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Statistics of turbulent fluctuations in counter-rotating Taylor-Couette flows
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The statistics of velocity fluctuations of turbulent Taylor-Couette flow are examined. The rotation rates of the
inner and outer cylinders are varied while keeping the Taylor number fixed to 1.49 x 10'> [O(Re) = 10°]. The
azimuthal velocity component of the flow is measured using laser Doppler anemometry. For each experiment
5 x 10° data points are acquired and carefully analyzed. Using extended self-similarity [Benzi et al., Phys. Rev. E
48, R29 (1993)] the longitudinal structure function exponents are extracted and are found to weakly depend on the
ratio of the rotation rates. For the case where only the inner cylinder rotates the results are in good agreement with
results measured by Lewis and Swinney [Phys. Rev. E 59, 5457 (1999)] using hot-film anemometry. The power
spectra show clear —5/3 scaling for the intermediate angular velocity ratios —w,/w; € {0.6,0.8,1.0}, roughly
—5/3 scaling for —w,/w; € {0.2,0.3,0.4,2.0}, and no clear scaling law can be found for —wy/w; = 0 (inner
cylinder rotation only); the local scaling exponent of the spectra has a strong frequency dependence. We relate
these observations to the shape of the probability density function of the azimuthal velocity and the presence of

a neutral line.
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Taylor-Couette (TC) flow, among others like Rayleigh-
Bénard convection, and von Kérman, pipe, channel, and plate
flows, played a pivotal role in exploring fundamental concepts
in fluid mechanics [1]. In a TC apparatus, fluid is confined
between two independently rotating coaxial cylinders; see
Fig. 1. The TC geometry is best described with cylindrical
coordinates: radial distance p, azimuth 6, and height z. The
driving of the TC apparatus is given by two Reynolds numbers:

Rei, = Wi,oPi0(Po pl)’
v
where w is the angular velocity defined as ug/p, p the radius,
v the kinematic viscosity, and the i and o subscripts denote
quantities related to the inner and outer cylinder, respectively.
Another way of describing the flow is by a Taylor number
Ta = 10(po — pi)*(Po + Pi)*(w; — ®,)*/v?, which s the ratio
of centrifugal forces to viscous forces, along with a parameter
describing the ratio of the driving velocities, for which we have
chosen
Wo
a=——. (D
Wi
o isdefined as [(1 + 1)/+/4n]* with the radius ratio n = p; /0,.
By measuring the torque 7 [3-10] required to maintain
constant angular velocity of both cylinders, we can find the
power input (P) of our system using P = 7 |w; — w,|. Note
that we can measure the torque on either cylinder as it has the
same magnitude on the inner and the outer cylinders [11]. As
all the energy that enters the system globally will be dissipated
by viscous dissipation, the torque can be related to the average
energy dissipation rate:

_ (power input) T\w; — w,|

2)

PACS number(s): 47.27.—i, 47.32.Ef

where pquig 1S the density of the working fluid and L the
length of the cylinders. Using the energy dissipation rate and
the viscosity we can now find the average Kolmogorov length
scale [12,13] in our flow: ng = (v3/e)1/4.

Using hot-film anemometry, Lewis and Swinney [3,14]
measured the statistics of velocity fluctuations for the case
of inner cylinder rotation for Re up to 5.4 x 10°. They found
that the energy spectrum does not show power law scaling,
and that the structure function exponents—calculated using
extended self-similarity [15]—are close to those found in other
flows [3]. In this paper we quantify the turbulent statistics of
Taylor-Couette flow with various rotation ratios [Eq. (1)] for
fixed Taylor number of Ta = 1.49 x 10'? [O(Re) = 10°]. We
used the Twente Turbulent Taylor-Couette facility (T>C) [2],
which was filled with water and actively cooled to keep the
temperature constant. The T>C has an inner cylinder with an
outer radius of p; = 200 mm and a transparent outer cylinder
with inner radius p, = 279 mm, giving a radius ratio of
n =0.716. The cylinders have a height of L = 927 mm,
resulting in an aspect ratio of I' = L/(p, — p;) = 11.7. We
measured the azimuthal velocity using laser Doppler anemom-
etry (LDA). The advantage of this technique is that it allows for
a nonintrusive measurement of a velocity component. For the
case of counter-rotation the mean flow direction is not always
in a single direction, and using, e.g., a hot-film probe or a pitot
tube to measure the local velocity would result in measuring
the speed in the wake of the probe. The laser beams go through
the outer cylinder and are focused in the middle of the gap
(2p = pi + p,) at mid-height (z = L/2), and lie in the 6-r
plane; see also Fig. 1. The water is seeded with tracer particles
[16] with a mean radius of 2.5 zzm and density of 1.03 g/cm?>.
This radius is roughly six times smaller than our Kolmogorov

(mass) Phiuid7® (’0 o~ '0’2 )L length scale. We equate the drag force Fupg = O ¥ seca Altg

and the centrifugal force Feen = (pseed — Puia) (4773 /3)ul/p

*s.¢.huisman @ gmail.com of the seeding particles, and compute Aug = |Ug seed — U fiuid|
d.lohse @utwente.nl to make sure the particles faithfully follow the flow. For our
fc.sun@utwente.nl measurements we find that Auy ~ 40 um/s, which is much
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FIG. 1. (Color online) Sketch of the vertical cross section of the
Twente Turbulent Taylor-Couette facility (T3C) [2]. The beams of the
laser Doppler anemometer (LDA) are in the horizontal plane at middle
height, z = L /2. Top right inset: Horizontal cross section showing
the beams of the LDA. The beams refract twice on the outer cylinder
and intersect at the middle of the gap. The angle between the beams is
exaggerated to highlight the refraction on the inner and outer surfaces
of the outer cylinder.

smaller than the driving velocities O(w; p; — w,p0,) = 10 m/s,
so we are sure that the particles follow the flow. In addition one
could calculate the Stokes number; we find that St = 7, /7, =
0.006 < 1 in the worst case (a = 0.3). Due to the curvature
of the outer cylinder we have to correct the measured velocity
by multiplying it with a constant factor. We find this constant
numerically by ray-tracing [17] the LDA beams in our optical
geometry.

In our experiments we fixed Aw = w; — w, (see Table I);
the consequence of this is that our Taylor number is fixed, while
our Reynolds number varies slightly. For each experiments
we acquire 5 x 10° data points. Because the arrival times of
LDA measurements are of stochastic nature the time series are
then linearly interpolated using twice the average acquisition
frequency (2 f,), such as to create a time series with equal

TABLEI Experimental parameters for the various rotation ratios.
For each experiment the Taylor number is fixed to 1.49 x 10'? and
the number of data points is fixed to 5 x 10°. w; and w, are measured
using high-precision magnetic encoders. All the measurements are
done at mid-height and in the middle of the gap. (-), denotes
averaging over time. The Taylor-Reynolds number is found by
combining local velocity and global torque measurements: Re; =
V1504 /€v, where € comes from the global torque; see Eq. (2). The
standard deviation of ug is given by o and the kurtosis by 4/0%.

w; /2w w,/2mr  Re  (uy), o €

a (1) (1/s) (10% (m/s) (m/s) (m%/s’) Re; &

0.0 9.99 0.00 1.38 5.08 0.31 129 106 3.37
02 832 —166 132 242 0.38 153 144 3.00
03 7.67 —230 1.29 1.62 0.32 16.3 97 3.96
04 713 285 127 1.48 0.35 158 120 2.77
06 624 374 124 036 047 132 240 3.02
08 554 —444 121 -043 049 1.0 278 2.89
1.0 499 500 1.19 -0.83 043 92 235 327
20 332 —6.66 112 -3.10 0.32 51 173 323
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FIG. 2. (Color online) Probability density functions of the
azimuthal velocity [F(us)] measured at mid-height for varying
a = —w,/w;. The means of the velocities are indicated by grid lines
with their respective color. a increases from right to left.

temporal spacing. We chose double the frequency to also
capture fast fluctuations which are otherwise lost. It can happen
that for a relatively long time there is no measurement, while
for other moments a burst of measurements is taken. We
take care to disable parts of the interpolated time series for
which the temporal gap in the original data is too big (3/f
is chosen; although the effect is hardly noticeable we wanted
to account for the time that the LDA beams are blocked by
vertical supporting rods), and for which interpolation is not
justified. These disabled data points are not used in any of the
calculations, except for the spectra.

We will first look at the probability density function (PDF)
of the velocimetry data; see Fig. 2. For the cases a = 0.6, a =
0.8, and a = 1, we see that the PDF F seems to be comprised
of two parts, as it has two bumps; one bump for uy > 0 and one
foruy < 0. It seems that the presence of a neutral line (uy = 0)
alters the flow dynamics, as was also found in Ref. [18]. The
outer region is stabilized by the outer cylinder, while the inner
region is destabilized by the inner cylinder. Somewhere in
between there must therefore be an interface where uy = 0. For
a € {0.6,0.8,1.0} our measurement position is on the border
of this interface [18]. Also indicated in Fig. 2 and in Table I is
the mean velocity. As expected, the mean velocity decreases
monotonically with increasing a, while the standard deviation
is quite similar throughout, but slightly higher for the cases
where the PDF is comprised of two contributions [18].

In order to compare the shapes of the PDFs we standardize
the velocities (transforming the data set such that it has zero
mean and unit variance):

M = {(ug — (ug))" s,
o = Jii, 3)

g = (ug — (ug)t):/o,

where (-), denotes averaging over time. In Fig. 3 we plot
the PDFs of the standardized velocities. We now see that the
tails of most of the distributions behave much like Gaussians.
This is also reflected in the value for the kurtosis (114 /0%); see
Table I. The values that we find are close to 3 (except for the
case a = 0.3) and the distributions are only slightly leptokurtic
or platykurtic.
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FIG. 3. (Color online) Probability density function of the stan-
dardized azimuthal velocity [F(ify)] for various a. Colors are the
same as in Fig. 2. The dashed line is a Gaussian with zero mean and
unit variance.

Table I also includes the Taylor-Reynolds number Re;. We
find that the Taylor-Reynolds number is not necessarily the
largest for the case when the torque is the highest (a &~ 0.33),
as a higher torque means a higher o [Eq. (3)], but also a
higher € [Eq. (2)]. Furthermore, we note that ¢ depends on the
radial and axial position and that therefore the Taylor-Reynolds
number is a function of position.

Although the PDF of the velocity is of importance in
describing a turbulent flow, it obviously does not describe the
dynamics of the flow. We therefore look at velocity increments
Arbtgl

Arug = ug(x +r) — ug(x). €]

Here r is the distance between the two measurement positions
x and x 4 r. As we probe the velocity at only one position, we
have to invoke Taylor’s frozen-flow hypothesis [19] to obtain
the velocity increments: ug(x + r,t) = ug(x,t — r/U) where
U is a typical velocity scale. Here we chose the rms velocity
of ugp, as it best describes the displacement of a fluid parcel for
the cases where the velocity is in both directions (@ = 0.6,a =
0.8, and a = 1.0). For the cases where the velocity is mainly
in one direction the rms velocity is very close to the absolute
of the mean velocity. We plot the PDF of A,uy [Eq. (4)] for
several different » for the cases of a = 0 and a = 1; see Fig. 4.

For both a we can clearly see that for small /5 the distri-
butions are very leptokurtic (the kurtosis u4/0* = 3.3 x 10°
forr/ng = 36,a = 0,and pu4/0* = 2.4 x 10° forr/nx = 37,
a = 1). Here ng is calculated based on globally measured
torque values at the corresponding a. At @ = 0 the PDF does
not recover to a Gaussian [Fig. 4(a)] for very large r, whereas
it does become normally distributed for other a; see, e.g.,
Fig. 4(b) for a = 1. We speculate that, for large r and due to
the periodic nature of our geometry and the coherent structures
in our flow (Taylor vortices), the flow can stay correlated for
an unusually long time for certain a and for certain positions in
the flow. We will systematically characterize the r dependence
of different moments using longitudinal structure functions:
D,(r) = ((A,ug)?). For odd moments p, D,(r) is converging
very slowly; we therefore use the absolute [20,21] values of
the velocity increments:

D% = (| Aul?) 5)
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FIG. 4. (Color online) (a) Probability density functions of veloc-
ity increments [F(A,uq)] for varying r for the case of a = 0. Values
of r are shown as multiples of the Kolmogorov length scale, and are
colored accordingly. (b) As in (a) but fora = 1. (a), (b) The black line
is a Gaussian with zero mean and unit variance. The arrows indicate
increasing r/ng.

for all p. Note that there is no theoretical justification that
D;(r) and D, (r) scale in the same way, although the scaling
of D;ﬁ (for odd p) has been found to be similar to that of D, but
not essentially the same; see, e.g., [22,23]. Figure 5(f) shows
the structure functions for p € [1,6] for the case of a = 0.
We carefully examine the convergence when computing the
structure functions. While D, can be calculated using Eq. (5),
we can alternatively express it as an integral:

Dy = [ FOuisuel B ©

We now take a careful look at the integrand of Eq. (6) and
plot this integrand for points @—@) in Fig. 5(f), corresponding
to Figs. 5(a)-5(e), respectively. For increasing p the structure
functions measure the influence of increasingly rare events.
We see in Figs. 5(a) and 5(b) that the tails of the integrands
at points (@ and (®) are not fully converged, and we therefore
have to omit these points from the structure functions. We do
this analysis for all p and for all r for each case of @ and omit
data from the analysis; these omitted data are plotted gray in
Fig. 5(f). For high p and low r we find that we do not have
sufficient statistics to capture all the rare events necessary to
faithfully calculate D,.

For fully developed turbulent flows the structure functions
are suggested to scale as power laws in the inertial sub-
range [19]:

D,(r) « rev.
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FIG. 5. (Color online) (a)—(e) Integrand of Eq. (6) for various positions marked in (f). The areas under the graphs are the values of D7, (r).
(a),(b) Nonconverged structure function integrands. (c)—(e) Converged structure function integrands. (f) Longitudinal structure functions
(D} ()] for varying powers p (indicated on the right) for the case of @ = 0. Structure functions are scaled using a constant b, = D3 (rmin). The
separation distance r is normalized using the Kolmogorov length scale nx and the integral length scale L. For various p and r (thick points
labeled @—-(©) the integrand of Eq. (6) is plotted. Data in gray color are not fully converged, and are omitted in the ESS calculation.

Kolmogorov predicted [12,13,19] these exponents to scale
as ¢, = p/3; any deviation from this model is the result of
the intermittency of the flow. For our case we will denote
the scaling exponents as ¢, as we are using D (r) in the
analysis rather than D,(r). We expect an inertial subrange
for roughly 10n < r < Lj;—where L, is the integral length

TABLE II. Structure function exponents {;, for different a. Org
are the data from Lewis and Swinney [3], for which a = 0 and Re =
5.4 x 10°. Because of the usage of ESS by definition ¢;

a 0 Os 02 03 04 06 08 1 2
p

1 037 037 037 037 039 037 037 037 037
2 070 070 071 071 0.72 070 0.71 0.70 0.70
3* 1 1 1 1 1 1 1 1 1
4 127 127 127 126 125 126 126 127 128
5 151 150 151 150 149 153 151 153 153
6 171 172 173 171 170 1.69 171 178 1.77

scale—because these length scales are separated by roughly
two decades for our flow. But, as seen in Fig. 5(f), we do not
see an inertial subrange where the structure functions show
power-law scaling, a finding also observed in Ref. [3]. We
therefore are unable to extract structure function exponents
directly from our structure functions; this results holds for
all our a. As suggested by Benzi et al. [15], we can extend
the range over which scaling holds by employing extended
self-similarity (ESS). The pth-order structure function is
plotted as a function of the third-order structure function; the
scaling exponent is now given by ¢,/¢5. From the Navier-
Stokes equations one can derive the Kolmogorov—Howard—
von Karman (KHvK) relation, from which we can determine
that forr > v¥4€~1/4, D3 o« —%er, or g3 = 1.In this work we
will assume that {3 = ¢; = 1, and we would like to note that
the KHvK relation is derived under the assumption of isotropic
homogeneous turbulence, which is questionable in our flow
arrangement. Nevertheless, we employ ESS analysis for our
longitudinal structure functions; see Figs. 6(a) (¢ = 0) and 7(a)
(a=1).
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FIG. 6. (Color online) (a) Extended self-similarity for the case of a = 0. Powers p are indicated on the right. Power-law scaling can be seen
for each power p. (b) Extended self-similarity compensated by Kolmogorov scaling p/3. The quality of the scaling can now be seen better.
Gray data in Fig. 5(f) are omitted in this analysis as they are not fully statistically converged.

We now clearly see that in the ESS representation the
scaling is much better, and that we are able to extract
structure function exponents from our data. In addition, we
also compensate our data with Kolmogorov’s prediction (p/3);
see Figs. 6(b) and 7(b). Note that in these compensated plots
[20,21] (plotted on double-logarithmic scales) any deviation
from a perfect power scaling is amplified and clearly visible.
Furthermore, we expect a straight line in the case of perfect
scaling. We perform power-law fits to our ESS data for all a,
and extract ¢,; see Table I and Fig. 8.

Lewis and Swinney [3] have performed a similar analysis
on Taylor-Couette flow for pure inner cylinder rotation, and
we have included their structure function exponents (obtained
using ESS, Re = 5.4 x 10°) also in the aforementioned table.
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We see that for 1 < p < 5 the structure function exponents
are similar, independent of the Reynolds number, and almost
independent of the amount of counter-rotation applied to the
system. It is only for p = 6 that the differences between the
exponents become noticeable; 1.69 for a = 0.6 and 1.78 for
a = 0. This difference might be caused by not including the
high- p and low-r data in our fits due to lack of statistics. We no-
tice that for increased counter-rotation (i.e., increased a) we do
not see a systematic trend for the structure function exponents.
From global torque measurements [6,7,18,24] we know that
there is a maximum in the torque needed to sustain a constant
angular velocity for both cylinders. This peak in the torque has
been found around a & 0.33. This peak in the torque has as a
consequence that the Kolmogorov length scale is smallest for
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FIG. 7. (Color online) (a) Extended self-similarity for the case of a = 1. Powers p are indicated on the right. Power-law scaling can be seen
for each power p. (b) Extended self-similarity compensated by Kolmogorov scaling p/3. The quality of the scaling can now be seen better. As
in the analysis of Fig. 5 (a = 0), nonconverged data are omitted from the structure functions.

063001-5



SANDER G. HUISMAN, DETLEF LOHSE, AND CHAO SUN

0.1 T T T T T T

0.0 ==

—0.1L
A
2

02+

—-03+}

FIG. 8. (Color online) Longitudinal structure function exponents
deviations: 8¢, = ¢, — p/3. Black dotted line shows the She-
Lévéque model [¢, = p/9 + 2 +2(2/3)”/%]. Black squares are the
data from Lewis and Swinney [3] for a = 0.

the rotation ratio a = 0.3 (ng = 15.7 um) and largest fora =
2.0 (ng = 21.0 um)—assuming homogeneous turbulence for
both cases. We, however, do not see any similar trend in the
structure function exponents. It seems that all the exponents are
nearly universal; independent of the Reynolds number (Lewis
and Swinney [3] also performed their experiments for Re =
6.9 x 10* and found similar structure function exponents as
for our Re = 1.38 x 10%) and independent of the amount of
counter-rotation applied to the system. Our structure functions
are tabulated in Table II and plotted in Fig. 8; for comparison
we have included the data from Lewis and Swinney [3] and
the She-Lévéque model with its standard parameters [25]. We
find that, for nearly all the exponents and for nearly all the a
cases, Taylor-Couette flow seems more intermittent than the
She-Lévéque model predicts, as already reported in Ref. [3].
In Fig. 9(a) we plot the spectra for all cases. We see that
most of the energy is kept in the low frequencies [26], even
lower than the driving frequency: w; — w, = 2w x 10 s~! for

PHYSICAL REVIEW E 88, 063001 (2013)

the cases a € {0.6,0.8,1.0}. Furthermore, we see for a = 0
that we do not have any power-law scaling behavior, as was
already found in the TC experiments of Ref. [3]. However,
for a € {0.6,0.8,1.0}—the same a’s for which the PDF of
the azimuthal velocity showed that it was made up of two
distributions—we see a power-law scaling with exponent
—5/3. To reveal the quality of the scaling we compensate the
data by @/3; see Fig. 9(b). We indeed see in Fig. 9(b) that the
power spectra for a € {0.6,0.8,1.0} level out over roughly two
decades. Furthermore, for the case a = 0 we see that there is
no scaling whatsoever. In addition, we also plot the local slope
of the spectrum. Here we also see that the power-law scaling
for a € {0.6,0.8,1.0} is around —5/3 close to w = 103 s7!,
and that for a = 0 the exponent is constantly changing. The
curving up of our spectra at the high-frequency end is due to our
limited measuring frequency. We therefore do not recover the
steep slopes (>>2) found by Lewis and Swinney [3]. However,
they also found that for a = 0 the local slope is never constant
and is a monotonic function of w.

In this work we relied on Taylor’s hypothesis, which
certainly has to be experimentally justified in the future using
a field measurement technique, e.g., particle imaging ve-
locimetry. In addition we assumed concepts of homogeneous
isotropic turbulence to obtain € and therefore 1. Future work
will be necessary to study the anisotropic properties of the
flow [27,28].

To summarize, we have measured the local azimuthal ve-
locity in a turbulent Taylor-Couette flow with various amounts
of counter-rotation using laser Doppler anemometry. We found
that the structure functions show no inertial subrange for all p
and for all cases a. Using extended self-similarity analysis [15],
we extracted the structure function exponents, which are in
good agreement with earlier results by Lewis and Swinney
[3]. We find that for @ = O the structure function exponents
are nearly independent of the Reynolds number: previous
results [3] are for Re = 6.9 x 10* and Re = 5.4 x 10°, while
our current results are for Re = 1.38 x 10°. Any discrepancy
between these exponents could easily be caused by different
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FIG. 9. (Color online) (a) Spectral density of the azimuthal velocity for various a; —5/3 scaling is indicated with a black line. (b) Spectral
density compensated by @*/. (c) Local scaling exponent over an interval of one decade as a function of frequency w. Kolmogorov’s inertial
subrange scaling (—5/3) is included as a horizontal line. The legend displayed in (a) corresponds also to the colors used in (b) and (c). Arrows

indicate the corresponding a.
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fitting intervals and are certainly within experimental error.
Furthermore, we find that adding rotation of the outer cylinder
of the system to create counter-rotation does not strongly influ-
ence the structure function exponents, but does strongly change
the scaling of the spectra. While for a € {0.6,0.8,1.0} we see
a clear power-law scaling in the spectra, we do not observe
such clear scaling in the second-order structure function.
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