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Multiple collisions in turbulent flows
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In turbulent suspensions, collision rates determine how rapidly particles coalesce or react with each other. To
determine the collision rate, many numerical studies rely on the ghost collision approximation (GCA), which
simply records how often pairs of point particles come within a threshold distance. In many applications, the
suspended particles stick (or in the case of liquid droplets, coalesce) upon collision, and it is the frequency of first
contact which is of interest. If a pair of “ghost” particles undergoes multiple collisions, the GCA may overestimate
the true collision rate. Here, using fully resolved direct numerical simulations of turbulent flows at moderate
Reynolds number (Reλ = 130), we investigate the prevalence and properties of multiple collisions. We find the
probability P (Nc) for a given pair of ghost particles to collide Nc times to be of the form P (Nc) = βαNc for
Nc > 1, where α and β are coefficients which depend upon the particle inertia. We also investigate the statistics
of the times that ghost particles remain in contact. We show that the probability density function of the contact
time is different for the first collision. The difference is explained by the effect of caustics in the phase space of
the suspended particles. We demonstrate that, as a result of multiple collisions, the GCA leads to a small, but
systematic overestimate of the collision rate, which is of the order of ∼15% when the particle inertia is small,
and slowly decreases when inertia increases.
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I. INTRODUCTION

Collisions between particles transported by a turbulent flow
play a crucial role in several important phenomena. Saffman
and Turner [1] suggested that turbulence in clouds can lead to
a very significant enhancement of the rate of collision between
small droplets. This mechanism has been proposed to provide
an explanation for the very fast rate of coalescence reported in
warm cumulus clouds [2–4]. Also, collisions between dust
grains in a turbulent circumstellar accretion disc play an
important role in some theories for planet formation [5,6].

There is a substantial literature on the collision rate of
particles in turbulent flows. Most of the studies devoted
to collisions in turbulent suspensions explicitly deal with
“geometric collisions,” that is, merely detect when the centers
of two particles are separated by a distance d less than the
sum of their radii, a1 + a2. The time-dependent separation
d(t) may cross a1 + a2 repeatedly, and every crossing from
above is considered as a new collision. In many applications,
however, the colliding particles are assumed to stick, coalesce,
or react on first contact. In these cases the multiple collisions
are spurious, and the physically relevant collision rate should
count only the frequency with which d(t) decreases below
a1 + a2 for the first time. The “ghost collision approximation”
(GCA) consists in ignoring this aspect and in following all
particles in the flow even after they underwent collisions.
While this approximation is appealing from a numerical point
of view, it has been noticed to lead to questionable estimates of
the collision rate [7,8], because it includes spurious multiple
collisions [9].

The first objective of our study is to characterize the
statistics of the multiple collisions. This question is particularly
relevant when studying model classes of reaction occurring
with a finite probability when particles are close enough

[10]. We therefore investigate the statistics of the number of
contacts, Nc. We find that there is a very simple distribution of
the number of times a pair of particles collides: the probability
for observing Nc collisions after one initial collision is found
to be well approximated by

P (Nc|Nc � 1) = β αNc , (1)

where the coefficients α and β depend upon parameters as
discussed below.

It has been observed that tracer particles in a turbulent
flow can remain in proximity for a long time [11–13]. It is
natural to expect that this phenomenon may be related to the
multiple collisions which we are investigating here. With this
motivation, we consider the statistics of the time that a pair of
ghost particles is in contact and relate this to the distribution
of relative velocities of collisions. The probability distribution
function (PDF) of the contact time exhibits a striking structure.
For the first collision, it follows a power law at intermediate
values and an exponential decay at longer contact times. The
PDFs of the contact time for the first collision are markedly
different from those of subsequent collisions (which lack the
power-law behavior and which appear to be independent of
the number Nc of collisions, for Nc � 2). We explain this
discrepancy by appealing to a model for the collision process
introduced in Refs. [2,4], according to which the collision rate
� can be expressed as the sum of two terms, resulting from
two different types of physical processes:

� = �adv + �caust. (2)

The term �adv represents the rate of collisions of particles
which are advected into contact by shearing motion due to
turbulence. This advective process allows for the possibility
of multiple collisions, because the local velocity gradient
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can fluctuate as a function of time, so that particles may be
brought back into contact after separating for a while. The term
�caust results from the possibility that particles with significant
inertia can move relative to the fluid. If caustics (fold lines)
form in the phase space of the suspended particles, particles
occupying the same position may have different velocities.
This phenomenon can also be understood as resulting from
particles being centrifuged out of vortices and has also been
referred to as the “sling” effect [2,14]. Experiments have
recently demonstrated the existence of the “sling” effect in
a well-controlled laboratory flow [15]. Particles colliding
at higher relative velocity are unlikely to undergo multiple
collisions. The higher-velocity collisions generated by caustics
contribute to the statistics of the first collision, but not to
the multiple collisions. The use of the decomposition (2) is
supported by work demonstrating that it is valid for a random
flow model [16,17]. A companion to this paper [18] shows
that (2) is a good model for DNS studies of turbulence and
discusses the relative importance of the two terms as a function
of the parameters of the turbulent suspension.

What happens to two particles after they have come into
contact depends on the precise physical context [10,19]. We
are interested here in problems where particles have a strong
probability of reacting after their first contact. In these cases
the multiple encounters between a given pair of particles,
quantified by �m, correspond to an unphysical contribution to
the collision rate. Let �1 be the rate for first contact collisions,
and �m be the rate for subsequent multiple collisions. The
GCA collision rate can be written as a sum:

�GCA = �1 + �m. (3)

The existence of multiple collisions points to a shortcoming
of the GCA: when particles coalesce upon collision, �1 is
the physically relevant collision rate, and the rate of multiple
collisions �m is a spurious contribution to �GCA.

One way to evaluate the true collision rate �1 is to count the
rate of multiple collisions and subtract it from �GCA. We have
also considered two other processes, which lead to alternative
definitions. The first process consists in assuming explicitly
that the two particles do not participate any longer to the
reactions as soon as they have come into contact, as if they had
annihilated. Technically, in order to deal with a steady-state
system, we introduce two new particles to compensate for the
loss. The implementation of this algorithm requires some care
in the case of inertial particles, as the velocity depends on
history. Another process consists in removing and replacing
only one of the two colliding particles. We demonstrate here
that the collision rates describing these two processes are equal
to �1, in the limit of very dilute suspensions, which justifies
its relevance.

The results presented here very significantly extend a
previous study, using a simpler model of turbulent flow, namely
the kinematic simulation approach [20]. While the results
concerning the relative errors made by using this simplified
flow are qualitatively similar to the results presented in this
work, we find that kinematic simulations lead to a very
significant underestimation of the collision rates, by almost
an order of magnitude.

Our work emphasizes models where the suspended particles
coalesce upon contact, so that multiple collisions are a source

of error in the collision rate. These models are just a limiting
case of a larger class of models, which may also be of physical
interest. As an example, the case of fully elastic collisions was
recently considered in Ref. [19], which showed that elastic
collisions lead to a finite probability of particles making an
infinite number of collisions. Our investigations of the contact
times in the GCA involve evaluating the distribution of the
time that one particle in a turbulent flow spends within a sphere
surrounding another particle. We remark that Jørgensen et al.
[21] have investigated this distribution experimentally in a
different context, where the radius of the sphere is much larger
than the Kolmogorov length of the flow. Statistics of multiple
collisions have been investigated in a different context [22].

This article is organized as follows. In Sec. II we present the
numerical schemes used to simulate the carrying turbulent flow
and account for the dynamics and collisions of the suspended
particles. We describe the algorithms used to study the physical
problem of particles coagulating during their first contact and
establish that the reaction rate reduces, in the very limit, to �1.
The nature of the correction due to a finite particle density is
discussed in depth in the Appendix. The quantitative estimates
of the probability for a given pair of particles to undergo
multiple collisions are discussed in Sec. III, together with
the data justifying the empirical law (1). These results lead
to estimates of the error made by using the GCA. Section IV
is devoted to the statistics of the multiple collisions. Section V
discusses the explanation for some of the observations in terms
of statistics of the relative velocities upon collision. Finally,
we summarize our results in Sec. VI.

II. NUMERICAL METHODS

A. Direct numerical simulation of Navier-Stokes turbulence

The work rests on simulating the (incompressible) Navier-
Stokes equations:

∂t u(x,t) + (u(x,t) · ∇)u(x,t)

= −∇p(x,t) + ν∇2u(x,t) + f (x,t), (4)

∇ · u(x,t) = 0, (5)

where u(x,t) denotes the Eulerian velocity field, ν is the
viscosity, and f (x,t) is a forcing term; the mass density is
arbitrarily set to unity. These equations are solved in a cubic
box of size 2π with periodic boundary conditions in the three
directions by a pseudospectral method. The pressure p(x,t)
is eliminated by taking the divergence of (4) and by solving
the resulting Poisson equation in the spectral domain [23].
The forcing term acts on Fourier modes of low wave numbers,
|k| � Kf . It is adjusted in such a way that the injection rate of
energy, ε, remains constant [24]:

f k = ε
uk∑

|k|�Kf
|uk|2 if |k| � Kf . (6)

The simulations discussed in this study have been done
with the following parameters, in code units: ε = 10−3 and
ν = 4 × 10−4. The forcing operates at wavenumbers |k| �
Kf = 1.5. With these values, the Kolmogorov scale, ηK =
(ν3/ε)1/4, is comparable to the effective spatial resolution
�x = 2π/256: �x/ηK ≈ 1.5 or kmaxη ≈ 2.1, which fulfills
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standard requirements for the direct numerical simulation
(DNS) of Navier-Stokes turbulence and the integration of
particle trajectories [25]. Let us notice that, in practice, the
number of grid points is 384 in each direction according
to the two-thirds rule [26] (used to avoid aliasing errors).
However, padded high-wavenumber modes are not excited
and, therefore, do not contribute to improving the spatial
resolution of the solution. With these values of the parameters,
the value of the Reynolds number based on the Taylor
microscale is Reλ ≈ 130 in the statistically stationary long-
time limit state.

After spectral truncation, Eq. (4) reduces to a set of ordinary
differential equations (in time) for the Fourier modes, which
have been integrated using the second-order Adams-Bashforth
scheme. The time step δt has been chosen so that the
Courant number Co = urmskmaxδt � 0.1. With this choice, the
relaxation time τp of the particle dynamics remains of the order
of 102δt , which ensures that particle trajectories can be safely
integrated from the time-evolving Eulerian velocity field.

B. Dynamics of particles

We simulated in our flow the motion of small particles, all
of which are assumed to have the same size and mass, whose
motion obeys the following set of equations:

dx
dt

= v,
dv

dt
= u(x,t) − v

τp

. (7)

This set of equations is a simplified version of the original
set derived by Refs. [27,28] and is appropriate for small
spherical particles with radius a, which is much smaller than
the Kolmogorov scale ηK, and whose density is much larger
than the fluid density: ρp/ρf � 1. In order to isolate the
role of turbulence, we have explicitly neglected gravity in
Eq. (7), despite the fact that it plays an important role in cloud
microphysics, sandstorms, and other terrestrial phenomena.
Gravitational effects on collision rates are unimportant in
applications to planet formation. The relaxation time in Eq. (7)
is determined by the Stokes drag:

τp = 2

9

ρp

ρf

a2

ν
. (8)

This relaxation time is made dimensionless by using the
Kolmogorov time scale, τK = (ν/ε)1/2, and the Stokes number

St = τp

τK
(9)

is a dimensionless measure of the importance of inertial
effects in determining the trajectories of the particles. In
order to explore parameter ranges which are relevant to

cloud microphysics, we used a ratio of densities ρp/ρf = 103

throughout. Lengths and times are given in dimensionless units
and can be readily scaled to realistic situations.

The determination of the particle velocity v requires,
according to (7), the evaluation of the fluid velocity u at the
location of the particle. This is done by resorting to tricubic
interpolation. The particle trajectories have been integrated by
using the second-order Verlet velocity algorithm [29].

As we are interested in determining the collision rates in
turbulent flows, we simulated a large number of particles.
The number of particles Np used to monitor the collision
rates was chosen in such a way that the volume fraction � =
4Npπa3/(3L3), where L is the size of the system (L = 2π ),
is either � = 4.5 × 10−6 or � = 4.5 × 10−5. In both cases,
collisions involving three or more particles can be neglected.
Note that the particle radius a is entirely specified by the Stokes
number, via (8) and (9), and the number of particles Np is fixed
by the definition of �, once a is known.

In a flow having reached a statistically steady state, we
inserted at a time T = 0 a total number N ′

p � 1.1Np of
particles, initially distributed uniformly in the flow. The reason
why we simulate more particles than we actually use for
monitoring collisions will be explained in Sec. II C.

We then integrated the equations of motion (4) and (7), for
a time of the order of 10 eddy-turnover times, TL, defined by

TL = L√
〈u2/3〉

, with L = 3π

2〈u2〉
∫

k−1E(k) dk. (10)

After this time, we integrated the equations of motion for a
time ttot larger than 15TL (except for St = 0.2). All the particle
trajectories were saved, with a sampling time of �t ≈ 0.055τK,
and processed afterward. Table I summarizes our runs.

For the case of St = 0, we integrated the trajectories of
Lagrangian tracer particles. Those are point particles with no
extent, but to determine the collision rate it is necessary to
assume they have a finite size. We chose the radius to be the
same as for particles with St = 0.1.

C. Detection of the collisions

In a monodisperse solution of volume V , containing Np

particles, the average number of collisions Nc per unit of time
and per unit volume is proportional to the square of the average
number of particles per unit volume, n ≡ Np/V :

Nc = �c

n2

2
. (11)

Equation (11) defines the collision kernel �c, which depends
both on the fluid motion, and on the physical properties of the
particles.

TABLE I. Summary of parameters from our different DNS runs. We tabulate the Stokes number St, the volume fraction occupied by the
particles �, the total integration time ttot used to determine the collision rate, expressed in terms of the large eddy turnover time TL, and the
total number of collisions NGCA detected, when using the GCA.

St 0.0 0.10 0.20 0.30 0.51 0.76 1.01 1.27 1.52 2.03 2.53 3.04 4.05 5.07

� × 106 4.5 4.5 45 4.5 45 45 45 45 45 45 45 45 45 45
ttot/TL 15.5 15.5 4.2 31.4 15.9 10.4 47.6 13.0 52.4 52.1 52.5 52.3 53.1 42.1
NGCA/104 0.6 1.3 29 3.3 200 180 400 81 250 150 99 72 42 22
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The particle trajectories determined numerically were
stored and postprocessed separately, to determine the number
of collisions and other statistics. Detecting collisions requires
checking the mutual distance between Np particles, which
typically requires of the order of N2

p operations. In simulations
such as ours involving a large number of particles, this can
lead to a prohibitively large computational time. We used an
algorithm based on a cell-linked list to speed up the processing
time, as done in Ref. [30].

Each data set was processed in two different ways:
(1) Multiple collisions of ghost particles. First, we deter-

mined the collision rate using the GCA. In this case only Np of
the total N ′

p simulated particles were used. The collision kernel
�GCA was simply determined by counting the total number
of detected collisions Nc. In addition, we also determined
the rates at which pairs of particles come into contact for
the Ncth time, described by the collision kernel �Nc

. To this
end, at each collision between two particles, we examine
the trajectories leading up to the collision and determine the
number of previous collisions between the same pair. If the
pair has undergone Nc − 1 previous collisions with each other,
the collision event contributes to the kernel �Nc

. Because these
collision kernels describe an exhaustive and mutually exclusive
decomposition of �GCA, we have

�GCA =
∞∑

Nc=1

�Nc
. (12)

The collision kernel of multiple collisions �m is simply defined
by summing the kernels �Nc

, for Nc � 2:

�m =
∞∑

Nc=2

�Nc
. (13)

(2) Collision detection with particle replacement. We have
assumed that, in the case of particles coalescing or reacting
on their first contact, �1 is the correct measure of the collision
rate. To establish this result, we compared �1 with a collision
rate algorithm where particles are removed from the flow after
collision. We determined the collision rate again with Np

particles, but we systematically replaced either one or two of
the colliding particles after each collision. The substitutions
are carried out by simply picking one of the (N ′

p − Np)
noncolliding particles, making sure that the newly introduced
particle is not colliding with any other particle at the moment
of its insertion. In so doing, the collision rate is determined at a
fixed density. A similar method has been used in Refs. [7,31].
The rates determined by this procedure are denoted �Re1

and �Re2, depending upon whether one or two particles are
replaced. We stress that the simplest method, consisting in
generating new particles at random positions, cannot work in
the case of finite inertia (St �= 0), as the velocity depends on
history. Simulating N ′

p > Np particles allows us to deal only
with particles which are already in equilibrium with the flow.
We refer in the following to these algorithms as the one- or
two-particle “substitution schemes.”

It is not immediately clear that �Re1 = �Re2 = �1. In fact,
our numerical results reveal measurable deviations from these
identities at the highest particle volume fraction studied here.
However, as we explain in detail in the Appendix, these

deviations decrease linearly when reducing the particle density,
thus establishing that �1 = �Rei in the limit of very dilute
suspensions.

In all cases the number of collisions Nc(�τ ) is measured
in consecutive intervals of length �τ ∼ TL. For each interval
the collision kernel can be determined as

〈�〉�τ = 2V Nc(�τ )

�τ N2
p

, (14)

which is simply the collision rate divided by n2/2. These
“instantaneous” collision kernels vary in time. Determining the
level of fluctuations of the number of collisions recorded over a
limited time interval led to an estimate of the uncertainty of the
collision rate. The resulting uncertainty in the numerical value
of �GCA is less than 2%, except for St = 0.2 and St = 0.5,
where it is no larger than 4%.

III. QUANTIFYING MULTIPLE COLLISIONS BETWEEN
A GIVEN PARTICLE PAIR

A. Relative contribution of multiple collisions
and error of the GCA

In this section we discuss the probability of having multiple
collision between a given pair of particles and relate this to the
error induced by using the GCA. The left panel of Fig. 1
shows the collision rate computed by using the GCA (curve
with square symbols) and the collision rate �1 (curve with
circle symbols). Our estimates of the collision rates compare
quantitatively very well with previous numerical work [32,33].
The right panel shows the relative difference �m/�1 =
(�GCA − �1)/�1.

Our results show that among all the collisions recorded,
as many as 15% of them involve pairs of particles that
have already come into contact. We note that our results
show that the collision rate determined by using the GCA
is correctly approximated by the Saffman-Turner formula
when St → 0, consistent with previous results [7]. However,
in the limit of small inertia, the property that pairs of
particles collide more than one time is very significant. This
probability decreases when the Stokes number increases. This
result can be qualitatively understood by using the known
fact that when the Stokes number increases, the particle
trajectories differ more from the fluid trajectories, which
allows collisions between particles with an increasingly large
velocity difference. Colliding particles are therefore expected
to separate quicker when the Stokes number is large, thus
making multiple collisions less likely.

In physical situations where particle pairs react upon first
contact, the collision rate �1 is expected to provide the correct
estimate of the reaction rate. To this end, we have measured
the rates �Re1 and �Re2 , defined by taking one or two of the
colliding particles out of the system after collisions. The values
of �Re1 and �Re2 are found to be actually smaller than �1. In
fact, as we explain in the Appendix, the difference between
�Rei

(i = 1, 2) and �1 is due to close encounters between
three particles, an effect whose relative importance becomes
weaker when the total density of particles goes to zero. The
analysis presented in the Appendix establishes that in the limit
of a very dilute system, the proper collision rate is indeed �1.
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FIG. 1. (Color online) Comparison between the collision kernels �GCA and �1. The collision kernel �GCA in panel (a) was obtained
according to the GCA, taking into account all collisions. The collision kernel �1 is restricted to only first collisions of a same pair. The
difference, �m = �GCA − �1, which corresponds to the relative error introduced by the GCA, is shown in the left panel. This error starts at a
value close to ∼15% when St → 0 and decreases for higher Stokes numbers.

B. Statistics of multiple collision

In view of the importance of multiple collisions between a
pair of particles, we characterize here the statistical properties
of the number of collisions a given pair of particles undergoes
before separating. Figure 2 shows the probability distribution
function for a particle pair to collide an Ncth time after at least
one initial collision. The clear result from Fig. 2 is that for
Nc � 2, the probability distribution is very well approximated
by an exponential law of the form of Eq. (1). This remarkably
simple functional form leads to the interpretation that once a
pair of particles has undergone more than one collision, it has
a probability α to collide once more before it separates, the
quantity α being independent of Nc. This suggests a Markovian
process of multiple collisions, amenable to a simple modeling.

The exponential law, Eq. (1), can be used to sum the series in
Eq. (12) and hence to determine the error of the �GCA estimate.
We have �Nc

= �1βαNc for Nc > 1, so that

�m = �1β

∞∑
Nc=2

αNc = �1
α2β

1 − α
. (15)

The numerical values obtained from expression (15), with the
values of α and β extracted from the probability of Nc [see
Fig. 2(a)], agree quantitatively very well with the value of �m

determined directly [see Fig. 2(b)]. The error bars of ∼5% in
the determination of �m, shown in Fig. 1(b), and of the values
of α and β, can easily explain the difference of less than ∼10%
between the two curves in Fig. 2(b).

IV. STATISTICS OF THE CONTACT TIME BETWEEN
PARTICLE PAIRS

Our numerical observation that a given pair of particles
may collide many times in a turbulent flow can be related to
some surprising properties of particle trajectories, which have
been partly documented before [11–13] mostly in the case of
tracers (St = 0). In this section we fully characterize several
properties concerning the time particle pairs spend together,
which is relevant to the subject of the present article.

A. Particle trajectories can stay close together for a long time

Figure 3 shows the distance between two pairs of particles
over a long time. Panel (a) shows the distance in units of
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FIG. 2. (Color online) (a) The probability that a pair of particles collides an Ncth time conditioned on the fact that it collides at least once.
The probability of observing Nc collisions goes as βα(St)Nc . The results are shown at different Stokes numbers. The values of α(St) are shown
in the inset of the figure as a function of St. (b) The kernel for multiple collisions �m determined from Eq. (15) with the fitting parameters
deduced from panel (a) (square symbols) and measured directly in our simulations (circles). The quantitative agreement between both results
confirms the consistency of our reasoning and the quality of our fits.
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FIG. 3. (Color online) Distance between two different pairs of particles as a function of time. (a) The distance over several eddy turnover
times, showing that particles can be close to each other for a short time (dashed curve) or for a much longer time (full line), corresponding to
several large eddy turnover times TL. (b) Magnifying the graph shown in (a) in the region where the distance between the particles is very small.
The solid line reveals that multiple collisions occur. The dotted line in (a) is the average distance for particle pairs homogeneously distributed
in a periodic cube. In (b) the dotted line indicates the collision radius 2a.

the size of the periodic box during one entire simulation. As
expected, the particles are far from each other for most of
the time. However, we notice that the distance can reach a
very small value at some particular moments. Whereas one
of the pairs of particles (dashed line) is close to each other
only for a short while, the other pair spends a much longer
time close to each other. Panel (b) blows up the result in the
range of time where the distance is small. (Here the distance
is shown in terms of the collision radius 2a.) The pair whose
distance is plotted with a dashed line reaches the value of 2a,
i.e., collides, but bounces apart immediately. In comparison,
the continuous curve shows that the two particles stay together
for a time larger than the large eddy-turnover time. Over this
period of time, the distance fluctuates close to the value of 2a,
which causes multiple collisions between the two particles.
The value of the Stokes number of the particles shown in
Fig. 3 is St = 1.0; the phenomenon shown here is qualitatively
similar at different Stokes numbers.

We observe that the time scale for these multiple collision
processes is comparable to the turnover time of the largest
eddies in our simulation TL. In the following investigations,
we have expressed our results in terms of a dimensionless
time t/TL. However the ratio between TL and the Kolmogorov
time scale, τK, in our simulations is not very large: TL/τK ≈
10.5. At present it is unclear whether t/TL is the most
natural dimensionless time scale. We remark that a plausible
alternative is t λ1, where λ1 is the leading Lyapunov exponent.
Because λ1 ≈ 0.15/τK [34], the variables t/TL and t λ1 are
quite similar in magnitude.

B. Distribution of contact times

The phenomenon reported here is very reminiscent of
the observation discussed in several earlier works [11–13],
namely, that particles can stay close for a very long time.
While this property has been documented mostly in the case
of tracers, our observations suggest that inertial particles can
also remain very close for a long time. As has been noticed
in a slightly different context [10], it is of general interest to
characterize the statistical properties of the time that particles
spend together.

In this subsection we determine quantitatively the sta-
tistical properties of the time particle trajectories remain
close to one another. We illustrate in the two following
subsections the statistics at a fixed value St = 1.5 of the Stokes
number.

Figure 4 introduces our notation. We consider a pair of
particles which become closer than a threshold distance dc

at an instant of time. We denote by te,1 the first instant for
which the distance between the particles becomes less than
dc, (that is, the instant of their first collision) and then ts,1
the first instant ts,1 > te,1 when they separate. If particles
approach to within a distance dc again at some later time, we
denote by te,2 the first instant for which the distance becomes
again smaller than dc, and ts,2 the time at which the particles
separate again. This notation can be easily generalized when
the trajectories become more than two times closer than dc.
The time particles spend together during their first encounter
is denoted �T1 ≡ (ts,1 − te,1), which again, can be easily
generalized to the time particles spend together during their nth
encounter.

Figure 5 shows the distribution of the time particles spend
together during their first encounter �T1. The data correspond
to particles with a Stokes number St = 1.5. Panel (a) shows the
PDF of �T1 in lin-log scale. In this figure, �T1 is expressed

2a

te,1 ts,1 te,2 ts,2 te,3 ts,3

di
st

an
ce

time

ts,1 − te,1

te,2 − te,1

ts,2 − te,2

te,3 − te,2

· · ·

· · ·

FIG. 4. (Color online) Illustration of the definition of the different
times: time of first encounter te,1, time of first separation ts,1, time of
second encounter te,2, and time of second separation ts,2.
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FIG. 5. (Color online) Lin-log (a) and log-log (b) representations of the distribution of time spent together by pairs of particles during their
first encounter. Several values of the critical distance dc are shown; the similarity between the curves shows that the dependence on dc is very
weak (note that dc � η for all the values of dc shown). For comparison, the straight dotted line in (b) corresponds to a power law with exponent
1.5. The Stokes number used here is St = 1.5.

in units of the large eddy turnover time, TL, the correlation
time of the flow. Figure 5 shows an exponential decay of the
PDF, with a characteristic time of the order of the large eddy
turnover time. Thus, particles can spend together a time which
is comparable to the large eddy turnover time (at least for
the value of Reλ used in our simulations). Figure 5(a) also
indicates that the PDF has a very sharp maximum around
�T1 ≈ 0. In fact, panel (b) shows the PDF in log-log units and
suggests a power-law distribution of �T1. The exponent of the
power law measured here is of the order −1.5. As

∫
ε
x−1.5 dx

diverges when ε → 0, the PDF necessarily saturates for time
separations ��t , where �t is the time at which we saved
trajectories. Figure 5 shows the PDF of �T1, determined with
several values of the critical distance dc, very small compared
to the Kolmogorov scale η (we have a/η ≈ 1/12). The PDFs
are remarkably independent of dc, at least provided the ratio
dc/η is small, where η is the Kolmogorov length.

Figure 6 shows the probability distribution function for
�Tn, with n = 2,3,4 (n > 1). The PDFs still exhibit for very
long values of �Tn exponentially decaying tails [see panel (a)]
with the same decay rate as obtained for �T1. However, the
short time behavior of the PDF does not exhibit the very large

peak seen in Fig. 5. In fact, the probability distribution does
not exhibit any power law at short values of �Tn, as seen in
panel (b).

The difference between the statistical properties of �T1 and
�Tn for n � 2 is therefore restricted to the short time behavior.
In physical terms, the probability that the two particles do
not spend much time together is much larger during the
first encounter than during the following one. Particles can
spend a short time when they are impacting each other with
a large velocity difference. One may surmise that in such a
case, particles will separate very fast and not get into close
contact afterward. In other words, the events leading to several
contacts are unlikely to have initially a small value of �T1.
To actually check this, Fig. 6 also shows the PDF of �T1,
conditioned on the fact that the two trajectories will come into
contact more than one time (see the curve with the square
symbols). As expected, conditioning the probability of �T1

on the fact that there are more than one encounter between
the trajectories significantly reduces the probability for the
particles of separating very fast. In this spirit, Fig. 7 shows
the PDF of �T1 conditioned on having several successive
encounters between the trajectories (N > 1) or simply one
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FIG. 6. (Color online) Lin-log (a) and log-log (b) representations of the distribution of time spent together by pairs of particles during
second (circle), third (upward pointing triangle), and fourth (diamond) encounters. These distributions are remarkably similar. For comparison,
the distribution of time that particles spend together during their first encounter, conditioned on the fact that they will meet again, is shown
(square symbols). The cuspy distribution, observed for ts,1 − te,1, is not seen for these distributions. The Stokes number used here is St = 1.5.
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FIG. 7. (Color online) The distribution of the time spent together by two particles during their first encounter, p(ts,1 − te,1) (upward pointing
triangles), and the same distribution conditioned on the fact that trajectories will separate after their first encounter and not meet again (Nc = 1;
square symbols). Finally the same PDF is shown again, this time conditioned on the fact that the particles will meet again (Nc � 2; circles).
The statistics is dominated by pairs that collide only once. The large probability, hence the power-law distribution, that two particles spend a
short time together comes from trajectories with Nc = 1. Both conditional probabilities show the exponential tail for large times. The Stokes
number used here is St = 1.5.

(N = 1), together with the total PDF of �T1. As the probability
of having multiple encounters between the two particles
remains relatively small, the PDF of �T1 is extremely close to
the PDF of �T1 conditioned on having N = 1.

Aside from the difference between the PDF of �T1 and �Tn

at short times, it appears that the process leading to subsequent
encounters between particle trajectories is largely self-similar,
i.e., does not depend much on the index n > 1. This effect
is strengthened by studying the difference between the time
it takes for two trajectories to come into contact again. To
this end, Fig. 8 shows the probability distribution function
of �T e

n = (te,n+1 − te,n). The PDF is found to be remarkably
similar (independent of n). As was the case for �Tn, the PDF
has an exponential tail at large values of �T e

n . The distribution,
however, peaks at a finite value of �T e

n ≈ 0.6TL.

C. Stokes number dependence of the contact-time statistics

The general picture, shown in Sec. IV A and IV B for
particles with a Stokes number St = 1.5, has been found to
be qualitatively unchanged when the Stokes number is varied.

However, the details differ quantitatively. This can be seen by
representing the distribution of the time difference �T1 by an
asymptotic fit of the form

P (�T1) ≈ N (�T1/TL)−ξ exp(−κ�T1/TL). (16)

The coefficient N in Eq. (16) is simply adjusted to enforce
that the PDF is properly normalized. The coefficients ξ and
κ are determined by fitting the PDFs. The quality of the fit
is very good, as shown in Figs. 9(a) and 9(b), at least for
0.3 � St. The fitting parameters are found to depend very
significantly on St; see Fig. 10. In the very small Stokes
number limit, the exponent ξ diminishes, suggesting that the
distribution P (�T1) is becoming closer to a purely exponential
distribution. In the opposite limit, the coefficient κ decreases,
whereas the power ξ seems to increase.

V. VELOCITY DIFFERENCE BETWEEN
COLLIDING PARTICLES

The time that two ghost particles spend in “contact” (that
is, the length of time over which the separation of their centers
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FIG. 8. (Color online) Statistics for successive encounters between two particle trajectories. Shown is the PDF of te,i+1 − te,i , te,i being
defined in Fig. 4. (a) The data in lin-log scaling; (b) the same data in log-log scaling. The PDFs do not depend on i, suggesting a self-similar
process. The Stokes number used here is St = 1.5.
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FIG. 9. (Color online) Fit of the PDF of �T by (16) at different values of the Stokes number in lin-log (a) as well as in log-log (b) scaling.
The fits (lines) and the data (symbols) are shown for four values of the Stokes number, as indicated in the legend. The quality of the fit degrades at
small values of St, suggesting that a more complicated functional form may be needed. The fit parameters are shown in Fig. 10 as a function of St.

satisfies d � 2a) is determined by two factors: the impact
parameter and the relative velocity of the collision. The data in
Sec. IV show two striking aspects of the contact-time statistics.
First, the statistics of the first contact are different from those of
all the others. Second, there is evidence for a power-law regime
in the distribution of the first contact time. In this section we
discuss how both of these observations can be explained in
terms of properties of the distribution of collision velocities.

A. Multiple collisions happen at slow relative velocities

The probability of the radial relative velocity, defined as
wr = δv · δr/|δr|, is shown in Fig. 11 for colliding particles
and at St = 1. We remind that the PDF for colliding particles
is different from the one for all particles in contact [35]. In
panel (a) this PDF is shown for two different situations. In the
first one, all colliding particles are taken into account, as is
the case in the GCA. In the other one, only pairs that collide
for the first time are taken into account. In both cases the bulk
of the PDF is located at small values of |wr | and exhibits an
exponential tail at very large collision velocities (see inset).
A close comparison of the two probabilities shows that the
contribution of small relative velocities corresponding to first
collisions is smaller than for all particle pairs detected with the
GCA. This suggests that the error in the GCA stems mainly
from collisions with small relative velocities. The right panel

0
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1.5

2

2.5

0 1 2 3 4 5
St

Fit coefficients: P (ΔT1) ∼ e−κΔT1/TL ΔT1
TL

−ξ

κ

ξ

FIG. 10. (Color online) The PDF of �T has been fitted by
Eq. (16) at different values of the Stokes number. The variation of
the exponent ξ and of the coefficient κ are shown as a function of St.
The quality of the fits can be examined in Fig. 9.

of Fig. 11 extends this observation to different Stokes numbers
by comparing the mean radial relative collision velocities
obtained with both schemes. For Stokes numbers �2 the
collisions corresponding to particles in contact for the first
time show on average slightly larger radial relative velocities.
However, the averaged relative velocities for particle pairs
colliding more than one time are significantly smaller than
both the velocities of first collisions and the velocities in the
GCA. This can be seen in the inset of the right panel. The
observations summarized in Fig. 11 therefore demonstrate that
multiple collisions occur at small relative velocity.

It has been argued that the collision rate between particles
in a turbulent suspension can be resolved into two components,
as represented by Eq. (2) [2,4]. In the decomposition (2), the
term �adv represents collisions due to shearing motion, which
occur with relative velocities of order a/τK, whereas the term
�caust represents collisions between particles which are moving
relative to the flow and on different branches of a phase-space
manifold, separated by a caustic. The relative velocity of
the collisions which contribute to �caust is much higher, of
order (η/τK)f (St), where f (St) is an increasing function,
which is of order unity at St = 1. The ideas underlying this
decomposition also explain why the statistics of the first
contact time are different from those of all the subsequent
contacts. According to this picture, multiple collisions are
almost exclusively due to the advective collision mechanism
and are very unlikely for caustic-induced collisions because
the high relative velocity rapidly moves the particles out of
proximity. In the advective process multiple collisions arise
because of temporal fluctuations of the shear rate tensor [9].
This model explains why the first collision has different contact
time statistics, and why the multiple collisions have small
relative velocities.

B. Power-law distribution of contact times

The evidence for a power law in the distribution of the
contact time for the first collision is one of the conspicuous
results of Sec. IV. In order to understand the origin of such
power laws, we consider the following simplified model. We
computed directly the distribution of the time �T that two
particles in a gas of particles, with a Maxwellian distribution
of velocity spent within a distance 2a from each other. The
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FIG. 11. (Color online) Probability of the radial relative collision velocity. (a) The full line corresponds to the PDF as obtained when taking
into account all collisions, as in the GCA. The dashed line gives the PDF of solely first collisions. The figure has been obtained with a value
of the Stokes number St = 1.0. The velocities are expressed in terms of the velocity uK = (ηK/τK) at the smallest scale. (b) The ratio of the
two mean radial relative collision velocities 〈|wr |〉c,1 and 〈|wr |〉c,GCA for different Stokes numbers. The former takes into account only first
collisions; the latter incorporates all collisions detected within the framework of the GCA. Furthermore the inset in (b) shows 〈|wr |〉c,1 and the
radial relative velocity of multiple collisions 〈|wr |〉c,m in terms of uK.

root mean square of one velocity component of these particles
is taken to be σ . This model corresponds to the very large
St limit of inertial particles in a turbulent flow. In that case
the gas of particles reduces to particles each moving with its
own velocity, distributed according to the Maxwell distribution
[36]. A simple calculation leads to the following PDF of the
time that two particles spend together:

P (�T ) = 2
σ

a

1

ζ

(
1 − exp(−ζ 2)

[
1 + ζ 2 + 1

2
ζ 4

])
(17)

with ζ = 2a

σ �T
. (18)

In the limit of long times, �T → ∞, ζ → 0, the PDF in
Eq. (17) reduces to

P (�T ) ∝ 1

�T 5
. (19)
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FIG. 12. (Color online) Comparison between the calculation of
the time �T spent by two particles together, by simulating directly
a gas of Maxwell particles (symbols) and the result of the analytic
formula (17) (continuous line). The different symbols correspond to
simulations with larger (circles) and smaller (triangles) particles. The
time �T is expressed in terms of ζ , defined by (18). The behavior of
the distribution decays for large values of �T as ∼�T −5. This limit,
as well as the short time behavior ∼�T , are shown as dotted lines.

This result was checked directly by generating a gas of
Maxwellian particles and determining the time particles spend
together (Fig. 12). The distribution of �T is found in excellent
agreement with (17). We furthermore note, that Eq. (17)
displays another power law for short contact times. But this
behavior is only apparent for �T < 2a/σ � τK. In our DNS
of the turbulent transport of particles we do not resolve these
time scales.

Let us consider the implications of the model leading
to Eq. (19) for the distribution of first contact times. The
important point is to observe that a power law in the distribution
of small relative velocities leads to a power-law distribution
of long contact times. The data in Fig. 5 show a power-law
distribution in the contact times at short times. We should,
however, remember that the first contacts are a combination of
caustic-mediated collisions (with high relative velocity) and
advective collisions (with low relative velocity). We propose
that the power-law distribution of the contact time results from
the low-velocity tail of the caustic-mediated collisions having
a PDF which can be approximated by a power-law at small
velocities.

VI. CONCLUSION

We have studied collisions in turbulent suspensions, with
the aim of investigating the statistics of multiple collisions and
of determining the systematic errors in the determination of
the collision rate using the GCA for particles which aggregate
upon contact.

We found that, after the first collision, multiple collisions
involving the same pair of particles occur with a probability
that decays exponentially with the number of collisions, Nc.
We also studied the time that particle trajectories spend close to
one another. We find the PDF of the time spent by two particles
within a distance smaller than a critical value dc exhibits an
exponential tail at very long times. At shorter times the contact
time PDF of the first collision obeys a power law.

To study the errors induced by the GCA, we have compared
the results using the GCA, and a more realistic algorithm,
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which consists in replacing one of the particles that underwent
collision by a particle from a “reservoir.” The error we find by
using the GCA is as large as ∼15% at very small Stokes number
and tends to decrease when St increases. These small, but
systematic, errors should be taken into account when modeling
the effect of turbulence in particle suspensions.

The present study rests on a numerical investigation at a
relatively small Reynolds number (Reλ ≈ 130). We observed
that the typical time scale over which the particles are in contact
is comparable to the large eddy turnover time, TL. However,
a reasonable expectation is that the time that particles spend
together is proportional to the inverse of the largest Lyapunov
exponent, which has been measured to be of the order of
∼15τη and not of ∼TL. The growth of the ratio TL/τη with the
Reynolds number (TL/τη ∝ Reλ) suggests that at higher Reλ,
the fluid motion should become more persistent over a time
scale ∼15τη. For this reason we do not expect that the effects
of multiple collisions decrease when Reλ increases.
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APPENDIX

In this Appendix we consider the equivalence of two
different approaches to determining the true rate of first contact
collisions, �1, and therefore provide evidence that �1 is indeed
the physically appropriate definition of the collision rate, for
a class of systems where particles react only at first contact.
One approach is to use ghost particles and count the rate of
multiple collisions, so that �1 = �GCA − �m. The alternative
approach is to use one of the two “substitution schemes,”
described in Sec. II C, leading to rates �Re1 and �Re2. In this

Appendix we show that these estimates differ as a result of
finite particle density effects. We provide evidence, however,
that they become equal in the limit of very dilute systems (that
is, as the particle density approaches zero).

Figure 13 shows the collision rates produced by these
algorithms, as well as �1, obtained at several values of the
volume fraction �: �0, �0/2, and �0/4. The numerical results
show that

(1) �Re2(�) < �Re1(�) < �1 = �GCA − �m,
(2) �Re2(�/2) = �Re1(�).
A more careful analysis of the data reveals that when � →

0, both �Re1 and �Re2 tend to �GCA − �m, with corrections
which are linear in �. Thus, our numerical results demonstrate
that the results from the three different algorithms agree in the
dilute limit, � → 0.

The numerical results can be understood in the following
way. We introduce the coefficients R = �n, which determine
the rate of collision of a test particle moving in a medium
containing other particles with number density n. The ergodic
assumption implies that the actual collision rate can be inferred
from the long-time behavior of a single test trajectory.

The quantity n�GCA is just the total rate of collision along
the test trajectory, and n�m is the rate for collisions in which the
test particle encounters the same target particle more than once.
For systems where there is coalescence on contact, only the rate
of first collision is of interest. The preferential concentration
effect enhances the rate of subsequent collisions with further
particles, once a pair of particles has collided. However, in
the limit n → 0, the time between collision events approaches
infinity (∝1/n). For this reason, in the limit as n → 0 the first
contact collision rate is precisely n�Rei .

In terms of the long-time average over trajectories, the
algorithm which yields �Re2 changes the position of the
trajectory, therefore destroying the possibility of further
collisions with the surrounding environment. In addition, a
different realization of the surrounding background parti-
cles is chosen. In contrast, for the algorithm which yields
�Re1, either the position of the test trajectory, or the back-
ground of surrounding particles, is changed, each with a
probability 1/2.
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FIG. 13. (Color online) Comparison between �1 = �GCA − �m, and the collision rates obtained by using the substitution algorithms (�Re1

and �Re2). The left panel shows the raw data for some of the different collision kernels as indicated in the legend. The right panel shows
�Rei/ �1 as a function of the Stokes number for those runs listed in Table I for which �0 = 4.5 × 10−5. The open (filled) symbols correspond
to the algorithm Re2 (Re1). The full lines are deduced from each other by multiplication by a factor 2 and suggest that the dependence of the
difference �1 − �Rei behaves linearly with the density of particles in the system.
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Changing the position of the test particles or the sur-
rounding background results, first, in preventing any further
collision between the pair of particles that came into contact.
The simplest approximation for the probability per unit time
of a collision between the test particle and a third particle,
after a contact has been detected, is proportional to R.
This suggests that the approximations �Re1 or �Re2 miss a
correction of order O(Rτ ), where τ is a characteristic time
over which the surrounding particles rearrange. Moreover,

the algorithm yielding �Re2 misses twice as many collisions
with a third particle as �Re1, which is also consistent
with our numerical observations. These arguments suggest
that

�Rei = �1[1 − O(iRτ )]. (A1)

As R ∝ n, this expression justifies the numerical observation
that �Re1,2 are smaller than �1 and differ from it by a quantity
proportional to n.
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