sought in terms of Fourier
modes with a time-dependent wave vector (see Refs. [15,33])[

u,b,p,N−1
3 θ

] = [û(τ ),b̂(τ ),p̂(τ ),θ̂ (τ )] exp ı [k(τ )·x] .

(14)
For instance, the substitution of the above form into the first
equation of the perturbed system (12) yields

˙̂ui = − N−1
3 ı

[
k̇j + km

(
∂xj

Um

) ]
xj ûi − 2 [�e3 × û]i

− (ε sin τ ) û2δi3 − ıN−1
3 (p̂ + B·b̂)ki

+ θ̂ δi3 + ıN−1
3 (k·B) b̂i ,

where the terms proportional to xj must cancel (see, e.g.,
Refs. [10,12,33,34]) since the above equation must be valid
for any ‖x‖, which is ensured when (dkj/dt) = −(∂xj

Um)km,
or equivalently,

k̇1 = 0, k̇2 = − (ε sin τ ) k3, k̇3 = 0. (15)

The time dependence of the wave vector allows the disturbance
Fourier modes to be advected by the mean flow. The equation
for the wave vector is called the eikonal equation since it is
really closed to the one for disturbance flows as wave-packet
following rays (see, e.g., Lebovitz and Lifschitz [35]).

Accordingly, system (12) becomes

˙̂ui = −2 [�e3 × û]i − (ε sin τ ) û2δi3 − ıN−1
3 (p̂ + B·b̂)ki

+ θ̂ δi3 + ıN−1
3 (k·B) b̂i ,

˙̂θ = −(ε cos τ )û2 − û3, (16)

˙̂bi = ıN−1
3 (B·k) ûi + (ε sin τ ) b̂2.

We also have the conditions k·û = 0 and k·b̂ = 0 charac-
terizing the fact that the inviscid perturbations u and b are
divergence free.

Equation (15) can be easily solved to give

k1 = K1, k3 = K3, k2 = (K2 − εk3) + k3ε cos τ, (17)
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where K = (K1,K2,K3) is the wave vector at τ = 0. As it can
be remarked, the evolution of the wave vector k is similar to
that of the magnetic field [see Eq. (10)] but with axes (x2,x3)
interchanged so the inner product B·k is time independent,
i.e.,

N3ηk = B·k = B0·K = B01K1 + B02K2 + B03K3. (18)

On the other hand, the use of the relation kiûi = 0 allows us
to eliminate the pressure coefficient in the equation for û,

−ıN−1
3 (p̂ + B·b̂) = k−2k3[(2ε sin τ ) û2 − θ̂]

+R−1
0 k−2 [k2û1 − k1û2] , (19)

where R0 = N3/(2�) is the Rossby number. Accordingly,
system (17) can be rewritten as follows:

˙̂u1 = R−1
0

k1k3

k2
û1 +

[
2ε

k1k3

k2
sin τ + R−1

0

(
k2

2 + k2
3

)
k2

]
û2

+ ıηkb̂1 − k1k3

k2
θ̂ ,

˙̂u2 = −R−1
0

(
k2

1 + k2
3

)
k2

û1 +
[

2ε
k2k3

k2
sin τ − R−1

0

k1k2

k2

]
û2

+ ıηkb̂2 − k2k3

k2
θ̂ ,

˙̂u3 = R−1
0

k2k3

k2
û1 −

[(
1 − 2

k2
3

k2

)
(ε sin τ ) + R−1

0

k1k3

k2

]
û2

+ ıηkb̂3 +
(
k2

1 + k2
2

)
k2

θ̂ , (20)

˙̂b1 = ıηkû1,

˙̂b2 = ıηkû2,

˙̂b3 = ıηkû3 + (ε sin τ ) b̂2,

˙̂θ = − (ε cos τ ) û2 − û3,

with ki ûi = 0 and ki b̂i = 0. By setting ε = 0 in Eq. (20), one
recovers the differential system governing the linear dynamic
of magnetogravity Coriolis waves.

III. ANALYSIS OF THE MAGNETOGRAVITY
SHEAR WAVES

In this section, we consider the stability of magnetogravity
shear waves in a nonrotating frame, so that, � = 0, or
equivalently, R0 → ∞.

A. Preliminary analysis

The stability problem of magnetogravity waves is described
by the following differential system deduced from (20):

˙̂u2 =
(

2ε
k2k3

k2
sin τ

)
û2 + ıηkb̂2 − k2k3

k2
θ̂ ,

˙̂u3 = −
(

1 − 2
k2

3

k2

)
(ε sin τ ) û2 + ıηkb̂3 +

(
k2

1 + k2
2

)
k2

θ̂ ,

˙̂b2 = ıηkû2,

˙̂b3 = ıηkû3 + (ε sin τ ) b̂2,

˙̂θ = −(ε cos τ ) û2 − û3. (21)

In fact, when k1 �= 0, the conditions kiûi = 0 and ki b̂i = 0
allow us to find the two coefficients û1 and b̂1 once the
above differential system has been solved. When k1 = 0,
the differential system (21) reduces to a three-dimensional
differential system (see Sec. IV), while the evolution of the
Fourier coefficients û1 and b̂1 is described by the following
harmonic oscillator:

˙̂u1 = ıηkb̂1,
˙̂b1 = ıηkû1. (22)

Therefore, the stability problem can be characterized by the
analysis of the differential system (21) either k1 = 0 or not.

On the other hand, the special case k3 = 0, so that the wave
vector k = (k1,K2,0) is no longer time dependent, allows a
simpler analytical treatment, as a forced oscillator. One easily
shows that, in the presence of a horizontal magnetic field,
there is a nonresonant forcing, while in the case of a vertical
magnetic field or in the case without a magnetic field, the
oscillator is forced by a resonant term. Indeed, when k3 = 0,
an alternative formulation of system (21) yields the following
second-order differential equations,

¨̂u2 + η2
k û2 = 0, (23a)

¨̂u3 + (
1 + η2

k

)
û3 = −2εû2 cos τ, (23b)

where

ηk = N−1
3 (B01k1 + B02K2) . (24)

Therefore, when ηk �= 0, we have bounded solutions that
characterize a nonresonance forcing,

û2(τ ) = A1 cos(ηkτ − φ1),

û3(τ ) = A2 cos
(√

1 + η2
k τ − φ2

) − εA1

2ηk

{cos[(ηk+1)τ−φ1]

− cos[(ηk − 1)τ − φ1]}. (25)

Here, A1, A2, φ1, and φ2 are constants that are determined
from the initial conditions. In contrast, when ηk = 0, so that
B0 = 0 or B0 = B03e3, the solution is not bounded (due to the
secular term),

û2 = const,
(26)

û3(τ ) = A2 cos(τ − φ2) − û2ετ sin τ.

B. Reduced Floquet system

The coefficient π̂m = πm exp(−ık·x) associated with the
magnetic induction potential [see Eq. (13)] takes the form

N−2
3 π̂m = (ε cos τ ) b̂2 + b̂3 + ıηkθ̂ = const, (27)

and constitutes a Lagrangian invariant for a nondiffusive fluid,
as already indicated. Then, it is possible to express θ̂ in terms
of b̂2,b̂3 and the constant,

θ = ıη−1
k

(
N−2

3 π̂m + b̂2ε cos τ + b̂3
)
,

reducing the number of dependent variables for the disturbance
flow, and hence system (21) reduces to a four-dimensional
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inhomogeneous differential system. Without loss of generality
from the point of view of a stability analysis, we consider that
π̂m is zero, so that

θ̂ = ıη−1
k (b̂2ε cos τ + b̂3), (28)

and hence we obtain a homogeneous differential (Floquet)
system for (û2,û3,b̂2,b̂3). In fact, one easily verifies that the
stability problem is the same considering either π̂m = 0 or

π̂m = const �= 0. Therefore, by setting

(c1, c2, c3, c4) = (
û2, û3, ıη−1

k b̂2, ıη−1
k b̂3

)
, (29)

the substitution of the form (28) into the system (21) gives rise
to the following homogeneous four-dimensional system,

ċ = D(τ )·c, (30)

where

D =

⎛
⎜⎜⎜⎝

2ε k2k3
k2 sin τ 0 η2

k − ε k2k3
k2 cos τ − k2k3

k2

−ε
(
1 − 2 k2

3
k2

)
sin τ 0 ε

k2
⊥

k2 cos τ η2
k + k2

⊥
k2

−1 0 0 0
0 −1 ε sin τ 0

⎞
⎟⎟⎟⎠ , (31)

in which k2
⊥ = k2

1 + k2
2 is the square of the horizontal wave

number. The fact that the parameter ηk = N−1
3 (B·k) appearing

in the expression of the matrix D(τ ) depends on the modulus
of the initial wave vector signifies that the stability problem
also depends on the wavelength of the perturbations.

Though not always analytically solvable, the temporal
behavior of c(τ ) may be characterized by using the standard
Floquet theory (see Ref. [36]) since the matrix D is time
periodic with period 2π . The general solution is a linear super-
position of Floquet modes of the form c(τ ) = f (τ ) exp(σ t),
where f (t) is periodic with period 2π . The Floquet exponent
σ is determined by the requirement that exp(2πσ ) is an
eigenvalue of the Floquet multiplier matrix M = �(2π ),
where �(τ ) is the fundamental matrix solution of Eq. (30)
that reduces to identity at τ = 0,

�̇ = D(τ )·�, �(0) = I4,

where I4 is the 4 × 4 unit matrix. The fact that the determinant
of the matrix � is a solution of the following first-order
differential equation (see, e.g., Salhi and Cambon [37]),

d

dτ
det � = (trace D) det �,

where

trace D = Dii = 2ε
k2k3

k2
sin τ = −2

k̇

k
, (32)

implies that

det �(τ ) = K2

k2
,

and hence det M[=det �(2π )] is unity. It follows that the
system (30) is conservative and possesses the property that
if λ is an eigenvalue of M, so also is its inverse λ−1 and its
complex conjugate λ (see, e.g., Ref. [19]). The proof of this
fact is the same as given by Lebovitz and Zweibel [18].1 It

1One can exactly follow the proof by Ref. [18] considering the
matrix R = diag(1,1,−1,−1) that verifies RD(−τ ) = −D(τ )R and
R−1D(τ ) = D(τ )R.

follows that, in the stable case, the eigenvalues of M lie on
the unit circle, while, if as parameters change (see below),
an eigenvalue is at the onset of instability, it must have a
multiplicity of two (or higher). Thus, a necessary condition
for the onset of linear instability is a resonance where two
Floquet multipliers coincide (see Ref. [18]).

C. Magnetogravity waves

When there is no shear, i.e., ε = 0, the buoyancy gradient
in the transverse direction vanishes. If we put ε = 0, the
coefficient matrix D0 (say) of Eq. (31) becomes constant,

D0 =

⎛
⎜⎜⎜⎜⎝

0 0 η2
k −K2K3

K2

0 0 0
(
η2

k + K2
⊥

K2

)
−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎟⎠ . (33)

Its eigenvalues are

σ1 = ıηk, σ2 = ı

√
η2

k + K2
⊥

K2
,

(34)

σ3 = −ıηk, σ4 = −ı

√
η2

k + K2
⊥

K2
.

They are distinct and nonzero as long as ηk �= 0. Associated
eigenvectors are reported in Appendix 2 for the sake of
clarity. The frequencies (normalized by N3) characterizing the
magnetogravity (or Alfvén-Archimede) waves are

ω1 = ηk, ω2 =
√

η2
k + K2

⊥
K2

,

(35)

ω3 = −ηk, ω4 = −
√

η2
k + K2

⊥
K2

.

The pair (ω1,ω3) characterizes the Alfvén waves, while
the pair (ω2,ω4) characterizes the Alfvén-Archimede waves.
Since there are two restoring forces acting on displaced fluid
elements, there are two possible situations. The Lorentz and
Archimede forces may act together, stiffening the system and
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producing the higher-frequency fast waves (i.e., the Alfvén-
Archimede waves), or the Lorentz force acts as if it was alone
to produce the lower-frequency slow waves (i.e., the Alfvén
waves).

In the case of magnetocoriolis waves, the Coriolis and
Lorentz forces act together, producing both fast and slow
magnetocoriolis waves, as recently observed in the Taylor-
Couette flow laboratory experiment by Nornberg et al. [38]. In
that study, it has been demonstrated through a local stability
analysis that with the addition of sufficient flow shear, the
slow magnetocoriolis wave can be destabilized to produce the
magnetorotational instability.

D. The resonant cases

Assume that k3 �= 0 and use the spherical coordinates
(K,θ,ϕ) where

μ ≡ sin θ = K⊥
K

, cos ϕ = k1

K⊥
. (36)

Then

k1 = Kμ cos ϕ, K2 = Kμ sin ϕ, k3 = ±K
√

1 − μ2.

In order to use the asymptotic method by Lebovitz and Zweibel
[18] (see Appendix), we assume that each eigenvalue σk of
D0 is linear in μ. This can be achieved by considering that
the initial magnetic field lies in the (x1,x2) plane, i.e., B0 =
B01e1 + B02e2. The case where the initial magnetic field is
vertical (i.e., B0 = B03e3) is examined in Sec. IV.

Therefore, the expression of the four frequencies
becomes

ω1,3 = ±μηϕ, ω2,4 = ±μ

√
1 + η2

ϕ, (37)

in which the coefficient

ηϕ = N−1
3 K (B01 cos ϕ + B02 sin ϕ) (38)

is assumed to be positive or zero, without loss of
generality.

As in the case of the elliptic instability [18,19], the
destabilization of Floquet modes is a result of a special type
of resonance between them (including resonances between
their frequencies and the basic frequency, i.e., the buoyancy
frequency for the problem considered here). For ε = 0,
i.e., when the magnetogravity waves are not sheared, these
resonances are defined by ωi − ωj = n, with n ∈ N and
i,j = 1,2,3,4. As shown in Appendix A [see Eqs. (A17)
and (A8)], at leading order in ε, instability associated with
the parametric resonances can occur when ωi − ωj = ±1
(i �= j = 1,2,3,4). This is a consequence of the fact that
the time-dependent elements of the matrix Dε involved in
the expansion of the matrix D in a Taylor series around
ε = 0,

D(τ,ε,μ,ηϕ) = D0(μ,ηϕ) + εDε(τ,μ,ηϕ) + · · · ,

behave as exp ± (ıN3t) [see Eq. (A8)]. Also, in the case
of precessing sheared flow, instability associated with the
parametric resonances can occur when ωi − ωj = ±1 since
the time-dependent elements of Dε behave as exp ± (ı�0t),
where �0 is the solid body rotation rate (see Refs. [39,40]).
In comparison, in the case of elliptical streamline flows,

instability associated with the parametric resonances can occur
when ωi − ωj = ±2 since the elements of Dε behave as
exp ± (ı2�0t) (see Refs. [14,18,19]).

Because the interchange ϕ → ϕ + π and θ → π − θ leads
to the same set of frequencies {ω1,ω2,ω3,ω4}, we may assume
without loss of generality that 0 � ϕ � π and 0 � θ � π

2 , and
hence we only need to consider the following three resonant
cases:

ω1 − ω3 = 2ηϕμ = 1,

ω2 − ω3 = (
ηϕ +

√
1 + η2

ϕ

)
μ = 1, (39)

ω2 − ω4 = 2μ

√
1 + η2

ϕ = 1.

For each one of the above three cases we infer instability
if Re α �= 0, where α represents the roots of the following
equation:

α2 −
(

J̃ii + J̃jj + 2πı

μ
ν(ωi + ωj )

)
α

+
∣∣∣∣∣J̃ii + 2πıνωi

μ
J̃ij

J̃j i J̃jj + 2πıνωj

μ

∣∣∣∣∣ = 0. (40)

where the elements J̃ij are defined by Eq. (A15). The
coefficient ν characterizes the width of the unstable region
at order O(ε). In other words, the region in the (μ,ε) plane
where instability occurs is typically a wedge with the apex
at the point (μ,ε) = (μ0,0) and boundaries μ = μ0 + ν±ε,
where the slopes ν+ and ν− are to be found (see Fig. 1).

E. Case with ω2 − ω4 = 1: Hydrodynamic modes

When there is no magnetic field, so that ηϕ = 0, both
frequencies ω1,3 become zero, while the other two frequen-
cies reduce to ω2 = −ω4 = μ, characterizing purely gravity
modes. They are modified by the presence of the magnetic

field, ω2 = −ω4 = μ
√

1 + η2
ϕ . Then, the fact that ω2 − ω4 =

1 implies ω2 = −ω4 = 1
2 , and hence

μ = μ0 = 1

2
√

1 + η2
ϕ

. (41)

Therefore, μ decreases as |ηϕ| increases, μ = 0.5 for ηϕ = 0,
in agreement with the numerical results given in Ref. [30], and
μ → 0 as |ηϕ| → ∞.

Recall that the stability of the case without a magnetic field
has been addressed in Salhi and Cambon [30], who determined
numerically the boundaries of the unstable bands considering
disturbances with K2 = 0 [i.e., the initial wave vector lies in
the (x1,x3) plane]. The following asymptotic analysis clearly
shows that both the width and the maximal growth rate of the
instability bands depend on the orientation of the initial wave
vector.

The determination of α described by Eq. (40) needs the
expression of J̃22,J̃44,J̃24, and J̃42 that is given in Appendix 4
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FIG. 1. (Color online) Hydrodynamic mode. The boundaries of the instability band in the (μ,ε) plane. The instability band emanates
from the point [μ = 1/(2

√
1 + η2

ϕ ),0]. Top left panel: Pure hydrodynamic mode (ϕ = π/2 and ηϕ = 0). Bottom left panel: The effect of a
radial magnetic field with ϕ = π/2 and ηϕ = N−1

3 KB02 sin ϕ = 0.50 on the hydrodynamic mode. The analytical results given by Eq. (45) are
represented by lines, while the numerical ones are represented by symbols. The right panels depict the numerical results giving, for fixed ε, the
variation of the � + ε vs μ, where � = Re(α) is the growth rate.

[see Eqs. (A28) and (A29)],

J̃22 = −J̃44 = −2πı (sin ϕ)
(1 − η2)

3
2√

1 + η2
ϕ

,

J̃24J̃42 = −π2μ2(1 − μ2) sin2 ϕ

4

⎡
⎣2 + (1 − 2μ2)√

1 + η2
ϕ

⎤
⎦2

, (42)

with J̃24 = −J̃42. The substitution of these forms into Eq. (40)
yields

α2 = π2(1 − μ2) sin2 ϕ

4μ2

⎡
⎣2μ2 + μ(1 − 2μ2)√

1 + η2
ϕ

⎤
⎦2

− 4π2

⎡
⎣ν

√
1 + η2

ϕ − (1 − μ2)
3
2√

1 + η2
ϕ

sin ϕ

⎤
⎦2

. (43)

This has a maximum instability increment when

ν = (1 − μ2)
3
2(

1 + η2
ϕ

)2 sin ϕ,

and hence the substitution of the form (41) into the first term
on the right-hand side of (43) leads to

�m

ε
= (Re α)max

2π
= 3

√
3

16

(
1 + 4

3η2
ϕ

) 3
2(

1 + η2
ϕ

)2 sin ϕ. (44)

In the pure hydrodynamic limit, so that ηϕ = 0, this reduces
to �m/ε = (3

√
3/16) sin ϕ, and for a given sin ϕ �= 0, it

decreases as ηϕ increases, approaching zero as ηϕ → ∞.
The instability associated with the hydrodynamic modes

has a bandwidth (ν+ − ν−)ε that is, for given ε and ηϕ ,
the length of the μ interval for which the unperturbed
configuration is unstable (see Lebovitz and Zweibel [18]).
Here, ν± are the roots of the algebraic equation Re α = 0.
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From Eq. (43), one derives the expression of ν±,

ν+ = 3ν− = 9
√

3

16

(
1 + 4

3η2
ϕ

) 3
2(

1 + η2
ϕ

) 5
2

sin ϕ, (45)

Therefore, in the (μ,ε) plane, the hydrodynamic instabil-
ity band is not symmetrical with respect to the axis ε =
1/(2

√
1 + η2

ϕ ). For a given sin ϕ �= 0, the width of this
instability band,

δ = (ν+ − ν−) ε = 3
√

3

8
ε

(
1 + 4

3η2
ϕ

) 3
2(

1 + η2
ϕ

) 5
2

sin ϕ,

decreases as ηϕ increases, δ/ε = 3
√

3/8 at ηϕ = 0 (i.e., the
pure hydrodynamic limit) and δ/ε → 0 as ηϕ → ∞.

Figure 1 shows the boundaries of the hydrodynamic sub-
harmonic instability band in the (μ,ε) plane for ϕ = π/2. Both
cases without a magnetic field (i.e., ηϕ = 0) and cases with a
radial magnetic field (i.e., ηϕ = N−1

3 KB02 sin ϕ = 0.5) have
been considered. The numerical results reported in the figure
were obtained by solving numerically the Floquet system
(30) over one period 0 � τ � 2π (using the fourth-order
Runge-Kutta method) to compute M(2π ) and to determine
its eigenvalues (using the factorization for generalized eigen-
values, QZ, method) �i (i = 1,2,3,4), and hence the growth
rate �i ,

�i = 1

2π
log (�i) (i = 1,2,3,4).

As can be expected, for sufficiently small values of the
parameter ε, there is an expected agreement, while for the
large values of ε the asymptotic formula is less accurate in
reproducing the numerical results (the relative error does not
exceed 8%).

Under the same conditions as Fig. 1, Fig. 2 shows the
numerical results giving the variation of �m/ε vs ε. As can
be seen, �m/ε decreases as ε increases, but the decrease
is more significant in the case without a magnetic field
than in the case with the radial magnetic field. In the limit
ε → 0+, the asymptotic formula [Eq. (44)] reproduces well the
numerical results: �m/ε ≈ 0.3248 for ϕ = π/2 and ηϕ = 0,
and �m/ε = 0.32 for ϕ = π/2 and ηϕ = 0.50.

When the initial wave vector K lies in the (x1,x3) plane, so
that sin ϕ = 0, Eqs. (44) and (45) indicate that both �m/ε

and δ are zero. This signifies that, when ϕ = 0, there is
no instability at the order O(ε) emanating from the point
[μ = 1/(2

√
1 + η2

ϕ ),0]. However, computations performed
for ϕ = 0 and an azimuthal magnetic field with strength
ηϕ = N−1

3 KB01 cos ϕ = 0.5 indicate that there exists a region
of instability emanating from μ = 1/(2

√
1 + η2

ϕ ) ≈ 0.4472
(see Fig. 3). This instability is of width O (εn) with n � 2.

On the other hand, we note that, according to the present
asymptotic analysis, there is no instability of order O(ε)
associated with the resonance ω2 − ω4 = 2. Indeed, in that
case, both J̃24 and J̃42 are zero (see Appendix 4), while J̃22 and
J̃44 are given by Eq. (42). Accordingly, the quadratic equation

 0.14
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 0.34
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RMF ηϕ=0.5, ϕ=πι/4 Mix.

FIG. 2. Numerical results giving the variation of �m/ε vs ε for the
instability associated with the hydrodynamic mode (Hyd.) or mixed
mode (Mix.). ZMF: Zero magnetic field. RMF or AMF: Radial or
azimuthal magnetic field. In the limit ε → 0+, the numerical results
agree with the asymptotic results [see Eqs. (44) and (51)] that are
represented by horizontal segments (at �m/ε ≈ 0.3248, 0.32, 0.2067,
0.1461).

(40) reduces to

α2 = −4π2

⎡
⎣ν

√
1 + η2

ϕ − (1 − μ2)
3
2√

1 + η2
ϕ

sin ϕ

⎤
⎦2

, (46)

indicating that there is no instability [at the order O(ε)]
associated with the resonance ω2 − ω4 = 2.

F. Case with ω2 − ω3 = 1: Mixed modes

Without a magnetic field, so that ηϕ = 0, the frequency
ω2 = μ

√
1 + η2

ϕ reduces to ω2 = μ, while the frequency
ω3 = −μηϕ vanishes. Therefore these modes consist of a
hydrodynamic mode and a purely magnetic mode. When
ω2 − ω3 = 1, the third relation in Eq. (39) implies that

μ = μ0 = 1√
1 + η2

ϕ + ηϕ

=
√

1 + η2
ϕ − ηϕ. (47)

Therefore μ changes from 1 at ηϕ = 0 to 0 as ηϕ → ∞.
The evaluation of the elements J̃22, J̃33, J̃23 and J̃32 is

reported in Appendix [see Eqs. (A27), (A28), (A36), and
(A37)]. The result is

J̃22 = −2πı (sin ϕ)
(1 − η2)

3
2√

1 + η2
ϕ

,

J̃23 = −πηϕμ, (48)

J̃32 = −πμ cos2 ϕ√
1 + η2

ϕ

,
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FIG. 3. (Color online) Mixed mode. The boundaries of the instability band in the (μ,ε) plane. For ηϕ = 0.5, the instability emanates from
the point (μ = √

1 + η2
ϕ − ηϕ ≈ 0.62,0). Top left panel: Case of an azimuthal magnetic field with ϕ = 0 and ηϕ = N−1

3 KB01 cos ϕ = 0.5.
Bottom left panel: Case of a radial magnetic field with ϕ = π/4 and ηϕ = N−1

3 KB02 sin ϕ = 0.5. The analytical results given by Eq. (52) are
represented by lines while the numerical results are represented by symbols. The right panels show the numerical results giving, for fixed ε,
the variation of the � + ε vs μ. The instability regions emanating from the point (μ = 0.447,0) are associated with the hydrodynamic mode.
The one appearing in the bottom right panel is of order O(ε), while the one appearing in the top right panel is of order O(ε2) and it cannot be
captured by the present asymptotic analysis.

while J̃33 = 0, as indicated previously. Substituting the above
forms into Eq. (40) and remarking that

1 − μ2 = 2ηϕμ, μ2 − 4ηϕ

√
1 + η2

ϕ = μ−2,

we find

α = ıπ (μν − μ−1νm) ±
√

D, (49)

where

D = π2

⎡
⎣μ2ηϕ cos2 ϕ√

1 + η2
ϕ

− μ−2 (ν − νm)2

⎤
⎦ ,

(50)

νm = μ(1 − μ2)
3
2√

1 + η2
ϕ

sin ϕ.

Therefore, instability prevails if and only if D > 0. In that case,
the instability can indeed occur and has its maximal growth
rate when ν = νm. Then

�m

ε
≡ (Re α)max

2π
=

(√
1 + η2

ϕ − ηϕ

)√
ηϕ

2
(
1 + η2

ϕ

) 1
4

| cos ϕ|. (51)

The variation of �m vs ηϕ is maximal �m/ε = 0.2071 at
ηϕ = 0.4551. For this reason, the value ηϕ = 0.5 has been
chosen for the illustration of both the analytical and numerical
results. At the limit ε → 0+, the numerical results for �m/ε

agree well with the asymptotic formula (51) characterizing the
maximal growth rate for the subharmonic instability associated
with the mixed modes (see Fig. 2).

The upper and lower edges of the band of subharmonic
instability associated with the mixed modes are expressed by
the formula μ = μ0 ± ν±ε, where ν± may be determined from
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Eq. (50) by requiring D to vanish (a consequence of the fact
that Re α = 0). We find

ν± =
⎡
⎣μ(1 − μ2)

3
2√

1 + η2
ϕ

sin ϕ

⎤
⎦ ±

[
μ2√ηϕ

(1 + η2
ϕ)

1
4

cos ϕ

]
, (52)

and hence the bandwidth is

δ

ε
= ν+ − ν− =

(√
1 + η2

ϕ − ηϕ

)
(√

1 + η2
ϕ + ηϕ

)
√

ηϕ(
1 + η2

ϕ

) 1
4

| cos ϕ|.

For fixed cos ϕ �= 0, both �m/ε and δ/ε are zero at ηϕ = 0,
increase for 0 < ηϕ < (ηϕ)m, reach the maximal value at (ηϕ)m,
and decrease for (ηϕ)m < ηϕ , approaching zero as ηϕ → ∞.
Here, (ηϕ)m ≈ 0.455 when considering the variation of �m/ε

vs ηϕ and (ηϕ)m ≈ 0.243 when considering the variation of
δ/ε vs ηϕ .

Figure 3 shows the boundaries of the subharmonic insta-
bility band associated with the mixed mode in the (ε,μ) plane
for an azimuthal magnetic field with ϕ = 0 and ηϕ = 0.5,
and a radial magnetic field with ϕ = π/4 and ηϕ = 0.5.
As can be seen, there is an expected agreement between
the asymptotic formula [see Eq. (52)] and the numerical
results.

Finally, we now show that there is no instability associated
with the resonant case with ω1 − ω3 = 2μηϕ = 1, so that μ =
μ0 = 1/(2ηϕ). This resonant case characterizes the purely
magnetic modes since they vanish when there is no a magnetic
field. Because J̃11 = J̃13 = J̃33 = 0 [see Eqs. (A27) and (A40)
in Appendix 4], the quadratic equation (40) reduces to

α2 = −4π2ν2η2
ϕ,

signifying that Re α = 0, and hence there is no instability
associated with this resonance.

IV. SIMILARITIES BETWEEN MAGNETOGRAVITY AND
GRAVITY-CORIOLIS WAVES

In this section, we attempt to point out similarities be-
tween the response of the magnetogravity waves and the
gravity-Coriolis waves to a vertical periodic shear considering
axisymmetric disturbances (i.e., those corresponding to an
infinite wavelength in the azimuthal direction, k1 = 0, or
equivalently, the m = 0 mode). Both the magnetic field and
the Coriolis force are vertical.

A. Hill’s equation

1. Magnetogravity waves

As indicated at the end of Sec. II B, when k1 = 0, the
time evolution of the coefficients û1 and b̂1 is described by
the autonomous differential system (22) for which there is
no instability. Because, at k1 = 0, the solenoidal condition
implies

c2(τ ) = −k2

k3
c1(τ ), c4(τ ) = −k2

k3
c3(τ ),

provided k3 �= 0, the system (30) reduces to a two-dimensional
one,

ċ1 =
(

2ε
k2k3

k2
sin τ

)
c1 +

(
η2

k + k2
2

k2
− ε

k2k3

k2
sin τ

)
c3,

(53)
ċ3 = −c1,

where k2 = k2
2(τ ) + k2

3 and

ηk = N−1
3 B03k3 (54)

or ηk = N−1
3 (B02K2 + B03k3) if one considers arbitrary ori-

entation of the magnetic field. From system (53), we deduce
the following second-order differential equation,

c̈3 −
(

2ε
k2k3

k2
sin τ

)
ċ3 +

(
η2

k + k2
2

k2
− ε

k2k3

k2
cos τ

)
c3 = 0,

(55)
and by setting ψ = [k(τ )/K]c3(τ ), we transform it as follows:

ψ̈ +
[
η2

k + k2
2

k2
− ε2 k4

3

k4
sin2 τ

]
︸ ︷︷ ︸

V (τ )

ψ = 0, (56)

The latter equation has the form of a Hill equation (see
Ref. [41]) since the potential V (τ ) is periodic.

2. Gravity-Coriolis waves

The stability problem of the gravity-Coriolis shear waves
is obtained by setting ηk = 0 (i.e., there is no magnetic field)
in system (20),

˙̂u1 = R−1
0

k1k3

k2
û1 +

[
2ε

k1k3

k2
sin τ + R−1

0

(
k2

2 + k2
3

)
k2

]
û2

− k1k3

k2
θ̂ ,

˙̂u2 = −R−1
0

(
k2

1 + k2
3

)
k2

û1 +
[

2ε
k2k3

k2
sin τ − R−1

0

k1k2

k2

]
û2

− k2k3

k2
θ̂ ,

˙̂u3 = R−1
0

k2k3

k2
û1 −

[(
1 − 2

k2
3

k2

)
(ε sin τ ) + R−1

0

k1k3

k2

]
û2

+
(
k2

1 + k2
2

)
k2

θ̂ ,

˙̂θ = − (ε cos τ ) û2 − û3, (57)

with kiûi = 0. As indicated at the beginning of Sec. IV,
we consider axisymmetric disturbances (i.e., k1 = 0), so that
k2û2 + k3û3 = 0. Accordingly, system (57) reduces to

˙̂u1 = R−1
0 û2,

˙̂u2 = −R−1
0

k2
3

k2
û1 − (2ε sin τ )

k2k3

k2
û2 − k2k3

k2
θ̂ ,

˙̂θ = −
[

(ε cos τ ) − k2

k3

]
û2. (58)
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In view of Eq. (32),

−(2ε sin τ )
k2k3

k2
= 2

kk̇

k2
,

we set

c1 = û1, c2 = k2

K2
û2, c3 = θ̂ .

Then the latter differential system can be rewritten as

ċ1 = R−1
0

K2

k2
c2,

ċ2 = −R−1
0

k2
2

K2
c1 − k3k2

K2
c3, (59)

ċ3 = (K2 − εk3)

k3

K2

k2
c2,

from which one easily deduce the following constant of
motion,

π̂θ

ıN2
3

= 2�

N3
k3c3 − (K2 − εk3) c1 = const. (60)

The latter relation is a consequence of the fact that the potential
vorticity

πθ = (∇θ ) · (∇ × u + 2�)

is a Lagrangian invariant for a nondiffusive fluid (see
Ref. [42]). As in Sec. II, without loss of generality from
the point of view of a stability analysis, we take πθ = 0.
Accordingly, we deduce from system (59) the following
second-order differential equation for c3,

c̈3 −
(

2ε
k2k3

k2
sin τ

)
ċ3

+
(

R−2
0

k2
3

k2
+ k2

2

k2
− ε

k2k3

k2
cos τ

)
c3 = 0, (61)

where R0 is the Rossby number

R0 = N3

2�
. (62)

By setting ηk = R−1
0 (k3/k) and ψ = [k(τ )/K]c3(τ ), Eq. (61)

can be transformed to the Hill equation (56).

3. Stratified accretion disks with vertical periodic shear

Zaqarashvili et al. [2] suggested that, in galactic disks, a
periodic shear along the rotational axis can be generated by
the spiral density waves propagating in these disks. In that
study, the response of the magnetoacoustic waves to a vertical
periodic shear has been addressed.

Here we briefly consider a vertically stratified nonmagne-
tized accretion disk under a vertical periodic shear and we
use the shearing sheet approximation (see, e.g., Refs. [23,34])
with a coordinate system that is standard for shear flow
that differs from the shearing box (SB) convention such that
x2 = xSB (radial direction), x1 = −ySB (azimuthal direction),
and x3 = z (vertical direction). It should be remarked that the
shearing sheet approximation contains most of the physics
that is relevant to phenomena occurring on scales of an order
smaller than the disk thickness [34]. In this coordinate system,

the base flow takes the form

U = S·x, S =
⎛
⎝ 0 S 0

0 0 0
0 εN3 sin τ 0

⎞
⎠ ,

W = ∇ × U + 2� = (εN3 sin τ,0,−S + 2�) , (63)

� = (
N2

3 ε cos τ
)
x2 + N2

3 x3,

where S and � are constants. The flow of Eq. (63) is an exact
solution of the Boussinesq-Euler equations.

Accordingly, we show that axisymmetric plane waves
(superimposed to the latter base flow) are also governed by
Eq. (56) provided

ηk = ω

N3

k3

k
, ω2 = 2� (2� − S) , (64)

where ω is the epicyclic frequency, and ω = � for a Keplerian
disk. The stability of the base flow (63) will be addressed in
more detail in a subsequent paper.

B. Mathieu’s equation

When the parameter ε is sufficiently small ε � 1, Eq. (56)
may be expressed, within a good approximation, by a truncated
power series in ε,

k2
2(τ ) = K2

2 − 2εK2k3 (1 − cos τ ) + O(ε2),

k−2(τ ) = K−2[1 + 2εK−2K2k3(1 − cos τ )] + O(ε2).

If the terms of O(ε2) are neglected, this reduces to Mathieu’s
equation,

ψ̈ +
[
η2

k + K2
2(

K2
2 + k2

3

) + 2ε
K2k

3
3(

K2
2 + k2

3

)2 (cos τ − 1)

]
ψ = 0.

(65)

The solutions of the Mathieu equation are generally bounded
except in the vicinity of resonances defined by

ω2
n = η2

k + K2
2(

K2
2 + k2

3

) = n2

4
(n = 1,2,3,4, . . .), (66)

where the solutions are exponentially growing with a growth
rate of order εn (see, e.g., Ref. [43]).

For convenience, we introduce the polar coordinates
(
√

K2
2 + k2

3 ,ϑ) in the (x2,x3) plane such that ϑ =
arctan(K3/k2), and we set

μ = cos ϑ = K2
(
K2

2 + k2
3

)− 1
2 ,

(67)
η0 = N−1

3 KB03 or η0 = 2�N−1
3 .

Then, for the vertical magnetic field or the vertical Coriolis
force, one has η2

k = η2
0(1 − μ2), and hence Eq. (66) with n = 1

can be rewritten as(
1
2 − μ

) (
1
2 + μ

) = η2
0 (1 − μ) (1 + μ) . (68)

Because the latter equation is invariant under the interchange
μ → −μ, we only consider 0 � μ � 1. In the (μ,ε) plane, the
point lying in the μ axis from which emanates the subharmonic
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(n = 1) instability (if attainable) is characterized by

0 � μ(η0) � 1
2 ,

with the maximal growth rate

�m = εμ(1 − μ2)
3
2 . (69)

The function �m(μ) is maximal at μ = 1
2 and takes a zero

value at μ = 0. When μ = 0, Eq. (68) reduces to 4η2
0 = 1. This

signifies that the subharmonic instability region is attainable
only if

k3 <
N3

2B03
or equivalently L3 >

N3

2B03
(70)

when considering the magnetogravity shear waves or if R0 > 2
when considering the gravity-Coriolis shear waves. Here, L3

(k3L3 ∼ 1) is a characteristic vertical length scale.
In the (μ,ε) plane, the subharmonic instability (if attain-

able) emanates from the point (μ0,0) such that

μ = μ0 = 1

2

√
1 − 4η2

0√
1 − η2

0

. (71)

The substitution of the latter form into (69) allows us to express
�m as a function of η0,

�m

ε
= 3

√
3

16

(
1 − 4η2

0

) 1
2(

1 − η2
0

)2 . (72)

Therefore, we may conclude that, when the strength of the
magnetic field k3B03 (or the Coriolis parameter 2�) exceeds
N3/2, the subharmonic instability is inhibited.

On the other hand, we remark that when the initial magnetic
field is radial, so that

ηk = N−1
3 K2B02 = (

N−1
3 B02

√
K2

2 + k2
3

)
︸ ︷︷ ︸

η0

μ,

we deduce from Eq. (66) the point (μ0,0) of the (μ,ε) plane
from which emanates the subharmonic instability,

μ = μ0 = 1

2

1√
1 + η2

0

,

with the maximal growth rate

�m

ε
= 3

√
3

16

(
1 + 4

3η2
0

) 3
2(

1 + η2
0

)2 .

These expressions can also be recovered by setting ϕ = π/2
in relations (41) and (44) obtained by the asymptotic method
of Lebovitz and Zweibell.

V. CONCLUDING REMARKS

In a nondiffusive unbounded (vertically) stratified fluid,
gravity waves propagate with frequency ωg = N3K⊥/K ,
where K⊥ is the horizontal wave number and N3 is the Brunt-
Väisälä frequency. When the fluid is a conductor and in the
presence of a uniform magnetic field,

√
ρ0χ0 B0, there are slow

magnetogravity waves propagating with the Alfvén frequency

ωa = B0·K , and fast magnetogravity waves propagating with
the Alfvén-Archimede frequency ωag =

√
ω2

a + ω2
g . Because

the Boussinesq approximation filters out the high-frequency
acoustic waves, then ωag � csK , where cs is the sound
speed. On the other hand, when ωa � ωg , one has ωag =
ωg[1 + ω2

a/(2ω2
g) + · · · ] ≈ ωg . This can occur at large scales

(i.e., K � 1), while at small scales (i.e., K � 1) one has
ωag ≈ ωa .

We have performed a linear stability analysis in terms
of the base-flow-advected Fourier mode of the case where
these waves are excited by a time-periodic shear along the
vertical (x3) axis and varying linearly with the radial (x2)
coordinate, and having a frequency ωf = N3 and amplitude ε.
This idealized base flow serves as a local model to study the
angular moment transport in more complex flows arising in
astrophysical systems (galactic disks, solar atmosphere, etc.).

Owing to the fact that the magnetic induction potential is
a Lagrangian invariant, it has been shown that planes waves
are governed by a four-dimensional (MHD) Floquet system.
The method by Lebovitz and Zweibel [18] has been adopted
to analyze the stability of the Floquet system at the order
O(ε). It has been shown that some modes can display a local
three-dimensional instability.

Without a magnetic field, the resonant modes of the gravity
waves that are candidates to generate a subharmonic instability
when the vertical periodic shear is present are the modes
for which ωg = ωf /2, or equivalently, μ = K⊥/K = 1/2.
The occurrence of subharmonic instability depends on the
orientation of the horizontal wave vector K⊥ since the maximal
growth rate �m is found to be �m/ε = (3

√
3/16)|K2/K⊥|.

This implies that �m/ε is maximal for axisymmetric plane-
wave disturbances (i.e., K2/K⊥ = ±1) and vanishes for
the K2 = 0 mode. Note that computations indicate that the
resonant mode μ = 1/2 induces an instability even if K2 = 0.
Such an instability is at the order O(εn) (n � 2) since it is
not captured by the present asymptotic analysis which is valid
at the order O(ε). It should be instructive to mention here
that, in the case of unbounded flow with elliptical streamlines,
it is found that �m/ε = 9/16 in which ε is the departure of
streamlines of the unperturbed flow from axial symmetry (see
Ref. [13]), while for precessing sheared flows, it is found that
�m/ε = 5

√
15/32 in which ε is the precessing parameter (see

Refs. [40,44,45]).
In the presence of a uniform horizontal magnetic field,

the resonant modes that can induce subharmonic instabilities
are the modes for which ωag = ωf /2 (i.e., hydrodynamic
modes) or (ωag + ωa) = ωf (i.e., mixed modes), while the
resonant modes for which ωa = ωf /2 (i.e., magnetic modes)
do not induce any instability. The magnetic field exerts a
stabilizing effect by decreasing the values of the maximal
growth rate of the subharmonic instability associated with the
hydrodynamic modes [see Eq. (44)], as in magnetoelliptic
instability studies (see Refs. [18,19]). It is also found that
the subharmonic instability associated with the mixed modes
vanishes for axisymmetric disturbances (i.e., K2/K⊥ = ±1),
while the subharmonic instability associated with the hydro-
dynamic modes vanishes for K2 = 0, as already indicated. For
ε � 0.25, the asymptotic analysis results giving the bound-
aries of the subharmonic instability are in agreement with
computations.
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Due to the complexity of an analytical treatment of the
subharmonic instabilities that can arise in the magnetogravity-
Coriolis waves under the vertical time-periodic shear, we have
addressed separately the effect of a vertical magnetic field and
the effect of a vertical Coriolis force on the gravity shear waves
considering axisymmetric disturbances. It has been shown that,
for both cases, plane waves are governed by a Hill equation,
and, when ε is sufficiently small, the subharmonic instability
band is determined by a Mathieu equation. When the Coriolis
parameter 2� (or the magnetic strength B0K) exceeds half
of the vertical Brunt-Väisälä frequency, N3 the subharmonic
instability vanishes.

APPENDIX: LEBOVITZ AND ZWEIBEL’S METHOD

Here we report the calculations leading to the quadratic
equation (40) from which one can characterize the stability
of the three subharmonic resonances: the hydrodynamic
modes (ω2 − ω4 = 1), the mixed modes (ω2 − ω3 = 1), and
the magnetic modes (ω1 − ω3 = 1). These calculations are
similar to the asymptotic calculations (for ε � 1) done by
Lebovitz and Zweibel [18] in their study of magnetoelliptic
instabilities (see also Refs. [19,39]). For the elliptical flow
case, ε represents the departure of the streamlines of the
basic flow from axial symmetry, as indicated previously. The
asymptotic analysis of the Floquet system (30) for sufficiently
small ε proceeds in two steps: finding the Floquet multiplier
matrix M and calculating its eigenvalues. Let us also recall
that M = �(2π,ε,μ0,ηϕ,ϕ), where �(τ,ε,μ0,ηϕ,ϕ) is the
fundamental solution of the Floquet system (30), μ0 and ϕ

are defined by Eq. (36), while ηϕ is given by Eq. (38). In the
following, both the parameters ηϕ and ϕ will be held fixed so,
to simplify the notation, we suppress the dependence of the
matrices on these two parameters.

1. Construction of the Floquet multiplier matrix M
at the first order of ε

We expand M in a Taylor series around ε = 0 and μ = μ0,
for some wedge apex (μ0,0) in the (μ,ε) plane,

M(ε,μ) = M(0,μ0) + εMε(0,μ0)

+ (μ − μ0) Mμ(0,μ0) + O[ε2, (μ − μ0)2],

(A1)

and we assume that

μ(ε) = μ0 + εν + O(ε2), (A2)

which signifies that the direction of propagation of a mode
also changes when it becomes unstable, but we are including
only the thickest wedges, whose thickness is of order ε in the
present analysis (see also Ref. [19]). Here,

Mε = ∂

∂ε
M(0,μ0), Mμ = ∂

∂μ
M(0,μ0).

Accordingly, Eq. (A1) is rewritten as

M(ε,μ) = M0 + εM1 + O(ε2), (A3)

where

M0 = M(0,μ0), M1 = Mε(0,μ0) + νMμ(0,μ0). (A4)

The determination of the matrices M0 and M1 requires the
expansion of the matrix D(τ ) of the Floquet system (30) in a
Taylor series around ε = 0 at fixed μ,

D(τ,ε,μ) = D0(μ) + εDε(τ,μ) + O(ε2), (A5)

where D0 does not depend on the dimensionless time τ ,

D0 =

⎛
⎜⎜⎜⎜⎝

0 0 μ2η2
ϕ −μ

√
1 − μ2 sin ϕ

0 0 0 μ2
(
1 + η2

ϕ

)
−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎟⎠ , (A6)

and its eigenvalues are of the form

σ1,3 = ıω1,3 = ±ıμηϕ, σ2,4 = ıω2,4 = ±ıμ

√
1 + η2

ϕ.

(A7)

We assume now μ �= 0 and ηϕ �= 0, and then the eigenvalues
are distinct and nonzero. Recall that the first two correspond
to magnetic modes since they are zero when ηϕ = 0, while
the second two refer to hydrodynamic modes since they
reduce to the eigenvalues of the purely hydrodynamic case in
the limit ηϕ = 0. Regarding the matrix Dε, which represents
the derivative of the matrix D with respect to the parameter ε,
one can easily work it out from Eq. (31). We find that nonzero
elements are of the form

(Dε)11 = −ıμ
√

1 − μ2(sin ϕ)[exp(ıτ ) − exp(ıτ )],

(Dε)13 = −1

2
μ

√
1 − μ2(sin ϕ)[exp(ıτ ) + exp(ıτ )],

(Dε)14 = (μ2 − 1)(1 − μ2)[exp(ıτ ) + exp(ıτ ) − 2],

(Dε)21 = −ı2(1 − 2μ2)[exp(ıτ ) − exp(ıτ )],

(Dε)23 = 1

2
μ2[exp(ıτ ) + exp(ıτ )],

(Dε)24 = μ(1 − μ2)
3
2 (sin ϕ)[exp(ıτ ) + exp(ıτ ) − 2],

(Dε)43 = − ı

2
[exp(ıτ ) − exp(ıτ )].

(A8)

From the matrices D0 and Dε we may now construct the
matrices M0 and Mε needed in Eq. (A4). Indeed, for fixed τ

in [0,2π ] and μ, we expand the fundamental matrix � around
ε = 0,

�(τ,ε,μ) = �0(τ,μ) + ε�1(τ,μ) + O(ε2), �1(0,μ) = 0,

and we substitute the latter form into Eq. (30), or equivalently,
�̇ = D·�, we obtain the following system:

�̇0 = D0·�0,
(A9)

�̇1 = D0·�1 + Dε·�0.
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The integration of the first relation yields

�0(τ,μ) = exp(τD0), M0(μ) = exp(2πD0), (A10)

and hence the use of the variation of constants formula allows
us to determine the solution for �1,

Mε(μ) = �1(2π,μ) = M0(μ)J(μ),
(A11)

J(μ) =
∫ 2π

0
�−1

0 (s,μ)Dε(s,μ)�0(s,μ)ds.

We next proceed to simplify this expression by working in
the base, diagonalizing the matrix D0 since the characteristic
polynomial of the Floquet multiplier matrix M is the same in
any coordinate system.

2. Calculations in the base diagonalizing D0

Because the eigenvalues {σ�} (� = 1,2,3,4) of the matrix
D0 are all distinct [provided ηϕ �= 0 and μ �= 0, see Eq. (A7)],
the eigenvectors are linearly independent and the matrix T(μ)
formed from their columns diagonalizes D0,

D̃0 = T−1D0T = diag (σ1,σ2,σ3,σ4)

= (ıμ) diag
(
ηϕ,

√
1 + η2

ϕ,−ηϕ,−
√

1 + η2
ϕ

)
, (A12)

where the columns of T are the eigenvectors of D0 expressed
in the old base, i.e.,

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

ıμηϕ μ
√

1 − μ2(sin ϕ) −ıμηϕ μ
√

1 − μ2(sin ϕ)

0 −μ2 0 −μ2

−1 ı

√
1−μ2(sin ϕ)√

1+η2
ϕ

−1 −ı

√
1−μ2(sin ϕ)√

1+η2
ϕ

0 − ıμ√
1+η2

ϕ

0 ıμ√
1+η2

ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠ (A13)

and

T−1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− ı
μηϕ

− ı(sin ϕ)
√

1−μ2

μ2ηϕ
−1 − (sin ϕ)

√
1−μ2

μ

0 − 1
μ2 0

ı
√

1+η2
ϕ

μ

ı
μηϕ

ı(sin ϕ)
√

1−μ2

μ2ηϕ
−1 − (sin ϕ)

√
1−μ2

μ

0 − 1
μ2 0 − ı

√
1+η2

ϕ

μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A14)

Therefore, in place of Eq. (A11) we now obtain

M̃ε(μ) = �̃1(2π,μ) = M̃0(μ)J̃(μ),
(A15)

J̃(μ) =
∫ 2π

0
�̃−1

0 (s,μ)D̃ε(s,μ)�̃0(s,μ)ds,

where the tilde (∼) indicates that the matrix is expressed in
the base diagonalizing D0. Because the eigenvalues {σ�} are
distinct, the matrices �̃0 = exp(τ D̃) and M̃0 = exp(2πD̃) are
diagonal,

�̃0 = diag[exp(σ1τ ), exp(σ2τ ), exp(σ3τ ), exp(σ4τ )],
(A16)

M̃0 = diag (λ1,λ2,λ3,λ4) ,

where

λ� = exp(2πσ�) = exp(2πıω�) (� = 1,2,3,4).

Therefore, the expression of the matrix J̃ in Eq. (A15) becomes

J̃ij = T −1
im Tnj

∫ 2π

0
eı(ωj −ωi )τ (Dε)mn(τ )dτ︸ ︷︷ ︸

H
(ij )
mn

. (A17)

In Appendix 4 we calculate the elements of J̃ which we need for
the stability analysis of the three resonant cases: hydrodynamic
modes, mixed modes, and magnetic modes.

To complete the calculation of the matrix M̃1,

M̃1 = M̃ε + νM̃μ = M̃0·J̃ + νM̃μ,

we need only the derivative of M̃0 with respect to μ,

M̃μ = ∂

∂μ
M̃0(μ) = diag

(
∂λ�

∂μ

)

= diag

(
2πλ�

∂σ�

∂μ

)
(� = 1,2,3,4),

since λ� = exp(2πσ�) as indicated previously.
When the initial magnetic field is horizontal, each eigen-

value σ� of the matrix D0 is linear in μ [see Eq. (37)], so
that

∂σ�

∂μ
= σ�

μ
,

and hence

M̃μ(0,μ0) = 2π diag

(
σ�

μ
λ�

)
. (A18)

It should be noted that, when the initial magnetic field has
a nonzero vertical component, the asymptotic calculations
for three-dimensional disturbances become complicated. For
this purpose, the stability analysis of the case of a vertical
initial magnetic field has been performed considering only
axisymmetric disturbances (see Sec. IV).
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Finally, from Eqs. (A16)–(A18) we deduce the expression
of the maxtrix M̃1,

M̃1 = M̃0J̃ + νM̃μ,
(A19)

(M̃1)ij = [exp(2πσi)]

[
J̃ij +

(
2πν

μ
σi

)
δij

]
.

For the derivation of the quadratic equation (40) which allows
us to analyze the stability of three resonant cases, we further
analyze the characteristic polynomial of the matrix M.

3. Characteristic polynomial

The aim of this section is to analyze the characteristic poly-
nomial of the matrix M leading to the quadratic equation (40)
for the first-order correction to the growth rate. Because the
calculation is the same as in Lebovitz and Zweibel [18] (see
also Refs. [19,39]), we will briefly report the necessary steps
allowing us to derive Eq. (40).

We denote by p(ε,λ) = |M̃ − λI4| the characteristic of the
Floquet multiplier matrix M and by �� (� = 1,2,3,4) its roots.
We expand p(ε,λ) in a perturbative series around ε to second
order in ε,

p(ε,λ) = p0(λ) + εp1(λ) + ε2p2(λ) + O(ε3), (A20)

where p0(λ) = 4
i=1 (λi − λ) = 4

i=1

[
exp(2πσi) − λ

]
is the

characteristic polynomial of M̃0,

p1(λ) =
[

d

dε

∣∣M̃ − λI
∣∣]

ε=0

and

p2(λ) =
[

d2

dε2

∣∣M̃ − λI
∣∣]

ε=0

.

The condition for destabilization is that there be double
(or higher) roots of p(ε,λ). For instance, we restrict the
consideration to the case of double roots. Then the Puiseux
expansion takes the form (see Hille [46])

�1 = λ1 + ε
1
2 β 1

2
+ εβ1 + O(ε

3
2 ), (A21)

where, for definiteness, we have assumed λ1 = λ2. Because
p(λ1) = 0, the coefficient β1/2 is zero [see Eq. (A19) in
Ref. [18],

β2
1
2

= −2
p1(λ1)

p′′
0 (λ1)

= 0,

where ′ denotes the derivative with respect to λ, while the
coefficient β1 is found by solving the quadratic equation [see
Eq. (32) and Appendix A 3 in Ref. [18]),

a0β
2
1 + a1β1 + a2 = 0, (A22)

with

a0 = 1

2
p′′

0 (λ1) = (λ3 − λ1) (λ4 − λ1) ,

a1 = p′
1(λ1) = −[(M̃1)11 + (M̃1)22]a0, (A23)

a2 = p2(λ1) =
∣∣∣∣∣(M̃1)11 (M̃1)12

(M̃1)21 (M̃1)22

∣∣∣∣∣ a0.

By setting α = β1/λ1, Eq. (A21) can be rewritten as

�1

λ1
= 1 + εα + O(ε

3
2 ),

(A24)

α = 1

2a0

[
a1 ±

√
a2

1 − 4a0a2
]
,

or equivalently,

α2 −
(

J̃11 + J̃22 + 2πı

μ
ν (ω1 + ω2)

)
α

+
∣∣∣∣∣J̃11 + 2πıνω1

μ
J̃12

J̃21 J̃22 + 2πıνω2
μ

∣∣∣∣∣ = 0, (A25)

where Eqs. (A19) and (A23) have been used. Consequently,
at the first order of ε, there is instability if Re α �= 0. For the
cases where λ1 = λ3, λ1 = λ4, and λ3 = λ4, the coefficients
a0, a1, and a2 are calculated in a similar manner, and hence
one obtains Eq. (40).

4. Calculating some elements of J̃

The aim of this section is to calculate the elements of the
matrix J̃ which we need for the analysis of the quadratic
equation (40) in each one of the three resonant cases: ω2 −
ω4 = 1 (hydrodynamic modes), ω2 − ω3 = 1 (mixed modes),
and ω1 − ω3 = 1 (magnetic modes). For the sake of clarity,
we report here the expression of J̃ given by Eq. (A17),

J̃ij = T −1
im Tnj

∫ 2π

0
eı(ωj −ωi )τ (Dε)mn(τ )dτ︸ ︷︷ ︸

H
(ij )
mn

.

We now proceed to calculate the diagonal elements J̃jj . For
these elements the exponential factors in the integrand reduce
to unity, and hence H

(jj )
mn = ∫ 2π

0 (Dε)mndτ . Moreover, with the
aid of Eq. (A8) giving the expression of the elements (Dε)ij ,
we deduce that only the elements H

(jj )
14 and H

(jj )
24 are nonzero,

H
(jj )
14 = −(2μ2 − 1)(1 − μ2), H

(jj )
24 = −(2μ2 − 1)3/2 sin ϕ,

so that

J̃jj = (
T −1

j1 H
(jj )
14 + T −1

j2 H
(jj )
24

)
T4j . (A26)

By using for the elements Tij and T −1
ij the expression given

above in Eqs. (A13) and (A14), we find

J̃11 = J̃33 = 0 (A27)

and

J̃44 = −J̃22 = 2πı(sin ϕ)
(1 − μ2)

3
2√

1 + η2
ϕ

. (A28)

Before proceeding to evaluate the off-diagonal elements
of J̃, let us recall that the destabilization of the Floquet
system (30) occurs through a resonance between at least two
eigenvalues of the matrix M, and as in Refs. [18,19,39],
only the case of double multiplicity of the eigenvalues is
considered here. Because the eigenvalues of the matrix M0 are
of the form λ� = exp(2πσ�), � = 1,2,3,4, resonance occurs
for σi − σj = ı(ωi − ωj ) = ın, where n is a nonzero integer.
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It is clear from Eqs. (A8) and (A17) that for the resonant
cases with ωi − ωj = ±2,±3,±4, . . ., all the off-diagonal
elements of J̃ are zero. In comparison, the resonant cases with
ωi − ωj = ±1 contribute off-diagonal terms to leading order
in ε.

For the case with ω2 − ω4 = 1 (hydrodynamic modes) we
need J̃24 and J̃42,

J̃24 = T −1
22

(
H

(24)
21 T14 + H

(24)
23 T34 + H

(24)
24 T44

) + T −1
24 H

(24)
43 T34,

J̃42 = T −1
42

(
H

(42)
21 T12 + H

(42)
23 T32 + H

(42)
24 T42

) + T −1
44 H

(42)
43 T32,

(A29)

since T −1
21 = T −1

41 = 0, where

H
(24)
21 = −H

(42)
21 = −ıπ (1 − 2μ2),

H
(24)
23 = H

(42)
23 = πμ2,

(A30)
H

(24)
24 = H

(42)
24 = 2πμ(1 − μ2)

3
2 (sin ϕ),

H
(24)
43 = −H

(42)
43 = −ıπ.

With the aid of (A14) and (A13) giving the expression of T
and T−1, respectively, we obtain

J̃42 = −J̃24 = ı
πμ

√
1 − μ2

2

⎡
⎣2 + (1 − 2μ2)√

1 + η2
ϕ

⎤
⎦ sin ϕ.

(A31)
For the resonant case with ω2 − ω3 = 1 (mixed modes), we
need J̃23 and J̃32,

J̃23 = T −1
22

(
H

(23)
21 T13 + H

(23)
23 T33

) + T −1
23 H

(23)
43 T33, (A32)

where

H
(23)
21 = −ıπ (1 − 2μ2),

H
(23)
23 = πμ2,

H
(23)
43 = −ıπ,

(A33)

and

J̃32 = T −1
31

(
H

(32)
11 T12 + H

(32)
13 T32 + H

(32)
14 T42

)
+ T −1

32

(
H

(32)
21 T12 + H

(32)
23 T22 + H

(32)
24 T42

)
+ T −1

34 H
(32)
43 T32, (A34)

where

H
(32)
11 = 2ıπμ(1 − 2μ2) sin ϕ,

H
(32)
13 = −πμ

√
1 − μ2 sin ϕ,

H
(32)
14 = −π (1 − μ2)(1 − 2μ2 sin2 ϕ),

H
(32)
21 = ıπ (1 − 2μ2),

H
(32)
23 = πμ2,

H
(32)
24 = 2πμ(1 − μ2)

3
2 sin ϕ,

H
(32)
43 = ıπ.

(A35)

By the use of (A13) and (A14) and after lengthy calculations,
we find

J̃23 = π

2μ

(
μ + ηϕ(1 − 2μ2) −

√
1 + η2

ϕ

) = −πηϕμ,

(A36)

J̃32 = − πμ√
1 + η2

ϕ

cos2 ϕ. (A37)

As for the resonant case ω1 − ω3 = 1 (magnetic modes), we
show that the off-diagonal element J̃13 is zero, so that J̃13J̃31 =
0, and hence it not necessary to determine J̃31:

J̃13 = T −1
11

(
H

(13)
11 T13 + H

(13)
13 T33

)
+ T −1

12

(
H

(13)
21 T13 + H

(13)
23 T33

) + T −1
14 H

(13)
43 T33, (A38)

where

H
(13)
11 = −H

(31)
11 = −2πı(sin ϕ)μ

√
1 − μ2,

H
(13)
13 = H

(31)
13 = −π (sin ϕ)μ

√
1 − μ2,

H
(13)
21 = −H

(42)
21 = −πı(1 − 2μ2),

H
(13)
23 = H

(13)
23 = πμ2,

H
(13)
43 = −H

(31)
43 = −πı.

(A39)

Accordingly, the use of Eqs. (A13) and (A14) allows us to
deduce that

J̃13 = 0. (A40)
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