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Viscous-fingering minimization in uniform three-dimensional porous media

Eduardo O. Dias*

Departamento de Fı́sica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
(Received 30 September 2013; revised manuscript received 30 October 2013; published 10 December 2013)

In this paper, we consider a radial displacement of a viscous fluid by another one of much lower viscosity
through a three-dimensional uniform porous medium. It is well known that when a less viscous fluid is pumped
at a constant injection rate, very complex interfacial patterns are formed. The control and eventual suppression
of these instabilities are relevant to a large number of areas in science and technology. Here, we use a variational
approach to search for an analytical form of an optimal flow rate so that the interface between two almost neutrally
buoyant fluids grows, but the emergence of interfacial disturbances is minimized. We find a closed analytical
solution for the ideal flow rate which surprisingly does not depend on either the properties of the fluids or the
permeability of the porous medium.
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I. INTRODUCTION

Viscous-fingering instability, observed first by Saffman and
Taylor [1], has been actively studied for over half a century [2].
This phenomenon occurs when a less viscous fluid displaces
another fluid of higher viscosity in a porous medium or in a
confined geometry of a Hele-Shaw cell. The fluid dynamics
equations of these two systems are similar, and because
the Hele-Shaw cell setup is much more accessible in the
laboratory, it has offered numerous contributions to the better
understanding of Saffman-Taylor instability. In particular,
Hele-Shaw radial flow presents fingerlike structures whose tips
tend to split, giving rise to complex interfacial morphologies.
This fluid dynamic problem is an archetype for a wide range
of fields, including research in oil recovery processes in
porous media [3], fluid mixing [4], flow in granular media
[5], microdischarges in plasmas [6], and biodynamics of cell
fragmentation [7].

It is known that the emergence of a ramified fingering
caused by viscous driven instability is a major factor in
degrading oil recovery from underground petroleum reservoirs
[3]. Therefore, it is of scientific and technological relevance to
search for a way to control and inhibit the growth of bifurcated
patterns. Regarding this point, controlling viscous fingering
has generated considerable interest in recent years both in
a Hele-Shaw setup and in porous media flow. Some recent
control methods have been employed by utilizing the following
distinct procedures: manipulating the injection rate [8–15],
modifying the original structure of the parallel Hele-Shaw
plates [16,17], and adding a wetting layer of surfactant which
makes the surface tension depend on the interface curvature
[18,19]. On the other hand, there are several works in porous
media that try to enhance oil recovery [3,20–27]: one of the
usual methods is performed by flooding the reservoir with a
polymer before the water injection process.

In a macroscopically uniform porous medium, the onset of
instability under immiscible displacement was first understood
by the theory developed by Chuoke et al. [28], and by an
extension made by Neuman and Chen [29]. Chuoke et al.
have proposed that the front is subjected to a stabilizing force
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proportional to macroscopic curvature of the interface, where
the proportionality factor represents an effective surface ten-
sion. Furthermore, Ref. [28] observed that when a higher vis-
cosity of the displaced fluid is considered or lower interfacial
tension at the interface is assumed, relatively small fingers arise
at the interface. This behavior is similar to one verified in Hele-
Shaw flows. Viscous driven instability is also highly influenced
by the wetting properties of the fluids. References [30,35]
observed that in oil-wet media, the fingers form a fractal
pattern with size on the order of the medium pores. On the
other hand, in water-wet media the fingers are much wider in
comparison with those in oil-wet media [36]. In addition, there
are alternative theories for porous media flows that consider
variations in the saturation behind the front which can reduce
the mobility of the fluids [31], and others models that assume
heterogeneity of the porous medium [32,33]. Nevertheless,
the theory developed in Ref. [28] explains satisfactorily the
experimental observations of Refs. [28,34,36,37].

In this work, we consider the Chuoke et al. theory for a
three-dimensional uniform porous medium flow. Then we use
a variational method, which was proposed recently in Ref. [8],
in order to minimize the perturbations of a radially growing
interface. This approach has been successfully verified for
the driven injection flow in a radial Hele-Shaw cell. The
main question of this variational protocol can be expressed
as follows: if one wants to inject a certain volume of fluid
in a given time, what would be the optimal time-dependent
injection rate Q(t) so that the perturbation amplitudes could
be minimized? We apply this method in a radial flow of an
inviscid fluid displacing another viscous one completely in a
uniform porous medium. This natural extension of the system
used in Ref. [8] is of technological importance because of its
greater similarity to the real oil recovery process.

II. LINEAR STABILITY CALCULATION

A. Derivation of the linear growth rate

Consider a three-dimensional uniform porous medium
containing an incompressible fluid of viscosity η1 initially
with a spherical shape of radius R0, and with its center located
at the origin of the coordinate system. Another fluid with
much higher viscosity η2 surrounds fluid 1 filling all porous
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medium. Then, the less viscous fluid is injected at a rate Q(t)
(volume covered per unit time, which may depend on time)
at the origin of the coordinate system displacing the more
viscous one completely. This procedure promotes an unstable
growth of the interface, in which its thickness is assumed to
be much thinner than the wavelengths of the perturbation.
Linear stability analysis of the problem considers harmonic
distortions of a nearly spherical fluid-fluid interface whose
radius evolves according to

R(θ,φ,t) = R(t) + ζ (θ,φ,t), (1)

where θ is the polar angle, φ is the azimuthal angle, ζ (θ,φ,t)
represents the surface perturbation in spherical coordinates,
and R = R(t) is the time-dependent unperturbed radius of the
fluid-fluid interface. For convenience, we write ζ (θ,φ,t) in
terms of spherical harmonics

ζ (θ,φ,t) =
∞∑
l=1

l∑
m=−l

ζlm(t)Ylm(θ,φ), (2)

with ζlm(t) the harmonic spherical amplitudes. Finally, the
volume conservation leads to the equation

R(t) =
(

R3
0 + 3

4π

∫ t

0
Q(t ′)dt ′

)1/3

. (3)

The hydrodynamic equation in a uniform porous medium
is governed by Darcy’s law [28],

vi = − k

ηi

(∇pi − ρigẑ), (4)

where i = 1 (2) for the displacing fluid (displaced fluid),
vi = vi(r,θ,φ,t) is the three-dimensional velocity, k is the
permeability which is a property of the medium, ηi is
the fluid viscosity, pi = pi(r,θ,φ,t) is the fluid pressure, g is
the gravitational acceleration, and ρi is the fluid density. From
now on, we consider that both fluids have approximately the
same density ρ1 ≈ ρ2, and η1 � η2. For a homogeneous,
isotropic porous medium, k is a constant in space within each
region occupied by both fluids. On this basis, we can define
a velocity potential �i , where vi = −∇�i . By noting that
ρigẑ = ∇(ρigz), and subtracting ηi�i in Eq. (4) for i = 1
and 2 evaluated at the fluid-fluid perturbed interface (r = R),
we obtain

A
(�1|R + �2|R)

2
− (�1|R − �2|R)

2

= −k[(p1 − p2) + (ρ2 − ρ1)gz]|R
η1 + η2

, (5)

where A = (η2 − η1)/(η2 + η1). Since we consider η1 � η2

(A = 1) and |[(ρ1 − ρ2)gz]R| � |(p1 − p2)R|, we have

�2|R = − k

η2
(p1 − p2)|R. (6)

For the injection-driven flow, we consider the incom-
pressibility condition ∇ · vi = 0 so that the velocity potential
satisfies ∇2�i = 0. The solution for the displaced viscous fluid
is given by [38]

�2(r,θ,φ) = Q(t)

4πr
+

∞∑
l=1

l∑
m=−l

�lm(t)

(
r

R

)−(l+1)

Ylm(θ,φ).

(7)

To find a relation between �lm(t) in Eq. (7) and ζlm(t),
we consider the kinematic boundary condition which states
that the normal components of fluid velocity at the interface
equal the velocity of the interface. Keeping terms up to first
order in ζ , the kinematic boundary condition reads ∂R/∂t =
(−∂�2/∂r)r=R. Using the orthonormality of the spherical
harmonics and solving for �lm(t) consistently yields

�lm(t) = 1

(l + 1)

[
Rζ̇lm + Q(t)

2πR2
ζlm

]
, (8)

where the overdot denotes total time derivative.
Another important boundary condition at the interface,

which is analogous to the Young-Laplace equation, has been
proposed by Chuoke et al. [28]. It relates the curvature to the
pressure jump across the fluid-fluid interface by the expression

(p1 − p2)|R = σ ∗
[

1

ra

+ 1

rb

]
+ pc(t), (9)

where σ ∗ is an effective (macroscopic) surface tension co-
efficient, ra and rb are the two principal radii of curvature
of the interface, and pc(t) is related to capillary pressure
drops across microscopic interfaces (depending solely on
the time and not on the interface curvature). Chuoke et al. have
assumed that σ ∗ = Cσ and obtained C = 7.6, where σ is the
surface tension coefficient. In similar experiments performed
in Ref. [36], values for C ranging from 5.45 in oil-wet porous
media to 306.25 in water-wet porous media were obtained. The
curvature in Eq. (9) can be rewritten in spherical coordinates
as [39] [

1

ra

+ 1

rb

]
= 2

R
− 2ζ + ∇2

ωζ

R2
+ O(ζ 2), (10)

where ∇2
ω is the Laplace operator on the unit sphere,

∇2
ω = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2
. (11)

In the following calculation, we use the spherical harmonics
property

∇2
ωYlm = −l(l + 1)Ylm. (12)

To obtain the equation of motion for the perturbation
amplitudes ζlm, first we substitute Eq. (10) into the pressure
jump condition (9). Then, we place the result of this procedure
plus Eq. (7) into Eq. (6). Always keeping terms up to first
order in ζ , and using the orthonormality of the spherical
harmonics, we find the dimensionless equation of motion for
the perturbation amplitudes,

ζ̇lm(t) = λ(l,R,Ṙ)ζlm(t), (13)

where

λ(l,R,Ṙ) = Ṙ

R
(l − 1) − 1

CaR3
(l + 2)(l2 − 1) (14)

is the linear growth rate. In Eq. (13), length and time are
rescaled by characteristics length L and time T , respectively.
Moreover,

Ca = ηU

σ ∗
L2

k
(15)
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represents a modified capillary number with U = L/T [31].
The solution of Eq. (13) is given by

ζlm(t) = ζlm(0) exp{I (l,R,Ṙ)}, (16)

where

I (l,R,Ṙ) =
∫ t

tc(l)
λ(l,R,Ṙ)dt ′, (17)

with tc(l) being the time at which a mode l becomes unstable
[λ(l) = 0]. Here, it is assumed that ζlm(t) = ζlm(0) if 0 � t <

tc(l) [8].
Important linear information can be obtained by Eq. (14).

The mode of maximum growth rate is calculated by setting
dλ(l,R,Ṙ)/dl = 0, yielding

lmax(R,Ṙ) =
√

7

9

(
1 + 3

7
CaṘR2

)
− 2

3
≈

√
1

3
CaṘR2.

(18)

In Eq. (18) we used CaṘR2 � 1 since for typical porous media
experiments CaṘR2 is very large [28].

B. Variational approach for the optimal injection rate

In this section, our goal is to minimize the perturbations
amplitudes (16). This can be performed by extremizing the
integral (17). Keeping in mind that lmax is the fastest growing
mode, we focus on minimizing the integral

I (lmax,R,Ṙ) =
∫ t

0
λ(lmax,R,Ṙ)dt ′, (19)

where tc(lmax) = 0, and using CaṘR2 � 1 we have

λ(lmax,R,Ṙ) ≈ 2

3

√
Ca

3
Ṙ3/2 − 5Ṙ

3R
, (20)

which only depends on R and Ṙ. Recall that we want to inject
a certain amount of the inviscid fluid by keeping fixed initial
and final radii during a time interval [0,tf ]. In this way, I in
Eq. (19) is the action, while λ defines the Lagrangian of the
system. Thus, we actually have a variational problem which
can be solved by using the Euler-Lagrange equation,

d

dt

(
∂λ

∂Ṙ

)
= ∂λ

∂R
, (21)

with fixed end points R(t = 0) = R0 and R(t = tf ) = Rf .
From now on, we take L as being the dimensional final radius
and T as the dimensional final time of the injection process.
By doing this, we have Rf = 1 and tf = 1. Substitution of the
growth rate (20) into Eq. (21) leads to a very simple differential
equation R̈ = 0, whose solution is

R(t) = R0 + (1 − R0)t. (22)

From Eq. (3), Q(t) = 4πṘR2, and the optimal pumping rate
is given by

Q(t) = 4π (1 − R0)[R0 + (1 − R0)t]2. (23)

We conclude that the injection rate must vary quadratically
with time in order to minimize the perturbation amplitudes.
Note that the optimal solution is not any quadratic function,
but precisely the one prescribed by Eq. (23). Furthermore, it

FIG. 1. (Color online) Sketch of the injection rate as a function
of time for the optimal injection Q(t) (solid line) and the equivalent
constant injection rate Q0 (dashed line). The total volume of injected
fluid (area under the curves) in the interval [0,tf ] should be the same
for both pumping rates.

is interesting to note that our optimal pumping rate (23) does
not depend either on the material properties of the fluids or on
the properties of the medium.

III. THEORETICAL DISCUSSION

In this section, we study theoretically the efficacy of the
variational protocol based on the optimal injection rate (23).
Usual radial viscous-fingering flow considers insertion of a
specific volume of fluid at a constant injection rate. Under
such a circumstance, the dimensionless version of Eq. (3) with
Rf = 1 and tf = 1 is

Q0 = 4π

3

(
1 − R3

0

)
. (24)

Now, our task is to compare the resulting interface morphology
obtained by using the constant injection rate (24) and the ideal
pumping rate (23) at t = tf . An illustrative representation of
the behavior of Q(t) and Q0 as time progresses is given in
Fig. 1. We begin our analysis by inspecting Fig. 2.

The results presented in Fig. 2 are obtained by setting
R0 = 0.2 and Ca = 650. The value of the modified capillary

FIG. 2. (Color online) Plot of the amplitude Eq. (2) as a function
of mode l at t = tf . The solid curve represents the amplitude for
the optimal injection rate (23), and the dashed curve represents the
amplitude for the constant injection process (24).
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FIG. 3. (Color online) Resulting interfacial patterns at t = tf by
utilizing the constant injection (left panel) and optimal injection (right
panel).

number Ca is consistent with the physical parameters used in
typical experimental realizations of porous media flows [28].
Figure 2 plots the amplitude given by Eq. (2) at tf for the
optimal pumping ζl(tf ) (solid curve) and for the equivalent
constant flux injection ζ 0

l (tf ) (dashed curve) as functions of
the wave number l. Here we adopted the notation ζlm = ζl .
By examining this figure, we can readily see a substantial
reduction of the final perturbation amplitudes when the ideal
injection is used. The physical explanation for the success of
the optimum stabilization method [Eq. (23)] is based on the
fact that initially Q(t) is sufficiently small, so that the front
evolves with a sizable unperturbed shape. As time progresses,
the pumping increases appreciably, but as long as it takes place
at a large interfacial radius, the injection is no longer able
to promote a considerable destabilization of the propagating
front. In other words, the onset of instability is delayed, and
when it eventually occurs, disturbances arise with a reduced
growth rate.

In Fig. 3, we can clearly see the efficiency of the optimal
injection process. The left panel of Fig. 3 plots the resulting
interface for the constant injection rate, and the right panel of
Fig. 3 illustrates the resulting interface for the ideal pumping
situation. Here we set R0 = 0.2 and Ca = 650. The patterns
have the same initial conditions (including the random phases
attributed to each mode), and 18 modes have been considered.
It is evident that finger formation is considerably inhibited on
the interface shown in the right panel of Fig. 3.

It is important to analyze the robustness of our ideal
injection process when Ca is increased. Regarding this point,
Fig. 4 plots the maximum amplitude for the constant pumping
situation divided by the maximum amplitude calculated by
using the optimal injection rate [ζ 0(tf )/ζ (tf )] as a function of
Ca, at final time t = tf . We consider two values of R0. From
this figure it is clear that the ratio ζ 0(tf )/ζ (tf ) grows when Ca
is increased, and when smaller values of R0 are considered. Of
course, since tf and Rf can be large, the final optimal injection
interface can indeed present some undulations. However, Fig. 4
shows that the amplitudes of such perturbations are guaranteed
to be considerably smaller than the ones obtained by the
equivalent constant pumping process, even when a higher
constant injection rate (larger Ca and a lower value of R0)
is considered. Moreover, this behavior also indicates that the
stabilization of the variational approach still remains if we

FIG. 4. Amplitude ratio ζ 0(tf )/ζ (tf ) as a function of Ca, for R0 =
0.2,0.25. Here ζ 0(tf ) [ζ (tf )] denotes the maximum amplitude for
constant (optimal) injection at t = tf .

want a longer evolution of the interface. It is worthwhile to
mention that the capillary number cannot be arbitrarily large,
otherwise wetting and other complex effects would have to be
considered in the theory.

IV. CONCLUSION

The possibility of inhibiting viscous fingering in porous
media is of great importance to science and technology, mainly
to oil extraction industries. During oil recovery by water from
petroleum reservoirs, preferential channeling of water flow is
caused in part by viscous driven instability. This results in a
significant reduction in oil extraction from the porous medium.
Keeping this fact in mind, we deduced a linear growth rate of a
radially growing interface that separates two immiscible fluids,
with different viscosities, in a three-dimensional uniform
porous medium. We used an analytical variational approach
to look for the optimal injection rate in order to minimize the
perturbations amplitude at the interface. By using this method,
we found that disturbances are restrained if the injection rate
evolves with time in a specific quadratic function. To verify
the suitability of the minimization method at a linear level, we
observed that the stabilization protocol is robust even when a
larger capillary number is considered.

A natural extension of this work would be the investigation
of fully nonlinear stages of the dynamics through computer
simulations and experiments. Moreover, the application of the
variational protocol to a more complete theoretical model for
porous media flow would be interesting: considering fluids
with distinct densities, variations in the saturations behind the
front, heterogeneity of the medium, and capillary pressure drop
across the interface depending on the velocity of the front. This
variational approach and possible generations can provide a
step forward toward ultimate control of porous media viscous
fingering.
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[17] D. Pihler-Puzović, P. Illien, M. Heil, and A. Juel, Phys. Rev.

Lett. 108, 074502 (2012).
[18] F. M. Rocha and J. A. Miranda, Phys. Rev. E 87, 013017 (2013).

[19] F. M. Rocha and J. A. Miranda, Phys. Rev. E 88, 033008 (2013).
[20] N. Mungan, Can. J. Chem. Eng. 49, 32 (1971).
[21] H. J. Pearson, The Stability of Some Variables Viscosity Flow

with Application in Oil Extraction (Cambridge University Press,
Cambridge, 1977).

[22] D. Shar and R. Schecter, Improved Oil Recovery by Surfactants
and Polymer Flooding (Academic, New York, 1977).

[23] R. L. Slobod and J. S. Lestz, Prod. Monthly 24, 12 (1960).
[24] F. Fayers, Enhanced Oil Recovery (Elsevier, Amsterdam, 1981).
[25] G. Pope, Soc. Petrol. Eng. J. 20, 191 (1980).
[26] P. Daripa and G. Pasa, Int. J. Eng. Sci. 42, 2029 (2004).
[27] P. Daripa and X. Ding, Transp. Porous Med. 93, 675 (2012).
[28] R. L. Chuoke, P. van Meurs, and C. van der Poel, Petrol. Trans.

AIME 216, 188 (1959).
[29] S. P. Neuman and G. Chen, Water Resour. Res. 32, 1891 (1996).
[30] J. P. Stokes, D. A. Weitz, J. P. Gollub, A. Dougherty, M. O.

Robbins, P. M. Chaikin, and H. M. Lindsay, Phys. Rev. Lett. 57,
1718 (1986).

[31] G. M. Homsy, Annu. Rev. Fluid Mech. 19, 271 (1987).
[32] G. Chen and S. P. Neuman, Phys. Fluids 8, 353 (1996).
[33] A. Tartakovsky, S. P. Neuman, and R. J. Lenhard, Phys. Fluids

15, 11 (2003).
[34] I. White, P. M. Colombera, and J. R. Philip, Soil Sci. Soc. Am.

J. 41, 483 (1976).
[35] H. J. de Haan, Proceedings of the 5th World Petroleum Congress

(World Petroleum Congress, New York, 1959), Sec. II, p. 544.
[36] E. J. Peters and D. L. Flock, Soc. Pet. Eng. J. 21, 249 (1981).
[37] L. Paterson, V. Hornof, and G. Neale, Rev. Inst. Fr. Pet. 39, 517

(1984).
[38] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical

Methods for Physicists: A Comprehensive Guide (Academic,
New York, 2013).

[39] M. Fontelos and A. Friedman, Arch. Ration. Mech. Anal. 172,
267 (2004).

063007-5

http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1016/0370-1573(95)91133-U
http://dx.doi.org/10.1016/0370-1573(95)91133-U
http://dx.doi.org/10.1063/1.1784931
http://dx.doi.org/10.1137/0143007
http://dx.doi.org/10.1137/0143007
http://dx.doi.org/10.1103/PhysRevLett.106.194502
http://dx.doi.org/10.1103/PhysRevLett.106.194502
http://dx.doi.org/10.1038/nphys834
http://dx.doi.org/10.1103/PhysRevLett.107.225001
http://dx.doi.org/10.1103/PhysRevLett.107.225001
http://dx.doi.org/10.1103/PhysRevLett.100.258106
http://dx.doi.org/10.1103/PhysRevLett.100.258106
http://dx.doi.org/10.1103/PhysRevLett.109.144502
http://dx.doi.org/10.1137/110844313
http://dx.doi.org/10.1137/110844313
http://dx.doi.org/10.1103/PhysRevE.84.066313
http://dx.doi.org/10.1103/PhysRevE.82.056308
http://dx.doi.org/10.1103/PhysRevE.82.056308
http://dx.doi.org/10.1103/PhysRevE.82.067301
http://dx.doi.org/10.1103/PhysRevE.82.067301
http://dx.doi.org/10.1103/PhysRevE.81.016312
http://dx.doi.org/10.1103/PhysRevE.81.016312
http://dx.doi.org/10.1103/PhysRevE.81.016206
http://dx.doi.org/10.1103/PhysRevLett.102.174501
http://dx.doi.org/10.1038/nphys2396
http://dx.doi.org/10.1038/nphys2396
http://dx.doi.org/10.1103/PhysRevLett.108.074502
http://dx.doi.org/10.1103/PhysRevLett.108.074502
http://dx.doi.org/10.1103/PhysRevE.87.013017
http://dx.doi.org/10.1103/PhysRevE.88.033008
http://dx.doi.org/10.1002/cjce.5450490107
http://dx.doi.org/10.2118/7660-PA
http://dx.doi.org/10.1016/j.ijengsci.2004.07.008
http://dx.doi.org/10.1007/s11242-012-9977-0
http://dx.doi.org/10.1029/96WR00789
http://dx.doi.org/10.1103/PhysRevLett.57.1718
http://dx.doi.org/10.1103/PhysRevLett.57.1718
http://dx.doi.org/10.1146/annurev.fl.19.010187.001415
http://dx.doi.org/10.1063/1.868790
http://dx.doi.org/10.1063/1.1612944
http://dx.doi.org/10.1063/1.1612944
http://dx.doi.org/10.2136/sssaj1977.03615995004100030010x
http://dx.doi.org/10.2136/sssaj1977.03615995004100030010x
http://dx.doi.org/10.2118/8371-PA
http://dx.doi.org/10.1007/s00205-003-0298-x
http://dx.doi.org/10.1007/s00205-003-0298-x



