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Instabilities of a free bilayer flowing on an inclined porous medium
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The instabilities of a free bilayer flowing on an inclined Darcy-Brinkman porous layer have been explored. The
bilayer is composed of a pair of immiscible liquid films with a deformable liquid-liquid interface and a liquid-air
free surface. An Orr-Sommerfeld analysis of the governing equations and boundary conditions uncovers that this
configuration can be unstable by a pair of long-wave interfacial modes at the free surface and at the interface
together with a couple of finite wave-number shear modes originating from the inertial influences at the liquid
layers. In particular, one of the shear modes originates beyond a threshold flow rate owing to the slippage at the
porous-liquid interface and is found to be the dominant one even when the porous medium is moderately thin,
porous, and permeable. The strength of the porous media mediated mode (a) grows with increase in porosity, (b)
grows and then remains invariant with increase in thickness, and (c) initially grows and then decays with increase
in the permeability of the porous layer. Further, the presence of a lower layer with smaller viscosity and a thicker
upper layer is found to facilitate the growth of this newly identified porous media mode. Importantly, beyond
a threshold upper to lower thickness and viscosity ratios and the angle of inclination the porous media mode
dominates over all the other interfacial or shear modes, highlighting its importance in the bilayer flows down an
inclined porous medium. The study showcases the importance of a porous layer in destabilizing a free bilayer
flow down an inclined plane, which can be of importance to improve mixing, emulsification, and heat and mass
transfer characteristics in the microscale devices.
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I. INTRODUCTION

Stability and dynamics of multiple thin layers have gained
attention for long owing to their appearance in diverse
products and processes. At one end, instabilities in such
configurations can improve the rate of mass, momentum, and
heat transfer in the microscale devices while in the other end,
the interfacial stability is essential to increase the life span
of protective coatings or photographic films. The oil-water
flow, polymer extrusion [1–3], electrochemical and fuel cells
[4,5], microfluidic devices [6,7], and bioprocesses [8] are
also some common examples where the interfacial instability
and subsequent dynamics of the multilayer films play an
important role in ensuring mechanical, electrical, thermal,
optical, and barrier properties of the finished products. The
studies related to the instabilities of the multiphase systems
also uncover many interesting aspects of fundamental science
which include the origin of the squeezing (varicose) or bending
(sinuous) modes at the interfaces, pattern formation, phase
separation of immiscible layers, formation of embedded and
encapsulated structures, coalescence or pinching-off of the
droplets, and contact line motion, among many others. The
salient features of the stability and dynamics of various
multilayer configurations in the macro-, micro-, and nanoscale
regimes are ably summarized in a host of review articles
[9–15].

Among the multilayer configurations, the two-layer flows
can largely be classified into (i) confined bilayer—a pair
of immiscible films is confined between a pair of bounding
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substrates with a common deformable interface, and (ii) free
bilayer—a pair of immiscible films with a free surface and
an interface resting or flowing on a substrate (Fig. 1). The
macroscopic behaviors of the confined bilayer is explored
by a number of previous works, both theoretically [16–33]
and experimentally [34,35]. Yih [16] reported the presence of
the long-wave interfacial mode of instability in the confined
two-layer plane Poiseuille (PPF) and Couette (CF) flows
originating from the viscosity stratification of the liquid layers
across the deformable interface. Later, Hooper and Boyd [17]
found the Tollmein-Schlichting type finite-wave-number shear
mode of instability beyond a threshold flow rate in a confined
bilayer undergoing CF. At lower flow rates, Yiantsios and
Higgins [18] and Hooper [17] summarized that a confined
bilayer undergoing PPF could either be neutrally stable when
μr = h2

r or could be unstable by the interfacial (shear) mode
of instability when the condition μr > h2

r (μr < h2
r ) is met.

Here μrand hrdenote viscosity and the thickness ratios of
the liquid layers, respectively. Subsequent studies showed that
in the nonlinear regime, a linearly unstable interface could
evolve into the undisturbed state or to a finite amplitude steady
state [19]. The thin-layer effect with a more viscous layer is
confined between a semi-infinite layer and a solid wall had also
been studied in detail over the years [20,27–31]. In addition, a
number of studies reported the presence of the multiple (odd or
even) finite wave-number shear modes for a confined bilayer
including the effects of the inclination of the substrate [32,33].

Similar to the confined bilayer, the interfacial instabilities
of the macroscopic free bilayers have also been studied
extensively. The instabilities in the free bilayers are rather
different from those in the confined bilayers because of the
presence of the coupled deformable liquid-air surface and
liquid-liquid interface. Kao [36–38] identified surface and

063012-11539-3755/2013/88(6)/063012(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.063012


PRAVEEN KUMAR, USHA, BANERJEE, AND BANDYOPADHYAY PHYSICAL REVIEW E 88, 063012 (2013)

FIG. 1. (Color online) Schematic diagram of the flow of a free
bilayer on an inclined porous medium.

interfacial modes of instabilities while considering the effects
of both viscosity and density stratifications. Later, it was found
that much like the confined bilayers, the interfacial mode of
instability was more apparent when the upper layer viscosity
is higher [39–41]. The traveling interfacial modes under
varied conditions were also simulated employing long-wave
nonlinear simulations to uncover the role of the interfacial
shear on the evolution of the instability [42–44]. Attempts
were also made to predict the wave velocity and growth rate of
the interfacial modes employing a longitudinal velocity pertur-
bation associated with the surface and interfacial deflections
[45]. Further, a lot of attention has been paid to uncover the
convective nature of the unstable modes [46] and to identify the
importance of the flexibility of the underlying substrate [47].
Importantly, the studies reported that other than the viscosity
and density stratification, the interfacial modes of instabilities
of a free bilayer down an inclined plane could be under various
stabilizing or destabilizing inertial influences depending on
the position of the more or less viscous liquid film [47].
For example, when the less viscous fluid is adjacent to the
inclined wall, inertia can stabilize the interfacial mode at the
liquid-liquid interface whereas the same effect can destabilize
the liquid-air free surface. In contrast, inertia destabilizes both
the interfacial modes when the more viscous layer is adjacent
to the inclined wall.

Apart from the studies related to the macroscopic confined
and free bilayers, a number of recent works explore the
potential of these configurations in the micro or nanoscale
pattern formation [48,49], pumping [50], and mixing or
demixing [51–58]. Especially, it is now a well-established fact
that at smaller dimensions, even a little defect, roughness,
porosity, and slippage at the bounding surfaces can notably
alter the flow dynamics. However, the behaviors of liquid
layers adjacent to the porous layers are quite complex and
interesting. For example, Beavers and Joseph [59] showed the
influence of a porous layer on a macroscopic flow with the help
of a semiempirical slip boundary condition at the porous-liquid
interface. Later, employing a more comprehensive Darcy’s law
for the porous medium the destabilizing effect of permeability
was identified for a flow over an inclined porous plane [60–66].
Some of the more recent works show that the use of a
generic Darcy-Brinkman transport equation for the porous
layer can unveil finer details on the influence of the different
properties of porous layers such as the porosity, permeability,
and stress jump coefficient on the instabilities of thin films

on a porous substrate [67–80]. In particular, it was identified
that the presence of a porous medium can indeed change
the force distribution in the layers to engender additional
modes of instabilities especially when the film thickness is
smaller and the flow is laminar [81,82]. Importantly, the studies
uncover that for a confined bilayer, the interlayer mixing can be
enhanced only by tuning the porous media parameters such as
the thickness, the porosity, and the permeability of the porous
layer.

However, most of the previous studies consider either a
single layer or a confined bilayer while discussing the influence
of the porous medium. The hydrodynamic instabilities of a
free bilayer on an inclined porous medium (Fig. 1) is another
interesting configuration to be explored in detail. In the present
work, with the help of an Orr-Sommerfeld (OS) analysis of the
governing equations and boundary conditions, the instabilities
of a free bilayer on an inclined porous medium described by
Darcy-Brinkman model have been studied. Previous studies
indicate that a free bilayer can be unstable by surface modes
at the liquid-air free surface and interfacial modes at the
liquid-liquid interface. In this work, we highlight the influences
of the porous layer properties on these two modes. We also
identify additional modes of instabilities that can originate
from the underlying porous layer. In order to ensure the
accuracy of the results, the OS system is solved employing
two different numerical techniques. An eigenfunction analysis
is also performed to identify the critical layers and the
location of the finite wave-number modes of the instabilities.
Interestingly, the analysis uncovers that, for a fixed Reynolds
number, thickness, and viscosity ratio, the porous medium
parameters can stimulate an entirely new finite wave-number
shear mode of instability while the instability modes remain
dormant to these influences. The results discussed here can
be of importance in improving the microscale mixing, heat
and mass transfer, emulsification, and phase separation of free
bilayer flows.

The paper is organized in the following manner: Section II
shows the problem formulation in which the governing
equations and boundary conditions are discussed. The base
state velocity profiles are discussed in Sec. III. In Secs. IV and
V, the linear stability analysis and the numerical methods to
solve the OS system are discussed. The results are analyzed in
Sec. VI followed by the conclusions in Sec. VII.

II. PROBLEM FORMULATION

Figure 1 schematically shows the free bilayer configuration
considered in this work. In the formulation, the origin is fixed
at the porous-liquid interface (z = 0) and the unit vectors (ex,
ez) for the two-dimensional (2D) flow are directed along the
x and z directions. The variables for the lower (upper) liquid
layers are denoted by the subscripts 1 (2) and the variable
for the porous medium can be identified from the subscript
m. The films are assumed to be Newtonian, isothermal,
incompressible, and immiscible. The films are also considered
to possess constant density (ρj ) and viscosity (μj ). The bilayer
flows over a Darcy-Brinkman porous medium of porosity
δ, permeability κ , and thickness d. The continuity and the
equations of motions for the films (j = 1 and 2) in the vector
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form are

∇ · uj = 0, (2.1)

ρj [u̇j + (uj · ∇)uj ] = −∇pj + μj∇2uj + ρj g. (2.2)

The mass and momentum balance for the Darcy-Brinkman
porous medium [67–70] are

∇ · um = 0, (2.3)

ρ1

δ
u̇m = −∇pm + μe∇2um − μ1

κ
um + ρ1g. (2.4)

In Eqs. (2.1)–(2.4), the notations, g, uj {uj ,wj }, and pj

represent the acceleration due to gravity, the velocity vector,
and the pressure for the layers j = 1, 2, and m, respectively.
The overdots represent the time derivative and the porosity is
defined as the ratio of the lower layer viscosity to the effective
viscosity of the porous layer (δ = μ1/μe). No-slip and no-
penetration conditions are applied as boundary conditions at
the porous-solid interface (z = −d),

um= 0. (2.5)

The continuity of normal stress, jump in the tangential stress,
and continuity of the velocities are enforced as boundary
conditions at the porous-liquid interface (z = 0),

u1 = um, (2.6)

−pm + 2μewmz = −p1 + 2μ1w1 z, (2.7)

μeumz − μ1u1 z = ξ√
κ

um. (2.8)

Here, the jump coefficient ξ is the measure of spatial hetero-
geneity at the porous-liquid interface [68] and the subscripts
x and z denote partial derivatives. The normal and tangential
stress balances and the continuity of the velocities are enforced
as boundary conditions at the liquid-liquid interface (z = h1),

n1 · τ̄ 2 · n1 − n1 · τ̄ 1 · n1 = γ1(∇ · n1), (2.9)

t1 · τ̄ 2 · n1 = t1 · τ̄ 1 · n1, (2.10)

u1 = u2. (2.11)

Here h1 represents the thickness of the lower layer,
γ1 represents the interfacial tension of the liquid-
liquid interface, τ̄ j is the stress tensor, ∇ is gra-

dient operator, ni [(−hix/
√

(1 + h2
ix),1/

√
(1 + h2

ix))] and
ti [(1/

√
(1 + h2

ix),hix/
√

(1 + h2
ix))] are the outward normal

and tangent vectors, respectively. The location of the liquid-
liquid interface (y = h1) is defined by the kinematic condition

ḣ1 = −u1(∂h1/∂x) + w1. (2.12)

At free surface (z = h2), the normal and tangential stress
balances and the kinematic condition are enforced as boundary
conditions,

n2 · τ̄ 2 · n2 = γ2 (∇ · n2) , (2.13)

t2 · τ̄ 2 · n2 = 0, (2.14)

ḣ2 = −u2(∂h2/∂x) + w2. (2.15)

Here h2 represents the combined thickness of the liquid layers
and γ2 represents the surface tension of the liquid-air interface.

Equations (2.1)–(2.15) are transformed into nondimen-
sional forms employing the base state lower layer thickness
(h0) as length scale and ρ1h

2
0/μ1 as the time scale. The

resulting set of dimensionless variables is X = x/h0, Z =
z/h0, Dm = d/h0, H1 = h1/h0, H2 = h2/h0, T = tμ1/ρ1h

2
0,

Uj = uj ρ1h0/μ1, ρr = ρ2/ρ1, μr = μ2/μ1, hr = (h2/h1) −
1, G = gh3

0/ν
2
1 , 	1 = γ1h0/ρ1ν

2
1 , 	2 = γ2h0/ρ1ν

2
1 , and Pj =

pj h2
0ρ1/μ

2
1. In the following equations, the subscripts X and Z

denote partial derivatives. At the base state, the lower, upper,
and porous layers occupy 0 � Z � H1, H1 � Z � H2, and
−Dm � Z � 0, where H1 is the position of the liquid-liquid
interface and H2 represents the location of the liquid-air
interface. The dimensionless continuity equations for the films
and the porous layer are as follows:

U1X + W1Z = 0, (2.16)

U2X + W2Z = 0, (2.17)

UmX + WmZ = 0. (2.18)

The X and Z components of the dimensionless momentum
equations for the liquid and porous layers are

U̇1 + U1U1X + W1U1Z = −P1X + (U1XX + U1ZZ) + G sin α, (2.19)

Ẇ1 + U1W1X + W1W1Z = −P1Z + (W1XX + W1ZZ) − G cos α, (2.20)

ρr (U̇2 + U2U2X + W2U2Z) = −P2X + μr (U2XX + U2ZZ) + ρrG sin α. (2.21)

ρr (Ẇ2 + U2W2X + W2W2Z) = −P2Z + μr (W2XX + W2ZZ) − ρrG cos α, (2.22)

(1/δ)U̇m = −PmX + (1/δ)(UmXX + UmZZ) − (1/Da)Um + G sin α, (2.23)

(1/δ)Ẇm = −PmZ + (1/δ)(WmXX + WmZZ) − (1/Da)Wm − G cos α. (2.24)

The no-slip and no-penetration boundary conditions at the porous-solid interface (Z = −Dm),

Um = Wm = 0. (2.25)
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The continuity of X and Z components of velocities, the stress
jump condition, and the normal stress balance at the porous-
liquid interface (Z = 0) are

U1 = Um, (2.26)

W1 = Wm, (2.27)

(1/δ)UmZ − U1Z − (χ/
√

Da)Um = 0, (2.28)

P1 − Pm + 2[(1/δ)WmZ − W1Z] = 0. (2.29)

The continuity of velocities, normal and tangential stress
balances, and the kinematic condition at the liquid-liquid
interface (Z = H1) are

U1 = U2, (2.30)

W1 = W2, (2.31)

P2 − P1 + 2[
1 + H 2

1X

] {[(
1 − H 2

1X

)
W1Z − H1X(W1X + U1Z)

]} − μr

[(
1 − H 2

1X

)
W2Z − H1X(W2X + U2Z)

] = 	H1XX[
1 + H 2

1X

]3/2 ,

(2.32)

[
(U1Z + W1X)

(
1 − H 2

1X

) + 2H1X (W1Z − U1X)
] − μr

[
(U2Z + W2X)

(
1 − H 2

1X

) + 2H1X (W2Z − U2X)
] = 0, (2.33)

Ḣ1 = −U1H1X + W1. (2.34)

The normal and tangential stress balances and the kinematic condition at the liquid-air interface (Z = H2) are

−P2 + 2μr[
1 + H 2

2X

] ({[(
1 − H 2

2X

)
W2Z − H2X(W2X + U2Z)

]}) = 	2HXX[
1 + H 2

2X

]3/2 , (2.35)

[
(U2Z + W2X)

(
1 − H 2

X

) + 2HX(W2Z − U2X)
] = 0, (2.36)

Ḣ2 = −U2H2X + W2. (2.37)

In Eqs. (2.16)–(2.37), the parameters Da = κ/h2
0, χ = ξ/μ1,

G, and 	j = γjh0/ρ1ν
2
1 denote the Darcy number, dimen-

sionless stress jump coefficient, and Galileo and Capillary
numbers, respectively. In what follows, the discussions are
carried out in terms of the nondimensional variables.

III. BASE STATE

The governing equations and the boundary conditions are
simplified with the following variables for the unperturbed
interfaces to obtain the base state solutions of the x-directional
flow:

H1 = 1, H2 = H̄2, W̄j = 0, and
(3.1)

Uj = Ūj (Z) (j = 1,2, and m).

The overbars indicate base-state variables. The expressions for
the velocity profiles for the base state are

Ū1 = C11Z
2 + C12Z + C13, 0 � Z � 1, (3.2)

Ū2 = C21Z
2 + C22Z + C23, 1 � Z � H2, (3.3)

Ūm = Cm1e
MZ + Cm2e

−MZ + Cm3, −Dm � Z � 0. (3.4)

Here Ū1, Ū2, and Ūm represent the base state velocities at
the lower, upper, and porous layers, respectively, and M =√

δ/Da. A brief derivation of the base state equations and the

expressions for the constants Cij (i = 1, 2, and m; j = 1, 2,
and 3) in Eqs. (3.2)–(3.4) are shown in the Appendix.

Figure 2 summarizes the base state velocity profiles under
various conditions. Plot (a) shows, with an increase in porosity
(δ), that the flow in the porous layer becomes stronger, which
in turn induces a larger slippage at the porous-liquid interface.
The velocities in the liquid layer increase with an increase in
δ. Plot (b) shows that an increase in the thickness of the porous
layer can also impart larger slippage to the porous-liquid
interface until a limiting value of the porous layer thickness.
The curves in this plot suggest that the flow in the liquid layers
is influenced by the increase in the porous layer thickness
only in the regime where Dm is less than 1.0. Permeability
in the porous layer is another parameter that can enhance the
inertial influence to the liquid layers, as shown by plot (c). The
curves in this figure suggest that the flow inside the porous
layer becomes stronger with an increase in Da. Plots (a)–(c)
clearly indicate that the free bilayers flowing over a porous
medium can experience an enhanced inertial influence owing
to the flow inside the porous layer, which can significantly
alter the stability characteristics. Plots (d) and (e) show that
the flow is stronger in the porous layer when the less viscous
fluid is adjacent to the porous layer. Also, the flow rate is more
when the lower liquid layer close to the porous layer has less
density and less viscosity than the upper fluid layer [plot (e)].
It may be noted here that for free bilayers, the location of
maximum velocity is always at the liquid-air interface, even
when the bilayer is composed of a denser or a more viscous
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FIG. 2. Plots show the nondimensional base state velocity (Ūi)
profiles across the width of the channel (Z) when hr = 1. The curves
in plots (a)–(f) correspond to different δ, Dm, Da, μr , ρr , and α

respectively. The other parameters are fixed at δ = 0.5, Dm = 1,
Da = 0.1,ρr = 1,μr = 1.5, 	1 = 8 × 103, 	2 = 15 × 103, and
α = 0.2.

upper layer (solid lines). Plot (f) shows that an increase in
the angle of inclination can intensify the flow inside both
the porous and liquid layers. Plots (d)–(f) summarize that the
presence of a porous layer always strengthens the slippage
at the porous-liquid interface even when the porous layer
properties are kept fixed and the viscosity or density ratio or
the angle of inclination is increased. Importantly, the slippage
at the porous-liquid interface is found to be larger when the
lower layer has less density and viscosity. The observations
on the base state velocity profiles with various parameters
will be of help while discussing the results in the following
sections.

IV. LINEAR STABILITY ANALYSIS

Equations (2.16)–(2.37) are linearized using the following
linear perturbations to the base state solution: Uj = Ūj + U ′

j ,

Wj = W ′
j , and Pj = P j + P ′

j . The primes denote perturbed
quantities in which the velocity perturbations are trans-
formed into the stream functions as U ′

j = ∂�j/∂Z and W ′
j =

−∂�j/∂X. The set of equations are linearized employing nor-
mal modes, �j (X,Z,T ) = �̃j (Z)eiK(X−CT ), P ′

j (X,Z,T ) =
P̃j (Z)eiK(X− CT ), Hj (X,Z,T ) = 1 + H̃j e

iK(X− CT ), to obtain
the following coupled OS equations for the films and the
porous layer:

(D2 − K2)2�̃1 = iK[(Ū1 − C)(D2 − K2) − D2Ū1]�̃1,

(4.1)

νr (D2 − K2)2�̃2 = iK[(Ū2 − C)(D2 − K2) − D2Ū2]�̃2,

(4.2)

(D2 − K2)2�̃m = (δ/Da − iKC)(D2 − K2)�̃m. (4.3)

Here the notation D represents the differentiation with respect
to Z (D ≡ d/dZ). The notation νr is the ratio (= μr/ρr ), K

is the wave number, and C(= Cr + iCi) is the phase speed.
The variables Cr and Ci are the real and imaginary parts of the
phase speed, respectively.

The linearized boundary conditions at the porous-solid
boundary are

�̃mZ(−Dm) = �̃m(−Dm) = 0. (4.4)

Here the subscript Z represents the differentiation with respect
to Z. The linearized boundary conditions at the porous-liquid
interface (Z = 0) are

�̃1 = �̃m, (4.5)

�̃1Z = �̃mZ, (4.6)

1

δ
�̃mZZ − �̃1ZZ = χ√

Da
�̃mZ, (4.7)

iKŪ1Z�̃1 + [−3K2 + iK(C − Ū1)]�̃1Z + �̃1ZZZ

= 1

δ

[
−3K2 − δ

Da
+ iKC

]
�̃mZ + 1

δ
�̃mZZZ. (4.8)

The expressions for the linearized boundary conditions at the
liquid-liquid interface (Z = 1) are given by

H̃1 = �̃1/(C − Ū1), (4.9)

�̃1 = �̃2 (4.10)

(�̃1Z − �̃2Z) + [�̃1/(C − Ū1)](Ū1Z − Ū2Z) = 0, (4.11)

�̃1ZZZ − 3K2�̃1Z − μr�̃2ZZZ + 3μrK
2�̃2Z + iK(C − Ū1)(�̃1Z − ρr�̃2Z)

+ iK(Ū1Z�̃1 − ρrŪ2Z�̃2) − �̃1/(C − Ū1)[(Ū1Z − μrŪ2Z)2K2 + i	K3] = 0, (4.12)

[�̃1ZZ + K2�̃1] + (Ū1ZZ − μrŪ2ZZ)�̃1/(C − Ū1) − μr [�̃2ZZ + K2�̃2] = 0. (4.13)
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The linearized boundary conditions at the free surface
(Z = H2) are obtained as

H̃2 = �̃2/(C − Ū2), (4.14)

3μrK
2�̃2Z − μr�̃2ZZZ − iKρr [Ū2Z�̃2 + �̃2Z(C − Ū2)]

+ �̃2/(C − Ū2)[ik3	2 + 2μrK
2Ū2Z] = 0, (4.15)

[�̃2ZZ + K2�̃2] + (Ū2ZZ)�̃2/(C − Ū2) = 0. (4.16)

V. NUMERICAL METHOD

The eigenvalue problem in Eqs. (4.1)–(4.16) is solved
numerically to obtain the growth rate (KCi) and wave number
(K) for the unstable linear modes. The accurate D2 algorithm
for the Chebyshev-Tau QZ spectral method is employed to
obtain the eigenvalues [83–85]. To implement this method
the computational domain is mapped into (−1,1) using
the transformations Z1 = −2Z + 1, Z2 = 2

H2−1Z − H2+1
H2−1 , and

Zm = 2
Dm

Z + 1, for the lower, upper, and the porous layers,
respectively. Thereafter, the fourth order Ordinary Differential
Equation (ODEs) (4.1)–(4.3) are transformed into six second
order ODEs in terms of the variables ξ , λ, and ϑ with
η(Z1) = �̃1(Z), σ (Z2) = �̃2(Z), and ζ (Zm) = �̃m(Z). The
equations are obtained as

L1η − ξ = 0, (5.1)

L1ξ − iKŪ1ξ + 2iKC11η + iKCξ = 0, (5.2)

L2σ − λ = 0, (5.3)

νrL2λ − iKŪ2λ + 2iKC21σ + iKCλ = 0, (5.4)

Lmζ − ϑ = 0, (5.5)

Lmϑ − δ

Da
ϑ + iKCϑ = 0. (5.6)

Here the operators employed are L1η ≡ (4d2/dZ2
1 − K2)η =

ξ , L2σ ≡ {[4/(H2 − 1)2]d2/dZ2
2 − K2}σ = λ, and Lmζ ≡

[(4/D2)d2/dZ2
m − K2]ζ = ϑ . The transformed boundary

conditions at the porous-solid boundaries in terms of the above
variables are

ζZm(−1) = ζ (−1) = 0. (5.7)

The transformed boundary conditions at the porous-liquid
interface are

η − ζ = 0, (5.8)

ηZ1 + 1

D
ζZm = 0, (5.9)

K2η + ξ − K2

δ
ζ + 2χ

D
√

Da
ζZm − 1

δ
ϑ = 0, (5.10)

iKC12η + 2(2K2 + iKŪ1)ηZ1 − 2ξZ1 + 2

δD

[
2K2 + δ

Da

]

× ζZm − 2

δD
ϑZm − C

(
2iKηZ1 + 2iK

δD
ζZ1

)
= 0. (5.11)

The transformed boundary conditions at the liquid-liquid
interface are

η − σ = 0, (5.12)

C[2ηZ1 + (2/H2 − 1)σZ2] − [(2C11 + C12) − (2C21 + C22)]η − 2Ū1ηZ1 − (2Ū1/H2 − 1)σZ2 = 0, (5.13)

C(2K2η + ξ − 2μrK
2σ − μrλ) + 2[(C11 − μrC21) − Ū1K

2]η − Ū1ξ + 2μrŪ1K
2σ + μrŪ1λ = 0, (5.14)

C2[2iKηZ1 + (2iKρr/H2 − 1)σZ2] + C[−iK(2C11 + C12)η − 4(iKŪ1 + K2)ηZ1 + 2ξZ1 + iKρr (2C21 + C22)σ

− (4/H2 − 1)(μrK
2 + iKρrŪ1)σZ2 + [2μr/(H2 − 1)]λZ2],

+ [2[(2C11 + C12) − μr (2C21 + C22)]K2 + iKŪ1(2C11 + C12) + i	K3]η + 2(2Ū1K
2 + iKŪ 2

1 )ηZ1 − 2Ū1ξZ1

− iKŪ1ρr (2C21 + C22)σ + [2/(H2 − 1)]
[
2μrŪ1K

2 + iKρrŪ
2
1

]
σZ2 − [2μrŪ1/(H2 − 1)]λZ2 = 0. (5.15)

The transformed boundary conditions at the liquid-air interface are

C(λ + 2K2σ ) − Ū2λ + 2(Ū2K
2 − C21)σ = 0, (5.16)

C2 [−2iKρr/(H2 − 1)] σZ2 + C{−iKρr (2BC21 + C22)σ + [(4μrK
2 + 2iKρrŪ2)2/(H2 − 1)]σZ2 − 2μr/(H2 − 1)λZ2}

+ [(iKρrŪ2 + 2μrK
2)(2H2C21 + C22) + iK3	2]σ − [(

iKρrŪ
2
2 + 4μrŪ2K

2) 2/(H2 − 1)
]
σZ2

+ [2μrŪ2/(H2 − 1)]λZ2 = 0. (5.17)

Here the subscripts Z1, Z2, and Zm denote ordinary differentiation with respect to these variables. Equations (5.1)–(5.17)
are then expanded in terms of Chebyshev polynomials Tn (z). For a Chebyshev polynomial with N terms, the eigenvalues are
obtained from a (6N + 12) × (6N + 12) matrix corresponding to 6 ODEs and 12 boundary conditions. The accuracy of the
eigenvalues is ensured by increasing the number of polynomials and then eliminating the spurious eigenvalues. The eigenvalues
are verified by solving Eqs. (5.1)–(5.17) employing spectral collocation method with enhanced accuracy [86].

Figure 3(a) shows the typical linear growth rate (KCi) vs wave number (K) plot for a free bilayer where the eigenvalues
are predicted with equal accuracy by both spectral collocation (SC) and Chebyshev-Tau QZ (Tau) algorithms. In Fig. 3(b),
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FIG. 3. Plot (a) shows the variation of growth rate (KCi) with
wave number (K). In plot (a) δ = 0.5, Dm = 1, Da = 5 × 10−3,
hr = 1.5, ρr = 1, μr = 0.9, 	1 = 8 × 103, 	2 = 15 × 103, and α =
0.2. The solid line (dots) shows the result from the Chebyshev-Tau
QZ (spectral collocation) method. The curve iU represents the surface
mode at free surface. iL represents the interfacial mode at liquid-liquid
interface, sP represents porous media shear mode, and sB represents
shear mode. Plot (b) gives growth rate for different hr when μr = 2.5,
ρr = 1, δ = 0.01, Dm = 0.01, Da = 0.1, 	1 = 0, 	2 = 0, and α =
0.2. For plot (c) δ = 0.3, Dm = 0.3, Da = 0.2, hr = 0.05, ρr = 1,
μr = 1, Re = 1, and cot α = 1.

we reproduce a pair of linear growth rate (KCi) vs wave
number (K) plot for a free bilayer flowing on a nearly
nonslipping and impervious substrate [39] in the limit where
the effects of the porous layer is rather trivial. In Fig. 3(c), we
asymptotically recover a KCi vs K plot for single layer flow
over porous medium from Ref. [60] under similar conditions.
Figure 3 corroborates the accuracy of the codes employed
to predict the eigenvalues employed in this study. In what
follows, we employ the Chebyshev-Tau QZ algorithm to
report the results under varied conditions. The eigenfunctions
corresponding to the eigenvalues are obtained employing the
spectral collocation method.

VI. RESULTS AND DISCUSSION

Figure 1 schematically shows a thin free bilayer flowing
on an inclined porous medium. In the absence of the porous
layer, the interfaces in a free bilayer flow over an impervious
substrate can be unstable by interfacial modes originating from
the viscosity and density stratifications across the liquid-liquid
and liquid-air interfaces [36–41]. At higher flow rates, the
increasing influence of the inertial forces can also engender
finite-wave-number shear modes [17]. In what follows, we
discuss the fate of these modes under the influence of porous
layer parameters. We also explore the possibility of new
unstable modes that are specific to the presence of the porous
layer.

The coupled deformable free surface and interface of a
bilayer can show interfacial modes of instabilities under the
influence of small amplitude perturbation. Depending on the
magnitude of the surface (interfacial) tension at the free surface
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FIG. 4. Plots show the variations of growth rate (KCi) with
wave number (K). The curve iU represents the surface mode at the
free surface. iL represents the interfacial mode at the liquid-liquid
interface, sP represents porous media shear mode, and sB represents
shear mode. The curves in plot (a) correspond to different 	1 when
Re = 97,μr = 0.5, and 	2 = 15 × 103. The curves in plot
(b) correspond to different values of 	2 when Re = 389,μr = 0.9,
and 	1 = 8 × 103. The other parameters are kept fixed at δ = 0.5,
Dm = 1, Da = 5 × 10−3, ρr = 1, hr = 1, and α = 0.2.

(interface), the wavelengths of these modes can vary. Further,
the strongly coupled interfaces can evolve in a single wave-
length whereas a weak coupling between the interfaces can
engender different wavelengths of interfacial deformations.
The growth rate (KCi) vs wave number (K) plots in Fig. 4
indicate the presence of multiple interfacial modes, iL and iU.
Here the superscripts “L” and “U” correspond to the interfacial
mode corresponding to “lower” liquid-liquid and “upper”
liquid-air interface. The interfacial modes are differentiated
based on the phase speed of the unstable interfacial modes
corresponding to the base state velocities at the interfaces
[38,47]. Plot (a) shows that when the more viscous film is
adjacent to the wall, the bilayer is unstable by a dominant iU

mode and a subdominant iL mode. Interestingly, the curves in
this plot also show that at a fixed 	2, an increase in 	1leads to
the reduction in the growth rate and increase in the wavelength
of the iL interfacial mode whereas the iU mode remains almost
insensitive to this change. The plots also suggest that when
the surface and the interfacial tensions are nearly identical a
stronger coupling between the instability modes is observed
as the dominant wavelength of instability becomes similar.
Plot (b) also shows that the change in the surface tension has
profound influence on both the interfacial modes. However,
under this condition the dominant wavelength of instability for
the interfacial modes is found to be very different signifying
a decoupling of the unstable modes. Figure 4(b) also confirms
the presence of a pair of finite wave-number sB and sP shear
modes in addition to the interfacial modes in which the surface
tension at the free surface is found to have more influence on
the sB mode. The superscripts here identify the shear mode for
a free bilayer on nonslipping surface (sB) and the porous media
mediated shear mode (sP). The origin of the shear modes is
discussed in the following section through an eigenfunction
analysis.

A free bilayer composed of a pair of immiscible phases
such as oil and water can be made unstable on a porous
layer when the angle of inclination is progressively increased.
In such a situation, we can anticipate the appearance of the
different instability modes as the flow inside the configuration
becomes stronger as the angle of inclination is increased.
Figure 5(a) shows the neutral stability curves in the Kc-Re
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FIG. 5. Plots (a), (c), and (d) show the neutral stability curves.
Plot (b) shows the eigenvectors for the sP and sB modes at K = 0.8 and
1.5, respectively, when α = 0.16 (Re = 312). The broken curves in
plot (c) show the neutral stability plots with the variation in porosity
(δ) and plot (d) shows the same with the variation in Darcy number
(Da). The solid lines in the plots (c) and (d) show the other modes.
The other parameters chosen for the plots are δ = 0.5, Dm = 1,
Da = 5 × 10−3, ρr = 1, μr = 0.9, hr = 1, 	1 = 8 × 103, and 	2 =
15 × 103.

parametric regime for the different instability modes of a free
bilayer flowing on a porous medium having constant porosity,
permeability, and thickness. In this figure, the area under the
curves for the interfacial modes and the shaded area enclosed
by the curves for the shear modes show the unstable wave
numbers. The curves suggest that the iU mode can appear
even when the configuration is marginally inclined whereas
the iL mode appears only beyond a critical value of Re =
48. The unevenly broken lines confirm the long-wave nature
(KCi → 0 as K → 0) for these interfacial modes, which also
shows a larger span of unstable wave numbers at a higher
Re. The hashed (shaded) area encompassed by the evenly
broken (solid) curve suggests that the finite-wave-number sP

(sB) shear mode can appear at a larger threshold value of Re
(for sP mode Re = 175; sB mode Re = 207) when the relatively
stronger inertial effects start alleviating the viscous influences.
The span of unstable wave numbers for the sB and sP shear
modes grows with the increase in Re. The sB mode destabilizes
shorter wavelength modes as compared to the other modes. The
curves in the Fig. 5(a) reflect that if the flow rate in an oil-water
free bilayer is progressively increased the most dangerous is
the iU mode, as it appears at the lowest Re. All the other modes
appear at a higher Re and can influence the flow stability in
the nonlinear regime, which cannot be unveiled through the
present analysis. However, the experiments on the free bilayer
flows on a porous medium can also be performed by coating
a pair of polymeric films on a porous surface and then heating
them well above the glass transition temperature to stimulate
flow. In such a situation, the experiments can be initiated with a
fixed angle of inclination before the polymer films start moving
due to the external heating and iL, sB, and sP modes can be
observed at fixed values of Re. Importantly, for a fixed Re the
primary mode of instability will be the one growing fastest

among all the unstable modes, which we will discuss with
Figs. 6–8 in detail.

Figure 5(b) helps in identifying the location of the shear
modes through the eigenvectors. While the interfacial modes
are always expected to reside in the respective interfaces,
the horizontal solid and broken lines show the critical layers
corresponding to the sP and sB modes, respectively. The solid
and broken lines showing the eigenfunctions together with
the location of the critical layers confirm the place of the sB

mode in the upper layer and the same of the sP mode at the
lower layer, near the porous-liquid interface. Previous works
on the free bilayers flowing over nonslipping and impermeable
surfaces report the presence of iU, iL, and sB modes [40,46].
The additional sP mode at the lower layer originates from the
larger flow inside the porous layer. Interestingly, the neutral
stability plots in Figs. 5(c) and 5(d) show that increase in the
porosity (δ) and permeability (Da) of the porous medium can
only influence the sP mode to originate at a much lower Re
while the neutral stability plots for the other modes remain
almost invariant. Larger porosity and permeability can allow
a stronger flow inside the porous medium even at a smaller
inclination (α), which helps the sP mode to appear at a much
lower value of Re. The span of unstable wave number for
the sP mode is also found to increase with Re especially
in the shorter wavelength regime. It may be noted here that
the interfacial mode appears only beyond a finite inclination
and the discontinuity associated with the plot representing
the “iL” mode represents the critical Re at which the mode
originates.

Briefly, Figs. 4 and 5 confirm the presence of a pair of
interfacial and shear modes for a free bilayer flowing over
inclined porous medium in which the interfacial modes are
located at the interfaces and the shear sP and sB modes
are located inside the bulk of the lower and upper layers.
The plots suggest that the liquid-air interface is unstable
due to the long-wave iU mode even when the free bilayer
is marginally inclined. In contrast, the liquid-liquid interface
shows an interfacial mode of instability (iL mode) at a much
larger inclination owing to the lack of viscosity or density
stratification across the interface. The shear modes only appear
when the flow inside the liquid layers is much stronger and the
frictional influences at the layers are progressively reduced by
the relatively larger inertial effects. The sB mode is found to
appear at the upper layer near the liquid-air interface because
of the weak frictional influence at that location. In comparison,
the flow inside the porous layer allows a strong slippage at the
porous-liquid interface, which promotes an entirely new sP

mode at the lower layer. It may be noted here that a free bilayer
on a nonslipping and impermeable surface never shows the sP

mode because of the stronger frictional influence on the lower
layer from the rigid and impermeable wall. In contrast, the
presence of the porous layer significantly reduces the frictional
influence especially at higher values of porosity, thickness, and
permeability, which stimulates the appearance of the sP mode
beyond a critical value of Re.

In Fig. 6 we analyze the coexistence of different instability
modes when the parameters related to the films and the
porous layers are varied at a finite Re. Plots (a)–(f) show the
sensitivities of the linear growth rate (KCi) with wave number
(K) at different δ, Dm, Da, α, hr , and μr , respectively. The
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FIG. 6. Plots show the variation of growth rate (KCi) with wave
number (K).The curves in plots (a)–(f) correspond to different δ,Dm,
Da, α, hr , and μr , respectively. The other parameters are fixed at δ =
0.5, Dm = 1, Da = 5 × 10−3, ρr = 1, μr = 0.9, hr = 1, 	1 = 8 ×
103, 	2 = 15 × 103, and α = 0.2.

solid line in plot (a) shows that when the porosity is small
the bilayer can be unstable by a pair of long-wave interfacial
modes (curve iU and curve iL in the inset) together with a
finite-wave-number shear mode (sB). It may be noted here
that, in this case, the free surface has larger surface tension as
compared to the liquid-liquid interface, which ensures that the
iL mode shows a maximum at higher wave number (smaller
wavelength) as compared to the iU mode. Interestingly, the
iU mode is the dominant one owing to the smaller density
and viscosity stratification across the liquid-liquid interface
when ρr = 1, μr = 0.9, which leads to a very weak iL mode.
The origin of the finite wave-number shear mode sB can be
attributed to the increasing inertia inside the bilayer with
an increase in the angle of inclination, as discussed in the
previous figure. Plot (a) also shows that for a fixed angle
of inclination, when the porosity (δ) of the porous layer is
progressively increased, a new finite-wave-number sP mode
appears (broken curves). In fact, the sP mode can even be the
dominant one at higher δ. The origin of this new porous-media
sP mode can be attributed to the augmented inertia at the
liquid layers owing to the larger slippage at the porous-liquid
interface, as previously observed in the base state velocity
profiles. The broken lines in plot (b) show that the sP mode
also gains strength with the increase in the porous layer
thickness (Dm). Interestingly, increase in the permeability
of the porous layer (Da) increases the strength of the sP

mode until a threshold value as shown by the solid (Da =
0.005) and the evenly broken (Da = 0.05) lines in plot (c).
However, beyond this point, a larger flow in the porous layer

again decreases the strength of the sP mode, as shown by the
evenly (Da = 0.05) and unevenly broken (Da = 0.1) lines
in the plot (c). Thus, with the change in permeability the sP

mode is found to dominate only for a span of intermediate Da
values and remain subdominant or absent otherwise. Plot (d)
shows that when the angle of inclination (α) of the substrate
increases, all the unstable modes gain strength. This is in
contrast to plots (a)–(c) where the porous media parameters
could only influence the growth rate corresponding to the sP

mode and other instability modes remained rather insensitive
to the same influences. Interestingly, plot (d) also shows that
although an increase in α increases the strength of all the
iU, iL, and sB, it has a more profound impact on the sP

mode, as it is observed to be the dominant mode at higher
inclinations even at a moderately high porosity (δ = 0.5).
Previously, in Fig. 2 it was shown that the slippage at the
porous-liquid interface increases with an increase in α, which
in turn helps the sP mode to gain dominance over the other
modes especially at higher values of α. Plot (e) shows another
interesting scenario where the ratio of the upper to lower
film thickness (hr ) is varied. When the upper layer is thin
(solid line) we observe the presence of a dominant iU mode
of instability. With an increase in the upper layer thickness
the sB mode progressively gains strength and along with that
the iL and the sP modes make an appearance. The growth
of the shear modes can be attributed to the reduction in the
frictional influence for the bilayers with thicker upper layer.
Interestingly, when the upper layer is relatively thicker (dash
dot line), we observe the appearance of a bimodal plot, in
which the smaller wave-number maximum corresponds to the
iL mode and the larger wave-number maximum corresponding
to the sB mode. The curves corresponding to hr = 1.3 and
1.5 together confirm that when the unstable wave numbers
for the iL and sB modes are very similar, an interference of
the unstable wave numbers gives rise to the bimodality of
the curves. The unevenly broken lines in plot (f) show that a
more viscous upper layer not only destabilizes a free bilayer
by simulating the iU and sB modes but also has a significant
influence on the sP mode even at a moderately high porosity.
In such a situation, the additional inertial influence originating
from the porous layer stabilizes the iL mode. In contrast, when
μr < 1, the iL mode appears and the sP mode disappears.
The observation here is again in commensuration to the base
state plots in Fig. 2 where we observed a higher (lower)
slippage at the porous-liquid interface when the lower layer
had smaller (higher) viscosity leading to a larger (smaller)
inertial influence. Concisely, Fig. 6 shows that the additional
inertial influence inside an inclined porous plane can have a
lasting destabilizing influence on the free bilayer, which can
indeed be exploited to increase momentum, heat, and mass
transfer in the microscale devices.

Plot (a)–(f) in Fig. 7 show the neutral stability plots with
the variations in δ, Dm, Da, 	r , hr , and μr , respectively. In
the neutral stability plots the area under the curves for the
interfacial modes and the shaded area enclosed by the curves
for the shear modes show the unstable wave numbers. Plots
(a)–(c) show that the sP mode appears only beyond a critical
value of δ, Dm, and Da. Further, the span of unstable wave
numbers for the iL, iU, and sB modes remain undisturbed
when δ, Dm, and Da are progressively increased. The range
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FIG. 7. Plots (a)–(f) show the neutral stability curves with the
variations in δ, Dm, Da, 	r = 	2/	1, hr , and μr , respectively. For
plot (d) 	1 = 8 × 103 is fixed. The other parameters fixed for the
plots are δ = 0.5, Dm = 1, Da = 5 × 10−3, ρr = 1, μr = 0.9, hr =
1,	1 = 8 × 103, 	2 = 15 × 103, and α = 0.2.

of unstable wave numbers for the sP mode increases with
an increase in δ and Dm. The sP mode is stable for small
and moderately large range values of Da and is unstable in a
closed region in the Kc-Da plane. The plots confirm that when
the other parameters are fixed the porous media parameters
can only influence the sP mode. In comparison, plots (d)–(f)
show that the span of unstable wave numbers for all the modes
grows with the increase in 	r , hr , and μr , respectively. Plot
(d) suggests that the span of unstable wave numbers for the
interfacial mode progressively increases with a reduction in
	r , whereas the shear modes remain almost insensitive to the
change. Interestingly, plot (e) shows the appearance of the iL

and sB modes beyond a critical hr , which gradually merges to
a single mode at higher values of hr (=1.4), as denoted by the
“sB + iL” zone in the area encompassed by the evenly broken
line. It may be noted here that in this region, only the bimodal
growth rate vs wave-number plots are observed in Fig. 6 At
higher values of hr (=2.1), as the shear mode increasingly
shifts more to the smaller wavelength regime due to the excess
inertial influence, again the independent identities of the iL

and sB modes are recovered. The plots also show that the
sP mode makes appearance only beyond a critical hr (=0.6)
as shown by the dotted enclosed region. With an increase in
the upper layer thickness, the span of unstable wave numbers
for the sP mode shifts towards the longer wavelength regime.
Plot (f) shows that both the shear modes appear only beyond
a threshold μr and a free bilayer with a more viscous upper
layer can destabilize a larger span of unstable wave numbers
for the sP mode. The plot also shows that the iL mode for a
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FIG. 8. Plots (a)–(f) show the variation of (KCi)max with δ, Dm,
Da, Re, hr , and μr , respectively. The other parameters are fixed as
δ = 0.5, Dm = 1, Da = 5 × 10−3, ρr = 1, μr = 0.9, hr = 1,
	1 = 8 × 103, 	2 = 15 × 103, and α = 0.2.

free bilayer flowing over a porous layer exists in the region
where μr < 1. The sB mode is found to shift towards the
shorter wavelength regime as the upper layer becomes more
viscous.

In Fig. 8, we find out which of the modes dominate the
instability of a free bilayer with the variations in δ, Dm, Da,
Re, hr , and μr . The curves in plots (a)–(c) show that at smaller
values of δ, Dm, and Da, the instability characteristics are
similar to a free bilayer on an inclined impervious surface as
the sP mode is absent. Plots (a)–(c) also show that although the
iL, iU, and sB modes remain undisturbed (broken lines) when
δ, Dm, and Da are progressively increased, the solid lines
show that the sP mode (i) progressively becomes the dominant
mode with the increase in δ and Dm, and (ii) becomes the
dominant mode only for a span of Da, and otherwise remains a
subdominant mode. The solid lines in plots (d)–(f) also uncover
that even when the porous layer is moderately porous and
permeable, the sP mode can be the dominant one at reasonably
higher Re, hr , and μr , respectively. The plots also show that
a thicker and more viscous upper layer helps in destabilizing
the sP mode to a larger extent and all the other modes are
found to become subdominant under such conditions. The
only exception to this observation is when the iL and sB modes
merge and show dominance through bimodality. We interpret
the bimodal plots as the iL mode, since the plot loses its finite
wave-number characteristics. The discontinuity in the plot (e)
for the sB mode is also associated with the same phenomena.
Plot (f) suggests that the iL mode is present only when μr < 1
for a free bilayer flowing on a porous layer. Concisely, the
figure depicts that the addition of a porous layer underneath
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FIG. 9. Plots (a)–(f) show the variation of Cr with δ, Dm, Da, Re,
hr , and μr , respectively. The other parameters are fixed as δ = 0.5,
Dm = 1, Da = 5 × 10−3, ρr = 1, μr = 0.9, hr = 1, 	1 = 8 × 103,
	2 = 15 × 103, and α = 0.2.

a free bilayer can develop a dominant sP mode of instability
even for reasonable porosity, thickness, and permeability of
the porous layer.

Figure 9 shows the variation in phase speed as a function of
dimensionless parameters governing the free bilayer flow on an
inclined porous medium. Plots (a)–(c) suggest that phase speed
(Cr ) is not very sensitive to the porous media parameters except
Da whereas plots (d)–(f) show that Cr increases significantly
with an increase in Re, hr , and μr . Interestingly, Cr for the
sP mode is always found to be smaller than the other modes,
which can be explained from its location near the porous-liquid
interface, as predicted by the critical layer analysis in Fig. 5(b).
The slowly moving sP mode is under the maximum frictional
influence because of its proximity to the bounding wall. In
comparison, the iL mode at the liquid-liquid interface is found
to move faster as it is away from the wall and is under lesser
frictional influence. The location of the sB mode at the upper
layer helps it to move at a faster speed than the iL mode, while
the iU mode moves with highest speed owing to its largest
distance from the bounding wall. Interestingly, the Cr plots
for the instability modes (iU > sB > iL > sP) follow the same
order based on their location from the bounding wall and hence
the decreasing frictional influence. It may be noted here that
the discontinuities associated with the plots for the sP mode in
this figure indicate the parametric domain where it originates
or disappears. The mode appears beyond a critical δ, Dm, Re,
Da, and μr while it disappears beyond a threshold value of Da,
as indicated by the plots.

VII. CONCLUSIONS

The instabilities of an inclined free bilayer flowing over
a Darcy-Brinkman porous layer have been explored. An Orr-
Sommerfeld analysis of the governing equations and boundary
conditions is performed to uncover the salient features of the
instabilities. The major conclusions are as follows:

(1) A free bilayer can be unstable by a pair of long-wave
interfacial modes together with a pair of finite wave-number
shear modes originating from the inertial influences at the
liquid layers. Like a free bilayer on an inclined impervious
surface, all the unstable modes are found to appear beyond a
critical flow rate and travel across the space. All the modes
are found to gain strength with increase in the angle of
inclination, ratios of the upper to lower liquid film thickness,
and viscosities. The interfacial mode specific to the liquid-
liquid interface (iL mode) is found to be present only under
the condition μr < 1.

(2) One of the shear modes (sP mode) originates from the
augmented inertial influence of the porous layer, which is
found to be the dominant mode even at moderate porosity,
permeability, and thickness of the porous layer. The strength
of the sP mode (a) increases with increase in porosity, (b)
initially increases and then remains a constant with increase
in porous layer thickness, and (c) initially increases and then
reduces with an increase in the permeability of the porous
layer. Interestingly, interfacial modes (iL and iU mode) and
the conventional shear mode (sB mode) specific to a bilayer
on an impervious surface are found to be rather insensitive to
the changes in the porous layer parameters.

(3) Although the increase in the ratios of upper to lower
film thicknesses and viscosities and the angle of inclination
causes larger destabilization to all the modes, by and large, the
sP mode dominates over the other modes when the porous
medium is moderately porous, permeable, and thick. The
additional inertial influence at the porous-liquid interface
originating from the flow inside porous media is the major
reason behind the growth of the sP mode in a free bilayer
flowing down an inclined plane.

(4) An eigenfuction analysis shows that the sB mode
originates at the upper layer whereas the sP mode stays at
the lower layer, near the porous-liquid interface. Further, the
analysis confirms a progressive increase in the phase speed
(iU > sB > iL > sP) as the modes are located away from the
bounding wall and have lesser frictional influence.

The results reported here highlight the importance of
a porous layer underneath a free bilayer flow to expedite
interlayer mixing. The reported parameter space for the
dominance of the porous media mediated shear mode can be
of significance because even a trifling amount of roughness,
porosity, and slippage can develop this instability mode in the
more realistic situations and improve the efficiency of mixing,
separation, heat, and mass transfer especially in the microscale
devices.
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APPENDIX

Base state governing equations are

Ū1ZZ = −G sin α, (A1)

Ū2ZZ = −(1/νr )G sin α, (A2)

(1/δ)ŪmZZ − (1/Da)Ūm = −G sin α. (A3)

The dimensionless no-slip boundary condition at the porous-
solid interface (Z = −Dm) is

Ūm = 0. (A4)

The dimensionless form of the continuity of velocity, and the
stress jump conditions at the liquid-porous interface (Z = 0)
are

Ū1 = Ūm, (A5)

(1/δ)ŪmZ − Ū1Z − (χ/
√

Da)Ūm = 0. (A6)

The dimensionless form of the continuity of velocity and
tangential stress balances at the liquid-liquid interface (Z = 1)
are

Ū1 = Ū2, (A7)

Ū1Z = μr (Ū2Z). (A8)

The dimensionless stress balance condition at the liquid-air
interface (Z = H2) is

Ū2Z = 0. (A9)

The above governing equations and boundary conditions yield

Ū1 = C11Z
2 + C12Z + C13, 0 � Z � 1, (A10)

Ū2 = C21Z
2 + C22Z + C23, 1 � Z � B, (A11)

Ūm = Cm1e
MZ + Cm2e

−MZ + Cm3, −Dm � Z � 0,

(A12)

C11 = −G sin α/2, (A13)

C12 = −2C11 − 2μr (H2 − 1)C21, (A14)

C13 =
(

χ (F+ − F−) − √
Da(J+ + J− − φ)

φ
√

Da

)
Cm3

− 2(F+ − F−)

φ
C11 − 2μr (H2 − 1)(F+ − F−)

φ
C21,

(A15)

C21 = −G sin α/2νr , (A16)

C22 = −2C21H2, (A17)

C23 = C11 + C12 + C13 + (2H2 − 1) C21, (A18)

Cm1 = (F− − 1) Cm3 − F−C13

(F+ − F−)
, (A19)

Cm2 = − (F+ − 1)Cm3 − F+C13

(F+ − F−)
, (A20)

Cm3 = DaG sin α. (A21)

Here, φ = F−J+ + F+J−; F+ = e
√

δ/Da Dm ; F− =
e−√

δ/Da Dm ; J+ = (
√

1/δ Da + χ/
√

Da); M = √
δ/Da;

J− = (
√

1/δ Da − χ/
√

Da).
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