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The ability of semiclassical initial-value representation (IVR) methods to determine approximate energy levels
for bound systems is limited due to problems associated with long classical trajectories. These difficulties become
especially severe for large or classically chaotic systems. This work attempts to overcome such problems by
developing an IVR expression that is classically equivalent to Bogomolny’s formula for the transfer matrix
[E. B. Bogomolny, Nonlinearity 5, 805 (1992); Chaos 2, 5 (1992)] and can be used to determine semiclassical
energy levels. The method is adapted to levels associated with states of desired symmetries and applied to two
two-dimensional quartic oscillator systems, one integrable and one mostly chaotic. For both cases, the technique
is found to resolve all energy levels in the ranges investigated. The IVR method does not require a search for
special trajectories obeying boundary conditions on the Poincaré surface of section and leads to more rapid
convergence of Monte Carlo phase space integrations than a previously developed IVR technique. It is found
that semiclassical energies can be extracted from the eigenvalues of transfer matrices of dimension close to the
theoretical minimum determined by Bogomolny’s theory. The results support the assertion that the present IVR
theory provides a different semiclassical approximation to the transfer matrix than that of Bogomolny for � �= 0.
For the chaotic system investigated the IVR energies are found to be generally more accurate than those predicted
by Bogomolny’s theory.
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I. INTRODUCTION

Semiclassical initial-value representation (IVR) techniques
have become useful and popular tools for treating the dynamics
of molecules, atoms, and electrons [1,2]. A characteristic
feature of these techniques is that they describe quantum
mechanical quantities of interest (such as the time-dependent
propagator [3,4], the energy-dependent Green’s function [5]
and its trace [6], time-independent wave functions [7,8],
and the S matrix [9,10]) as integrals over phase space
variables. These variables serve as initial conditions for the
classical trajectories that are needed to describe the quantum
properties. Thus such techniques avoid cumbersome nonlinear
searches for special trajectories obeying particular boundary
conditions at initial and final times, which are needed for more
conventional semiclassical methods. This makes it possible to
treat much larger physical systems than feasible with the usual
semiclassical techniques. Apart from this practical advantage,
properly designed IVR methods are superior semiclassical
approximations [4,11], avoiding problems associated with
caustics encountered in the usual semiclassical theories and
producing uniform semiclassical approximations for wave
functions and related properties.

However, existing IVR treatments suffer from a severe
computational obstacle: The number of classical trajectories
needed to achieve satisfactory convergence of the phase space
integrals is often impractically large, especially for systems
that are classically chaotic. The root of this difficulty is the
rapid variation in the phase of the IVR integrand as a function
of initial conditions, a phenomenon that becomes increasingly
pronounced at long time in the presence of classical chaos.
These rapid phase changes are accompanied by prefactors
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that increase exponentially with time, as necessary to prevent
vanishing of the integral due to phase cancellation. This
combination of rapid phases and large prefactors makes the
numerical integration over phase space very difficult. As a re-
sult, the number of trajectories needed for convergence of IVR
calculations of chaotic systems typically grows exponentially
with time, making applications of these techniques impractical
for the calculation of the long-time quantum evolution of such
systems.

A number of methods have been proposed to alleviate this
long-trajectory problem. For the calculation of time correlation
functions, in the case of systems that are not too chaotic, the so-
called forward-backward techniques [12–15] are sometimes
effective. For more general chaotic systems integral condi-
tioning (filtering) methods [16–18] can be applied. A cruder,
but equally effective, method [19,20] is to terminate classical
trajectories once they become too chaotic, as determined by
IVR prefactors that are larger than a predetermined value.
However, such treatments do not eliminate the exponential
growth rate in the number of trajectories needed to maintain
accuracy of the calculations, but only cause a decrease in
the factor multiplying the exponential. Thus, in practice,
IVR calculations of systems with even a mild degree of
chaos are limited to the treatment of short-time phenomena,
e.g., ultrafast chemical reactions and low-resolution spectra.
If the chaos is sufficiently strong, such calculations may
already become substantially inaccurate beyond a single
cycle of motion, even for two-dimensional systems [19].
For the treatment of energy quantization, the restriction to
short times means that the calculated energy spectrum is
broad and not all individual levels can be resolved [6,19].
This restriction has also prevented numerical investigation
of fundamental questions concerning the IVR treatment of
chaotic systems such as the convergence of the IVR integrals
at long times and the ultimate accuracy of the resulting energy
spectrum.
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A hint as to how the above difficulties might be overcome
in a more fundamental and effective way comes from semi-
classical periodic orbit theory, where a seemingly analogous
long-trajectory problem affects the Gutzwiller trace formula
[21–23] for the energy quantization of chaotic systems. This
formula expresses the trace g(E) of Green’s function as
an infinite sum over the periodic orbits of the classical
system. However, since the number of such orbits proliferates
exponentially with their length, this sum is not, in general,
absolutely convergent for real values of the energy E [24].
One solution to this problem [25,26] is to employ Gaussian
smoothing, which effectively damps the influence of long
periodic orbits in a manner reminiscent of the practice of
terminating long trajectories in the IVR case [19,20]. However,
a more satisfactory approach has been developed. It involves
shifting focus from the trace g(E) to the semiclassical zeta
function [27–31]

ζS(E) = eiπNTF(E) exp

[∫ E

dE′g(E′)
]

, (1)

where NTF is the integrated mean level density. The energy
eigenvalues of a bound system are obtained from this function
by finding the values of E that make ζS(E) = 0. An expansion
of the ζ function in terms of periodic orbits [27–31] allows
a resummation of the Gutzwiller periodic orbit series that is
convergent since the dominant effect of long orbits in each
term is canceled by portions of shorter orbits. In fact, it has
been argued that only short orbits with periods less than half
the Heisenberg time are actually needed in the ζ function
expansion [31].

These considerations suggest that it should be possible
to overcome the IVR long-trajectory problem, at least for
the purposes of energy quantization, by developing an IVR
formulation of the periodic orbit expansion of the ζ function.
An alternative approach, which we explore here, is to derive
an IVR approximation that, in the classical limit, becomes
equivalent to an explicit formula for the ζ function proposed
by Bogomolny [32,33]. Bogomolny’s expression represents
ζS(E) as the Fredholm determinant det(1 − TE), where ele-
ments TE(q′,q) of the transfer matrix TE define a semiclassical
mapping between points q and q′ on a Poincaré surface of
section (PSS). The energy eigenvalues of the system can then
be determined as values of E that make this determinant
vanish. Such a calculation does not involve an expansion in
terms of periodic orbits but avoids the long-trajectory problem
because the formation of TE requires only short trajectories
that return to a PSS after a single iteration of the classical
Poincaré map.

Bogomolny’s method has been applied successfully to both
integrable [34–39] and chaotic systems [33,35,37,40,41] and
has been used to obtain wave functions [37,40,42] as well as
energy levels. Although Bogomolny’s theory is semiclassical
in nature, it has been more firmly rooted in quantum theory by
the development of exact quantum Poincaré maps that tend to
those of Bogomolny in the classical limit [43–46].

Because Bogomolny’s semiclassical expression for
TE(q′,q) requires identification of special classical trajectories
that satisfy boundary conditions on the PSS, most applications
of his method have been limited to billiards and integrable

systems for which trajectories can be determined without a
numerical solution of the equations of motion. For similar
reasons, this method has been applied only to systems with
two or (in special cases) three degrees of freedom [39,47].
However, Haggerty [42] has presented a numerical method
that allows the transfer matrix to be constructed for arbitrary
smooth potentials, allowing extension of this treatment to
systems for which such analytical expressions for the dynamics
are not available. He has applied this method to a two-
dimensional system with a smooth nonscalable potential and
used it to determine the values of � that yield quantized
energy eigenvalues for two fixed values of the energy: one
corresponding to the integrable regime for the classical motion
and one to the chaotic regime.

From the present perspective, Haggerty’s numerical tech-
nique can be recognized as a simple IVR method. However, it
differs from the more modern and general IVR approximation
investigated here in two crucial ways: First, the IVR expression
of Haggerty for TE(q′,q) does not include Gaussian coherent
state factors in the integrand and, second, it is designed to
be exactly equivalent to Bogomolny’s formula for the transfer
operator. The present inclusion of Gaussian factors in the IVR
formulas is known, in other contexts, to yield more accurate
wave functions that are free from caustic singularities [4,11].
Additionally, this inclusion has been shown to greatly reduce
the number of classical trajectories required to evaluate the
IVR expressions, especially when the phase space integrations
are performed by Monte Carlo methods [4,48]. The latter
property is important because it is a key to making transfer ma-
trix calculations practicable for larger systems. Furthermore,
the present approach, which demands equivalence of the IVR
expression to Bogomolny’s formula only in the classical limit,
produces a semiclassical approximation that is not necessarily
identical to that of Bogomolny for nonzero �. This leaves open
the possibility that the IVR expressions developed here may
provide values for energy levels that are less or even more
accurate than those obtained from the existing theory. In this
paper we investigate the possible advantages of the present
IVR treatment by comparing its results to those obtained with
existing methods and theories.

The remainder of this paper is organized as follows. In
Sec. II we obtain an expression for the IVR transfer operator
from a previously derived IVR approximation for Green’s
function [5,6]. Additionally, we develop a version of the IVR
formula that allows determination of energy levels for states
of specific symmetries and establish the relationship of the
present treatment to that of [42]. In Sec. III we describe how
the IVR approximation is applied numerically to the two-
dimensional classically integrable and chaotic systems treated
here. In Sec. IV we present the results of the calculations and
compare them to those obtained using the former IVR method
of [42] and the theory of Bogomolny. Finally, in Sec. V we
summarize our conclusions and present closing remarks.

II. THE IVR TREATMENT OF THE
TRANSFER OPERATOR

A. Preliminaries

Elements TE(q′,q) of Bogomolny’s transfer matrix TE can
be regarded as representatives of a semiclassically defined
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transfer operator T̂E in the basis of position variables q′ and
q on a Poincaré surface � of a system at energy E. Here T̂E

is conceptually similar to the quantum time evolution operator
exp[−i(Ĥ − E)t/�] except that it propagates functions speci-
fied on the PSS for one iteration of the classical Poincaré map.
In rough analogy to the evolution operator, T̂E is unitary in
the classical limit. For arbitrary energy, application of T̂E to a
function on the PSS produces a different function on the same
PSS. However, when E is an eigenvalue of the Hamiltonian
and ψ is a corresponding eigenstate, T̂E transforms ψ into
itself, i.e., T̂Eψ = ψ or, equivalently,

ψ(q) =
∫

�

TE(q,q′)ψ(q′)dq′. (2)

Thus ψ is an eigenstate of T̂E with eigenvalue 1 and the energy
levels of a system can be determined by solving the secular
equation

det(1 − TE) = 0. (3)

Bogomolny [32,33] established the equivalence between
the Fredholm determinant in this secular equation and the
semiclassical ζ function, i.e.,

ζS(E) = det(1 − TE), (4)

so (3) corresponds to the known quantization condition
ζS(E) = 0 for the ζ function. Bogomolny [32,33] further
derived an expression for the function TE(q′,q) as a sum over
all trajectories corresponding to the classical Poincaré map
from q to q′. Such a trajectory starts from q on the PSS with,
say, a positive value for the component of the velocity normal
to the surface, crosses the surface once with a negative normal
velocity component, and ends at q′ on the PSS, again with
a positive normal velocity component. The expression for a
system of f degrees of freedom is given by

TE(q′,q) =
∑

classical
trajectory

1

(2πi�)(f −1)/2

∣∣∣∣det

[
∂2WE(q′,q)

∂q′∂q

]∣∣∣∣
1/2

× exp[iWE(q′,q)/� − iνπ/2]. (5)

Here

WE(q′,q) =
∫ q′

q
p(x)T dx (6)

is the reduced action, calculated along a classical trajectory
with energy E connecting the points q and q′, and ν is the
Maslov index.

In practical calculations, one must discretize the continuous
variables (q′,q) by dividing them into cells of volume �qi

about points qi to produce a finite matrix TE with elements

(TE)i,j = (�qi)
1/2TE(qi ,qj )(�qj )1/2. (7)

Bogomolny showed that the minimum dimension Ñ (E) of this
matrix needed to calculate energy eigenvalues up to energy E

is

Ñ (E) = A(E)

(2π�)f −1
, (8)

where A(E) is the volume of the classically allowed region
on the PSS. Thus Ñ (E) coincides with the number of
“Planck cells” in this allowed region. To obtain accurate
results, however, it is necessary, in practice, to choose the
dimension N (E) of the transfer matrix to be larger than
this theoretical minimum. For sufficiently large values of
N (E), approximately Ñ (E) eigenvalues of TE are found
to lie near the unit circle in the complex plane, consistent
with an approximate form of unitarity for TE , while the
remaining eigenvalues are found to be small and lie near the
origin [40,42].

Instead of discrete coordinates, as above, the matrix TE can
be constructed in a discrete basis {φi} obeying a relation of the
form

∑
i |φi)(φi | = 1̂ so that its elements are given by

(TE)i,j = (φi |T̂E|φj ) =
∫

�

dq′
∫

�

dq φi(q′)∗TE(q′,q)φj (q).

(9)
The above comments concerning matrix dimensions apply in
such cases as well.

B. The IVR formula for the transfer function

Calculation of TE(qi ,qj ) via Eq. (5) requires identifying all
classical trajectories that begin at coordinate qj on the Poincaré
surface and end at coordinate qi after a single cycle of motion.
This requires a numerical search that can be difficult for
nontrivial systems, especially for those of high dimensionality.
This motivates development of an IVR expression for this
function.

Our IVR formula for TE(q′,q) is most simply obtained
from an analogous IVR expression for the Green’s function
GE(x′,x). For the case that positions x′ and x both lie on a
particular Poincaré surface, it has been shown that this function
can be semiclassically approximated as [5,6]

GE(x′,x) = 1

i�

(
1

2π�

)f −1 ∑
σ=±1

∞∑
l=0

al

∫
dy(0)

×
∫

dp(0)
y

(
q′|y(l)p(l)

y

)
�′

× C

|żl ż0|1/2
e(i/�)WE (y(l),y(0))

(
y(0),p(0)

y |q)
�
, (10)

where the prefactor C is given as [6]

C = [sgn(żl ż0) det(2�/π�) det(∂ζ (l)/∂ζ (0))]
1/2

. (11)

In our notation x = (z,q) is a coordinate in the f -dimensional
configuration space. It is resolved into a component z perpen-
dicular to the Poincaré surface (the surface is defined by the
condition z = 0) and components q along the surface. The
quantities � and �′ are f × f symmetric matrices that have
positive real parts but are otherwise arbitrary. The quantities
(q|y,py)� are unnormalized coherent states on the PSS, defined
by

(q|y,py)� ≡ exp
[−(q − y)T �(q − y)/� + ipT

y (q − y)/�
]
.

(12)

The (y(0),p(0)
y ) determine coordinates and conjugate momenta

on the surface that serve as initial conditions for classical
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trajectories and (y(l),p(l)
y ) are phase space points for the lth

intersection with the PSS. Additionally, ż0 and żl are the
velocity components perpendicular to the surface at the initial
time and at the lth return and σ = ±1 is the sign of ż0,
determining the initial direction of the trajectory normal to
the surface. In addition, al is defined as 1 − (1/2)δl,0. The
matrix ∂ζ (l)/∂ζ (0) is given by

∂ζ (l)

∂ζ (0)
= 1

2

∂p(l)
y

∂p(0)
y

− i�′ ∂y(l)

∂p(0)
y

+ i

4

∂p(l)
y

∂y(0)
�−1 + 1

2
�′ ∂y(l)

∂y(0)
�−1,

(13)

where the partial derivatives (monodromy matrix elements)
on the right-hand side are evaluated for fixed energy and fixed
final PSS. The phase of the complex prefactor C is determined
by the requirement that it be continuous with respect to time.
For this purpose, it is important to keep the time-dependent
versions of sgn(żl ż0) and ∂ζ (l)/∂ζ (0) together in the square
root appearing in Eq. (11) during the dynamical calculations.

The above formula was derived by requiring that a sta-
tionary phase approximation to the integrals in (10) yield
the Gutzwiller’s formula for GE(x′,x) [21]. For the case
considered, this can be expressed as [49]

GE(x′,x) = 1

i�

1

(2πi�)(f −1)/2

∑
classical
trajectory

∣∣∣∣ 1

ż′ż
det

[
∂2WE

∂q′∂q

]∣∣∣∣
1/2

× exp

(
i

�
WE − iν

π

2

)
. (14)

Here the sum is taken over all trajectories of energy E

connecting the point x at an initial time to the point x′ at a later
time. As before, an f -dimensional coordinate x is resolved
into one variable z perpendicular to the Poincaré surface and
a set of f − 1 coordinates q along the surface. The condition
that (10) reduces to (14) upon application of the stationary
phase approximation ensures that the IVR expression is
a semiclassical treatment since both the stationary phase
approximation and Gutzwiller’s formula become exact in the
classical limit.

The close similarity between (14) for GE and (5) for TE

allows us to deduce an IVR formula for the transfer function by
making minor adjustments to the IVR formula for the Green’s
function presented in (10). These modifications are designed
to cause a stationary phase evaluation of the integrals in the
resulting IVR expression for TE to yield Bogomolny’s formula,
in analogy with the condition obeyed by the IVR expression
for GE . The specific procedure is guided by the observation
that a stationary phase treatment of an integral results in an
expression in which a pre-exponential factor in the integrand is
evaluated at the critical points where the exponent is stationary.
Thus there is a simple and obvious correspondence between
the prefactor in the integral and the resulting prefactor obtained
by the stationary phase approximation.

To carry out this program, we must identify the differences
between (14) for GE and (5) for TE . One such difference is
the the presence of the factor (i�|ż′ż|1/2)−1 that appears in the
Green’s function but not in the transfer function. Thus, to form
an IVR expression for the transfer function, we remove the

corresponding factors (i�)−1 and (żl ż0)−1/2 appearing in the
IVR formula for the Green’s function. Additional differences
between (14) and (5) concern the nature of the summations
in the two expressions. In the Green’s function they include
trajectories that leave the Poincaré surface with any sign of ż

and return to the surface any number of times and with any sign
for ż′, while in the transfer function these trajectories leave the
surface with a particular sign for ż (say, ż > 0) and return to
the surface exactly once with the same sign for ż′. To adjust
the IVR expression for GE , we remove the summations over
σ and l, implicitly restricting the values to σ = 1 and l = 2
(so that a2 = 1).

With these modifications, we obtain the following IVR
formula for the transfer function:

TE(q′,q) =
(

1

2π�

)f −1 ∫
dpy

×
∫

dy(q′|y′p′
y)�′Ce(i/�)WE (y′,y)(y,py |q)�, (15)

where we have removed superscripts (0) and replaced super-
scripts (l) on y and py by primes. All trajectories needed
to compute TE by this formula are determined by initial
conditions (y,py) on the Poincaré surface that, together with
the requirements H (x,p) = E and ż0 > 0, fix the value of the
momentum normal to surface. Therefore, in contrast to (5),
calculations using the IVR formula do not require searches
for trajectories satisfying specific boundary conditions on the
PSS. As in (5), trajectories need not be continued after their
first return to the surface with positive normal velocity.

As argued above for the Green’s function, the present
IVR formula for the transfer function is a semiclassical
approximation since it reduces to Bogomolny’s formula in
the classical limit, where both Bogomolny’s expression and
the stationary phase approximation become exact. However,
for arbitrary width matrices � and �′ and nonzero �, the IVR
expression is not identical to Bogomolny’s formula. Rather,
the IVR and Bogomolny expressions should be regarded as
different semiclassical approximations. It should be mentioned
that purely quantum mechanical analogs of the transfer
function have been developed [43–46] and, consistent with
other cases [11,50], it may be possible to derive our IVR
expression directly from such treatments, avoiding references
to Bogomolny’s formula.

C. The δ function limit

Despite the above remarks concerning the general
nonequivalence of the IVR and Bogomolny approximations,
the present IVR formula does become identical to Bogo-
molny’s expression in the limiting case that the Gaussian
width matrices are chosen to have the forms � = �′ = γ 1
with γ → ∞. Then one can show that

(q|y,py) → (π�/γ )(f −1)/2δ(y − q), (16)

(q|y′,p′
y) → (π�/γ )(f −1)/2δ(y′ − q′), (17)

and [6]

C →
(−2iγ 2

π�

)(f −1)/2 ∣∣∣∣det
∂y′

∂py

∣∣∣∣
1/2

e−iπν/2, (18)
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so that integration over y casts (15) in the form

TE(q′,q) =
(

1

2πi�

)(f −1)/2 ∫
dpyδ(y′ − q′)

×
∣∣∣∣det

∂y′

∂py

∣∣∣∣
1/2

eiWE (y′,q)/�−iπν/2. (19)

In this equation, y′ is regarded as a function of py and eval-
uating the remaining integral over that variable immediately
gives Bogomolny’s expression, Eq. (5).

Equation (19) is an f -dimensional generalization of Hag-
gerty’s IVR expression for the transfer function [42]. It cannot
be used in its integral form for numerical calculations of
TE(qi ,qj ), with discrete values for the coordinates, due to the
singular nature of the integrand. However, it can be applied to
calculate the transfer matrix in a basis of continuous functions,
as in Eq. (9), since the δ function is then integrated over q′,
yielding a finite-valued result.

These considerations show that we can perform calculations
that effectively use Haggerty’s numerical method and obtain
semiclassical results that are equivalent to those of Bogo-
molny’s theory by applying our IVR technique to 〈φi |T̂E|φj 〉
with sufficiently large width matrices. We make use of this
observation to compare the results of various theoretical and
numerical methods in Sec. IV C.

D. Symmetry-projected transfer operator

For systems with discrete symmetries, one may wish to
determine energy levels for states that transform as a specific
irreducible representation of the symmetry group. Here we
present a version of the IVR formula for TE that makes
this possible and allows treatment of more general symmetry
groups than a previous approach [42]. Since our treatment is
practically identical to that of [6] for the Green’s function, we
omit a detailed derivation and present only the final results.

We begin by recalling the operator [51]

P̂j = dj

|G|
∑
R∈G

χj (R)R̂

that projects onto those energy eigenstates that are a basis for
a particular irreducible representation (IR) j . Here the G is
the group formed by the symmetry operators R̂ of the physical
system, |G| is the order of the group, dj is the dimension of
IR j , and χj (R) is the character of R̂ in this IR. We wish to
form the symmetry-projected transfer function

T
j

E (q′,q) = dj

|G|
∑
R∈G

χj (R)T R
E (q′,q), (20)

where T
j

E ≡ P̂jTE and T R
E ≡ R̂TE . It will then be possible to

obtain energy eigenvalues for states with symmetry j from the
zeros of det(1 − Tj

E).
For simplicity, we restrict the width matrices to the diagonal

forms � = γ 1 and �′ = γ ′1. The symmetry operators are
taken to act on the final variables x′ = (z,q′) according to
R̂x′ = Rx′, where R is an f -dimensional square orthogonal
matrix. As shown in Appendix C of [6], the operators R̂

may be transferred from x′ to the variables (z′,ż′,y′,p′
y)

describing the final intersection of the trajectory with the

Poincaré surface in the IVR expression for TE . The operator
R̂ generally changes the position of the Poincaré surface
for this intersection from z′ = 0 to z′

r = 0, where z′
r ≡ R̂z′,

and changes the corresponding normal velocity from ż′ to
ż′
r = R̂ż′. Similarly, it transforms the dynamical variables

describing the intersection point on the Poincaré surface from
y′ and p′

y to y′
r = R̂y′ and p′

yr = R̂p′
y , respectively. We thus

obtain

T R
E (q′,q) =

(
1

2π�

)f −1 ∫
dy

∫
dpy(q′|y′

rp′
yr )CR

× eiWE (y′
r ,y)/�(y,py |q), (21)

where the prefactor is given by

CR = [sgn(ż′
r ż0)(2γ /π�)f −1 det(∂ζ ′

r/∂ζ ) det R]1/2, (22)

with

∂ζ ′
r

∂ζ
= 1

2

∂p′
yr

∂py

− iγ ′ ∂y′
r

∂py

+ i

4γ

∂p′
yr

∂y
+ γ ′

2γ

∂yr

∂y
. (23)

Turning attention to (20) and recognizing that trajectories
contributing to the various T R

E generally cross different
symmetry-transformed Poincaré surfaces in various directions,
one finds that T

j

E can be expressed as

T
j

E (q′,q) =
(

1

2π�

)f −1 ∑
s

∑
σ=±

∫
dy

∫
dpy

∑
R

′
aj (R)

× (q′|y′
rp′

yr )CReiWE (y′
r ,y)/�(y,py |q), (24)

where the summation over s is over first crossings of all
Poincaré surfaces z′

r = 0, obtained by applying all R̂ ∈ G to
the initial surface z′ = 0, and the summation over σ is over the
two possible signs of ż′

r at the crossing. The summation over
R is restricted to those symmetry operators that transform z′
and ż′ > 0 to z′

r and ż′
r with the specified s and σ . Finally, the

coefficient aj (R) is defined as djχj (R)/|G|.
Equation (24) allows one to calculate the projected transfer

function T
j

E by launching trajectories from an initial PSS and
considering the first intersection of each trajectory with each
Poincaré surface generated by applying the group symmetry
operators to the initial surface. For each such intersection, the
symmetry operators R̂ that carry the intersection surface to the
initial PSS with positive transverse velocity must be identified
and the corresponding summand in

∑′
R must be evaluated.

III. CALCULATIONS

A. System

We illustrate our IVR treatment with numerical calcu-
lations for systems of two degrees of freedom with the
Hamiltonian [52–54]

H = 1

2

(
p2

x + p2
y

) + α

2
(x2y2) + β

4
(x4 + y4), (25)

where α and β are parameters that can greatly influence the
nature of the classical behavior. For example, the choice of
α = 0 and β > 0 leads to completely integrable dynamics
since the Hamiltonian then describes two independent quartic
oscillators in coordinates x and y, while the choice of
α > 0 and β = 0 results in classical behavior that is almost
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completely chaotic at all energies [52,53]. Thus, by choosing
different values for these parameters, we can investigate the
IVR method for a variety of dynamical cases.

The symmetry of the potential energy function allows
classification of the energy eigenstates of this system according
to the IRs of the C4v point group. In the present calculations,
we focus on the energy levels of states belonging to the totally
symmetric representation A1. These are obtained by solving
det(1 − Tj

E) = 0, where Tj

E is constructed using (24) with
j = A1.

B. Scaling property

The system described in (25) is especially convenient for
the present treatment since the potential energy function is
a homogeneous polynomial of fourth degree, i.e., V (λx) =
λ4V (x). This property implies a one-to-one correspondence
between each classical trajectory [x̃(t̃),p̃(t̃)] at a fixed arbitrary
energy Ẽ and a particular trajectory [x(t),p(t)] at any other
energy E. The latter trajectory is obtained by scaling x̃, p̃ and
t̃ according to [23]

x =
(

E

Ẽ

)1/4

x̃, p =
(

E

Ẽ

)1/2

p̃, t =
(

E

Ẽ

)−1/4

t̃ , (26)

which also implies that WE = (E/Ẽ)3/4WẼ . Since the ar-
bitrary width matrix � has the dimension of momentum
divided by position, it is convenient to choose it to scale as
� = (E/Ẽ)1/4�̃.

Thus, choosing Ẽ = 1 and noting that f = 2 for the present
systems, (21) becomes

T R
E (q ′,q) = 1

2π�

∫
dỹ

∫
dp̃yE

7/8C̃R exp(iE3/4φ/�),

(27)

where the integration is over a Poincaré surface at energy Ẽ.
Here C̃R is the prefactor CR of (22) evaluated at energy Ẽ and
φ is defined as

φ = iγ̃ ′(q̃ ′ − ỹ ′
r )2 + p̃′

yr (q̃ ′ − ỹ ′
r ) + WẼ(ỹ ′

r ,ỹ)

+ iγ̃ (q̃ − ỹ)2 − p̃y(q̃ − ỹ), (28)

where γ̃ = �̃ and γ̃ ′ = �̃′ are one-dimensional width “ma-
trices.” This expression allows one to recalculate T R

E for any
energy E by simply rescaling two functions in the integrand.
Consequently, the IVR calculation can be efficiently repeated
for a large number of energies without the need to recompute
trajectories.

An additional quantity with scaling properties for our
system is the phase space area A(E) on the PSS classically
accessible at energy E, which scales as (E/Ẽ)3/4. Thus the
minimum dimension (8) of the transfer matrix can be expressed
for the present cases (with Ẽ = 1) as

Ñ (E) = E3/4 A(Ẽ = 1)

2π�
. (29)

In our work we choose the Poincaré surfaces to lie along the
line x = y tan ϕ that passes through the origin in configuration
space at an angle ϕ from the y axis. Then it is straightforward

to evaluate A(1) analytically as

A(1) = 2B(1/4,3/2)

[β + 2(α − β) sin2 ϕ cos2 ϕ]1/4
, (30)

where B(1/4,3/2) ≈ 3.4961 is the beta function.

C. Finding energy eigenvalues

According to Bogomolny’s theory, energy eigenvalues
semiclassically obey the condition det(1 − TE) = 0, so it
apparently should be possible to determine the energy levels
by searching for values of E that cause the determinant to
vanish. However, this condition is strictly obeyed only in the
classical limit. Additionally, the determinant is complex valued
so, in practice, it does not generally vanish at or near energy
eigenvalues when � �= 0. One popular method to overcome this
problem is to estimate energy eigenvalues from minima of the
function | det(1 − TE)| (see, e.g., [35,36,40,41,47]). Another
approach [35] is to estimate semiclassical energies from the
zeros of the function Re DE where the functional determinant
DE is defined as exp[−iπNTF(E)] det(1 − TE), NTF(E) being
the integrated mean level density (the Thomas-Fermi staircase
function). This method is expected to succeed because DE

is known to become real in the classical limit[31–33,35].
However, in agreement with the comments in [42], our
experience has been that the above techniques do not reliably
detect all energy eigenvalues for the systems treated here.

Haggerty [42] has proposed an alternative way to obtain
energy eigenvalues from TE that we have found to be
successful for the present systems. His approach is based on the
behavior (mentioned in Sec. II A) of the complex eigenvalues
λj exp(iθj ) of TE , as the energy E or the value of Planck’s
constant � is varied. When the dimension of the transfer matrix
exceeds Ñ (E), approximately Ñ (E) eigenvalues, which are
relevant for quantization, lie near the unit circle of the complex
plane (λj ≈ 1), consistent with the expected unitarity of the
transfer matrix, while the remaining eigenvalues are clustered
about the origin (λj � 1). As the energy increases or �

decreases, the eigenvalues move around the origin of the
complex plane, generally in the counterclockwise sense. Under
these conditions Ñ (E) also increases and, to maintain the
condition that Ñ (E) eigenvalues lie near the unit circle,
eigenvalues that were formerly near the origin spiral outward
until their moduli become approximately one. Although away
from the classical limit it is not true that an eigenvalue of TE

becomes exactly unity at a quantum energy level, an eigenvalue
of this matrix does cross the positive real axis close to the unit
circle near such a quantum energy. Thus quantum levels can
be reliably estimated from the energies at which θj = 0 and
λj are sufficiently large.

We note that this quantization criterion becomes equivalent
to the exact condition det(1 − TE) = 0 in the classical limit
since the moduli λj then become unity for all relevant eigen-
values j . It can therefore be argued that use of the quantization
condition θj = 0 is consistent with the semiclassical treatment
of the matrix TE , which is also exact only in the classical limit.

Determining energies that satisfy θj = 0 would seem
to require following individual eigenvalues of the transfer
operator around the complex plane as the energy is varied. This
is tedious and difficult since the paths of different eigenvalues
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can cross. We therefore seek a practical way to automate the
process of locating semiclassical energy levels. We begin by
defining a minimum modulus a, on the order of unity, for the
relevant eigenvalues and use it to define the function

Z1(E) ≡
∏
λj >a

sin
θj

2
. (31)

Then the condition Z1(E) = 0 identifies energies at which
at least one of these eigenvalues crosses the positive real
axis. Unfortunately, this product becomes discontinuous when
the modulus of an eigenvalue, formerly close to the origin,
becomes larger than a and joins the relevant set. As a step
toward improving this situation, we smoothly introduce the
influence of eigenvalues with moduli between b and a (where
b < a) by multiplying the above product by the strictly positive
quantity

Z2(E) ≡
∏

b�λj �a

[
(1 − xj )2 +

(
xj sin

θj

2

)2
]1/2

, (32)

where

xj = λj − b

a − b
. (33)

Thus we identify semiclassical energy levels as the zeros of
the function

Z(E) ≡ Z1(E)Z2(E). (34)

This construction guarantees that the absolute value of Z(E)
is a continuous function of the energy. However, the sign of
Z(E) can still change discontinuously at certain values of E

and this may seem to cause potential difficulties in detecting
true zeros. One reason for a sign change is that when the
value of a particular λk increases through a and sin θk/2 < 0,
the positive factor corresponding to index k, formerly in Z2,
becomes negative when it is transferred to Z1. A second reason
concerns the multivalued nature of the angles θj describing the
phase of an eigenvalues of TE . In principle, the branch of each
θj (E) should be chosen to make it a continuous function of
the energy E. This angle is, however, numerically obtained
in a particular interval, typically (−π,π ), and its continuity is
difficult to ensure due to the crossing of paths for eigenvalues
in the complex plane. For this choice of branch and θj near
±π , a small variation in the energy may cause the calculated
sign of θj to abruptly change, causing the sign of the factor
sin θj /2 to change and leading to an overall sign discontinuity
in Z(E). Fortunately, the problems described here are minor
since it is easy to distinguish discontinuities from continuous
and smooth passages through zero. When Z(E) is found
to change discontinuously, its continuity can be restored by
simply inverting its sign.

The choice of parameter b in Z2(E) is not critical since its
value does not affect the zeros of Z(E). A suitable choice of
parameter a is also not difficult in practice since the distribution
of λj values for θj = 0 forms distinct peaks for the relevant
and irrelevant eigenvalues of T, separated by a gap containing
few, if any, eigenvalues [42]. We find that examination of the
moduli λj , of eigenvalues crossing the positive real axis in
the complex plane, for a relatively small range of energies, is

sufficient to determine a value of a that successfully divides the
eigenvalues into the relevant and irrelevant sets for all energies
studied. The specific values of a and b used in our calculations
will be presented in Sec. IV.

D. Basis functions

Although most of our calculations are carried out using
a finite set of points yi to represent the transfer matrix [as
in (7)], we also perform some calculations in which this
matrix is represented in a basis of continuous functions on
the PSS [see (9)]. As discussed in Sec. II C, this allows
us to perform comparative calculations that effectively use
Haggerty’s numerical technique and provide energy levels
consistent with Bogomolny’s theory. We choose this basis to
consist of harmonic oscillator wave functions

φj (q) = 1√
2j j !

(
2σ

π�

)1/4

e−σq2/�Hj

(√
2σ

�
q

)
, (35)

where the Hj are Hermite polynomials. We further choose
the harmonic oscillator width parameter σ to scale as σ =
(E/Ẽ)1/4σ̃ , in a manner similar to the coherent state width
parameter γ .

When (15) is substituted into (9), the expression for matrix
elements (TE)ij is found to involve the quantities (ypy |φj ) and
(φi |y ′p′

y). With the above basis, the formula [55]∫ ∞

−∞
e−(x−y)2

Hn(αx)dx = π1/2(1 − α2)n/2Hn

[
αy

(1 − α2)1/2

]
(36)

can be used to express such inner products in the analytical
form

(ypy |φj ) = 1√
2j j !

(
γ − σ

γ + σ

)j/2

×Hj

[(
2γ σ

γ 2 − σ 2

)1/2

z

]
g(y,py), (37)

where

g(y,py) =
[

2π�σ

(γ + σ )2

]1/4

× exp
[−(

γ σy2 + p2
y/4 − iσypy

)/
(γ + σ )�

]
(38)

and

z = (γ /�)1/2y − i(4γ �)−1/2py. (39)

The functions fj = (
ypy |φj

)
for j = 1,2,3, . . . can be conve-

niently generated by the recursion formula

fj =
√

4γ σ

(γ + σ )2

(
z√
j

)
fj−1 −

√
j − 1

j

(
γ − σ

γ + σ

)
fj−2,

(40)

with f0 = g(y,py).

E. Other details

The value of � is set to unity in all our calculations.
Quantum mechanical energy eigenvalues are determined by
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diagonalizing the Hamiltonian operator in a large harmonic
oscillator basis set, as discussed in [54].

Although the phase space integrations in the IVR expression
(24) can be carried out by ordinary quadrature methods for
the present low-dimensional system, they are performed here
by a Monte Carlo technique to explore the feasibility of the
general IVR treatment for larger systems, where quadrature
techniques are impractical. To generate random y and py

values for the Monte Carlo integration, a rectangular portion of
the Poincaré plane, containing the classically allowed region,
is uniformly sampled and points falling outside this region
are rejected. The accepted points serve as initial conditions
for Hamilton’s equations of motion and these, along with
the linearized equations of motion for the stability matrices
and a differential equation for the action WE , are integrated
as a function of time until the trajectories cross the required
symmetry-related Poincaré surfaces.

Because all classical trajectories needed for the calculations
are short, chaos does not impede convergence of the Monte
Carlo sums. Thus, in contrast to previous IVR calculations
for highly chaotic systems, all sampled trajectories in the
classically allowed region are retained and there is no need
to impose numerical filtering or trajectory termination proce-
dures to achieve convergence in the present work.

IV. RESULTS

A. Integrable case

We first consider results of our treatment for an integrable
system defined by the Hamiltonian (25) with the parameters
α = 0 and β = 0.01. The Poincaré surface is chosen as
the line y = x passing through the origin in configuration
space, corresponding to the rotational angle ϕ = π/4 in
(30). The transfer matrix is constructed as in (7), where the
discrete values qk are chosen as N equally spaced points
between the minimum and maximum classically allowed
positions on the PSS. The Gaussian width parameters are
chosen as γ̃ = γ̃ ′ = 0.5 and energies of the 47 states of A1

symmetry with E < 12 are investigated.
Figure 1 plots the difference �E = Eqm − Esc, between the

accurate quantum energies Eqm and the semiclassical energies
Esc, as a function of the dimension N of matrix TE , for
levels with 11 < E < 12. The phase space integrals in the IVR
expression were evaluated with 5 × 104 classical trajectories
(Monte Carlo points). The results show that the computed
energies essentially converge for N ≈ 38, which is only about
40% higher than the theoretical minimum value Ñ (E) ≈ 27 for
these states. We have observed similar convergence behavior
for other energy ranges examined for this system. As discussed
above, calculations based on Bogomolny’s transfer matrix
usually require dimensions on the order of 10 times Ñ (E)
in order to obtain converged energies using the conditions
| det(1 − TE)| = 0 or Re DE = 0. The success of the present
calculations with much smaller matrix dimensions can be
attributed to the use of the alternate method described in
Sec. III C for the determination of the energies.

Figure 2 examines the dependence of the computed energies
on Ntr, the number of classical trajectories that are used
to evaluate the integrals over the PSS. These calculations

27 29 31 33 38 45 54
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0.015
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0.025
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E

 

 

E=11.0909

E=11.1200

E=11.4099

E=11.8729

E=11.9583

FIG. 1. (Color online) Error in the semiclassical energy eigenval-
ues in the range 11 < E < 12 for the integrable system, as a function
of the dimension N of the transfer matrix. The �E and energies in
the legend are expressed in atomic units.

were performed using N = 38 for the same levels as in
Fig. 1. The convergence with respect to Ntr is seen to
be very slow. This behavior can be understood in terms
of the results presented in Appendix A, which establish that
the semiclassical energies obtained in our calculations can be
expressed as Monte Carlo averages over contributions from the
Ntr randomly sampled trajectories. The slow improvement in
the precision of the energies observed here is consistent with
the N

−1/2
tr convergence that characterizes such Monte Carlo

averages. Despite this unfavorable feature, the calculations
already appear to be converged to a reasonable degree for
Ntr � 1.2 × 104 trajectories.

Although the N
−1/2
tr convergence of the Monte Carlo

method is a disadvantage for the determination of accurate
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tr
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FIG. 2. (Color online) Error in the semiclassical energy eigenval-
ues in the range 11 < E < 12 for the integrable system, as a function
of the number of trajectories used in the IVR calculations. The �E

and energies in the legend are expressed in atomic units.
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FIG. 3. (Color online) Plot of Z(E) versus energy for A1 states
of the integrable system. Vertical lines indicate the quantum energy
levels. Energies are expressed in atomic units.

results, it makes it possible to obtain qualitatively correct
estimates with only a few trajectories. Thus the calculations
are seen to predict the existence of the correct number of
quantum levels in the energy range explored using fewer than
200 trajectories. The convergence rate of the Monte Carlo
method improves significantly for lower energies due to the
factor E3/4 appearing in the exponential of Eq. (27), which
reduces the fluctuations in the integral. Interestingly, we have
found that the IVR transfer matrix for this system already
predicts the correct number of energy levels in the interval

0 < E < 2.5 using as few as two trajectories. Of course, the
success of this method with such a small number of random
integration points involves an element of luck.

Figure 3 displays the function Z(E) defined in (34) for
the full range of energies investigated. These calculations
were performed using 5 × 104 trajectories and matrix di-
mension N = 38. Values a = 0.8 and b = 0 were used for
the parameters in the expression for Z(E) throughout the
energy range. The magnifications in Fig. 4 confirm that
there exists a one-to-one correspondence between the zeros
of Z(E) and the quantum energy levels in the entire range.
Considering the near degeneracies of many of the levels,
the successful resolution of all the quantum energies here is
remarkable.

Figure 5 examines the accuracy of the calculations for this
system by plotting the error �E = Eqm − Esc (in units of
the mean level spacing) for the semiclassical energies Esc

obtained in Figs. 3 and 4. A solid line connects points with the
largest negative errors in Fig. 5. These points can be shown
to correspond to states with quantum numbers (2n,2n), n =
0,1,2, . . . , for the two degrees of freedom of the separable
Hamiltonian. Similarly, a dashed line connects the points with
the next-largest negative errors, corresponding to states with
quantum numbers (2n,2n + 2). The formation of such distinct
families of error points is also evident in the results of Haggerty
[42] for the near-integrable case treated there. As in the present
calculations, the largest errors are found for states with the
greatest excitation along the PSS. Biechele et al. [36] also
reported difficulties for such states in their treatment of the two-
dimensional harmonic oscillator. A qualitative explanation for
the exceptionally large errors in these cases was proposed
in [42].
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FIG. 4. (Color online) Magnified view of the function Z(E) for A1 states of the integrable system in regions of near degeneracies. Energies
on the abscissa are expressed in atomic units. Vertical lines indicate the quantum energy levels.
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FIG. 5. Error (in units of the mean level spacing) for the
semiclassical energy eigenvalues of the integrable system, plotted as
a function of the energy. The energies on the abscissa are expressed
in atomic units.

B. Chaotic case

To make the system almost completely chaotic with large
Lyapunov numbers, the parameters in the Hamiltonian (25)
are chosen to have the values α = 1.00 and β = 0.01 [54].
Calculations of the transfer matrix are carried out using a PSS
defined by the condition x = 0, corresponding to the rotational
angle ϕ = 0 in (30). Here TE is constructed in the position
representation in the same manner as for the integrable system
and once again the Gaussian width parameters are chosen as
γ̃ = γ̃ ′ = 0.5. The energies of 61 states of A1 symmetry with
E < 35 are studied.

The error in the semiclassical energies for the range
28 < E < 30 is plotted as a function of the dimension N

of the transfer matrix in Fig. 6 for calculations using 5 × 104
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FIG. 6. (Color online) Error in the semiclassical energy eigenval-
ues in the range 28 < E < 30 for the chaotic system, as a function of
the dimension N of the transfer matrix. The �E and energies in the
legend are expressed in atomic units.
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FIG. 7. (Color online) Error in the semiclassical energy eigenval-
ues in the range 28 < E < 30 for the chaotic system, as a function
of the number of trajectories used in the IVR calculations. The �E

and energies in the legend are expressed in atomic units.

trajectories. It can be seen that the IVR results converge to a
very good accuracy for N ≈ 60, which is only 33% larger
than the theoretical minimum Ñ ≈ 45. Similar results are
obtained at other energies. This once again contrasts with the
much larger matrix dimensions found necessary in most other
calculations.

Figure 7 examines the error in the semiclassical calculations
as a function of the number of classical trajectories Ntr for
levels with 28 < E < 30 and the fixed matrix dimension N =
60. The convergence of the Monte Carlo treatment is found
to be even slower than observed for the integrable case in
Fig. 2. As a result, the statistical errors in the computed energy
eigenvalues are greater than for the integrable system with
comparable values of Ntr.

The function Z(E) is displayed for the full range of energies
investigated in Figs. 8 and 9. The calculations were carried
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FIG. 8. (Color online) Plot of Z(E) versus energy for the chaotic
potential for the range E = 0–20. Vertical lines indicate the quantum
energy levels. Energies are expressed in atomic units.
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FIG. 9. (Color online) Plot of Z(E) versus energy for the chaotic
potential for the range E = 20–35. Vertical lines indicate the quantum
energy levels. Energies are expressed in atomic units.

out using N = 60, Ntr = 5 × 104, and constant values a =
1.0 and b = 0.0 for the parameters in Z(E) throughout the
energy range. As in the integrable case, there is a one-to-one
relationship between the zeros of Z(E) and the quantum levels
in the entire energy range investigated, so all such levels are
unambiguously resolved. In contrast, previous semiclassical
IVR calculations for the trace of Green’s function for this
system [6,19] display false peaks where there are no quantum
levels and some ambiguously weak peaks near actual quantum
levels. Additionally, these previous calculations are unable to
resolve all levels for energies greater than about 14.0, due to
the high level density and spectral peak broadening caused
by the termination of long trajectories. Thus, in a sense, the
present calculations successfully overcome the long-trajectory
IVR problem for this system.

Figure 10 presents the error (in units of the mean level
spacing) in the semiclassical energy levels obtained from
Figs. 8 and 9. Unlike Fig. 5 for the integrable system, the
distribution of errors seems random with no evidence of the
formation of families with regular error patterns, or states with
anomalously large errors, or a systematic increase in mean
error with energy. In drawing these conclusions, however, it
must be remembered that the statistical uncertainties in the
calculations, associated with the Monte Carlo integration,
are relatively large and may partially mask such trends,
particularly at high energies.

C. The δ function limit

We wish to compare the numerical efficiency of our IVR
treatment (as applied with finite values of γ ) to that of
Haggerty’s method and the accuracy of our semiclassical
approximation to that of Bogomolny’s theory. As explained in
the Sec. II C, we accomplish this by applying our IVR formula
to the transfer matrix in a basis of continuous functions [see
Eqs. (15) and (9)] with a very large value for the Gaussian width
parameter γ that effectively converts the Gaussian functions
to δ functions. In this section we describe such calculations
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FIG. 10. Error (in units of mean level spacing) for the semiclas-
sical energy eigenvalues of the chaotic system, plotted as a function
of the energy. The energies on the abscissa are expressed in atomic
units.

using the harmonic oscillator basis discussed in Sec. III D. We
treat the chaotic system described in Sec. IV B and choose
the large value of γ̃ (for Ẽ = 1) as 1000. Tests show that
order-of-magnitude increases or decreases in this value barely
affect the IVR results so, for practical purposes, this choice
achieves the required δ function limit.

These calculations are compared to those with the same
harmonic oscillator basis but using γ̃ = 0.5, as in Sec. IV B.
These are found to produce energies and standard deviations
(see below) that are practically identical to those of Sec. IV B
with the same value Ntr, as expected for treatments that differ
only in the matrix representation.

The same sample of trajectories is used in the calculations
for both values of γ . To obtain sufficient precision for un-
ambiguous comparisons, the number of trajectories is chosen
to be 4 × 105. Since the value of Ntr needed to maintain the
required degree of convergence increases steeply with E, the
present investigations are limited to the 19 energy levels with
E < 15.

The width parameter for the harmonic oscillator basis is
chosen as σ̃ = 0.5 for Ẽ = 1. It is found that this basis is less
efficient than the position representation used in Secs. IV A and
IV B and the matrix dimension N needs to be about 2.6 times
the minimum theoretical dimension Ñ to achieve convergence
in the present cases. For the energy levels investigated here, Ñ
is less than 27 and N is chosen as 80.

Figure 11 compares results for the two calculations. The
statistical uncertainty in the semiclassical energies is indicated
by error bars corresponding to two standard deviations in the
computed results. As explained in Appendix B, the standard
deviation is estimated as the absolute difference of the energies
obtained with 4 × 105 and 2 × 105 trajectories. Although
the relative sizes of the individual error bars for the two
calculations vary with the energy level, the average statistical
errors for the large γ results are a factor of 2.25 greater
than those for the γ̃ = 0.5 case. Given the expected N

−1/2
tr

dependence for the convergence of Monte Carlo techniques,
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FIG. 11. (Color online) Comparison of errors in the semiclassical
energies obtained using γ̃ = 0.5 (stars) and γ̃ = 1000 (squares). The
two calculations use identical classical data and harmonic oscillator
basis sets. The �E and energies on the abscissa are expressed in
atomic units.

the number of trajectories in the calculation with large γ would
have to be increased by a factor of about 5 to achieve the same
degree of convergence as for small γ . This confirms that the
present IVR treatment, which advocates Gaussian factors of
finite and nonzero width, is significantly more numerically
efficient than the method proposed in [42].

In all but three cases, the results of the two calculations
displayed in Fig. 11 fall outside the mutual error bars. This
verifies that the present treatment produces semiclassical
energies that are different from those of the Bogomolny theory.
More surprisingly, eliminating the above three uncertain cases,
the absolute errors of the γ̃ = 0.5 calculation are smaller
than those obtained with γ̃ = 1000 for 14 of the 16 energies
examined. This implies that the accuracy of the present
IVR treatment, with finite and nonzero Gaussian widths, is
better than that of Bogomolny’s method for most of the
states investigated for the present system. Further remarks are
presented in the following section.

V. SUMMARY AND REMARKS

This work describes an attempt to overcome the long-
trajectory problem that limits the usefulness of IVR methods,
especially for systems that are chaotic or large. For this
purpose we formulated Bogomolny’s transfer matrix as an IVR
expression. Additionally, we adapted the expression to allow
determination of energy levels for bound states of a desired
symmetry. We found that the technique indeed overcomes
the problem of long trajectories so it successfully resolves
all energy levels of a chaotic system.

The approach described here has advantages, relative to the
direct application of Bogomolny’s method, that are especially
crucial for the treatment of large systems with smooth poten-
tials. Particularly, the present method does not require searches
for special trajectories obeying boundary conditions on the
PSS. Although this favorable property is shared by Haggerty’s

method, the present technique requires significantly fewer
trajectories to converge the IVR integrations by the Monte
Carlo procedure. This advantage will become especially
important for treatment of larger systems where integration
by the Monte Carlo technique is practically unavoidable.

In this work the semiclassical energy levels are obtained
from the eigenvalues of the transfer matrix by the method
described in Sec. III C, which is a variation of a technique
developed by Haggerty. With this approach it is found that the
dimension N of the transfer matrices need not be much larger
than the theoretical minimum Ñ , determined by Bogomolny’s
theory. Since this dimension is much smaller than that used
in most previous calculations of TE and since the numerical
effort to diagonalize matrices or calculate determinants scales
as N3, this result has substantial numerical implications.

The relatively rapid Monte Carlo convergence of the present
IVR technique, as compared with the method of [42], is
consistent with previous investigations. For IVR expressions
in the position representation, it is known that the presence
of Gaussian factors improves the Monte Carlo convergence
because it damps out the rapid oscillations of the integrand
away from points of stationary phase [4,48]. Semiclassical
approximations for energy eigenstates in the coherent state
representation [56] can be used to verify that this conclusion
also applies to IVR treatments in bases formed by wave
functions of integrable systems, e.g., the harmonic oscillator
states of Sec. IV C. However, this favorable damping of the
integrand occurs only when γ is chosen to have a finite and
nonzero value, so the treatment of [42] (where γ is effectively
taken as infinite) does not benefit from the increased numerical
efficiency.

As stressed earlier in this work, the IVR treatment for the
transfer matrix is not generally equivalent to Bogomolny’s
theory, except in the classical limit. Our numerical treatment
of the chaotic system indeed confirms that the energy levels
produced by the IVR method, with moderate values of γ , differ
from those obtained by Bogomolny’s approximation. More
intriguingly, the results clearly suggest that the IVR energies
are more accurate than those obtained from Bogomolny’s
theory for most of the states of the system investigated.

This result seems surprising in view of the treatment applied
in Sec. II, which derived the IVR expression for the transfer
matrix by requiring it to reduce to Bogomolny’s formula (the
target theory) when the phase space integrals are evaluated
by the stationary phase method. This approach is entirely
analogous to treatments used to derive IVR expressions for
other quantities [4,5,7–10,50]. Though convenient, however,
this method of derivation leaves the impression that the
resulting IVR expression is an only approximation to the
target semiclassical theory, making it a presumably inferior and
less accurate approximation. In the case of the IVR formula
for the time-dependent propagator, an alternative derivation
can be used to show that this conclusion is incorrect: The
IVR expression is a uniform semiclassical approximation that
remains accurate at caustics provided the Gaussian width
parameters are chosen to be finite and nonzero [2,4,11]. It
is thus superior to the Van Vleck approximation, which is
the target theory in this case. Furthermore, there is numerical
evidence that analogous conclusions apply to IVR expressions
for the time-independent wave function [7,8,50], the Green’s
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function [5], angular momentum coupling coefficients [57],
and (perhaps most highly relevant [44,45]) the S matrix [9,10].
Therefore, despite expedient derivations that do not always
do justice to the resulting theories, it may be appropriate to
regard IVR treatments, including the present one, as generally
different semiclassical approximations and to anticipate that
they may be superior to the targets in some respects. Viewed
in this way, the numerical results found in Sec. IV C are less
surprising.

Despite these remarks, we are not aware of previous numer-
ical evidence suggesting that energy levels of chaotic systems,
computed by IVR techniques, may be more accurate than
those obtained by more conventional semiclassical methods.
The required comparisons have apparently not been possible
because of the limited precision of the IVR calculations,
brought about by the long-trajectory problem. The high
resolution of the energy levels achieved here offers a real
opportunity to detect such possible differences in accuracy.

While the higher accuracy for the IVR energies observed
in the present work is certainly interesting, it remains only
an empirical result since a detailed theoretical explanation is
lacking. In addition to further theoretical analysis, calculations
applying more strongly convergent integration methods to a
larger variety of states and systems are clearly desirable.

The treatment developed here is an encouraging attempt
to overcome the long-trajectory problem that plagues IVR
calculations by applying techniques related to the semiclas-
sical ζ function. However, as already noted in [42], the
extraction of energy levels directly from TE involves matrix
algebra that confers a quantum mechanical flavor to the
approach and introduces an unfavorable scaling with respect
to system dimensionality. It might be possible to overcome
these disadvantages by developing an IVR treatment based
on the expansions of the ζ function used to derive periodic
orbit treatments.

APPENDIX A: ENERGY LEVELS AS MONTE
CARLO AVERAGES

The phase space integrals in the IVR expressions for the
transfer matrix elements are evaluated in this work by a Monte
Carlo method. Thus the transfer matrix T, constructed from
a sample of M (≡Ntr) trajectories, is approximated as the
average

T(M) = M−1
M∑

j=1

Tj , (A1)

where Tj is the contribution from a particular trajectory j ,
initiated from a random sample of initial conditions on the
PSS. Many of our conclusions about the convergence of the
calculations with respect to M rest on the claim that each
resulting semiclassical energy level E(M), obtained from T(M),
also has the form of a Monte Carlo average

E(M) = M−1
M∑

j=1

Ej , (A2)

where the variable Ej can be interpreted as the contribution
to the energy level from trajectory j . However, since the

semiclassical energies are obtained from the rather indirect
condition that (in principle) certain eigenvalues of T(M) are
unity, the above claim is not self-evident and is therefore
established here.

We begin by showing that the eigenvalues of the IVR
transfer matrix have the form of a Monte Carlo average
provided M is large enough that the error in the Monte Carlo
approximation can be treated perturbatively. We would like to
estimate solutions of the eigenvalue equation

T(M)u(M) = τ (M)u(M), (A3)

where τ (M) are particular eigenvalues of T(M) near unity
(assumed nondegenerate) and u(M) are the corresponding
eigenvectors. To accomplish this, we apply a perturbative
treatment based on the decomposition

T(M) = T + �T, (A4)

where the unperturbed transfer matrix is calculated by an exact
Monte Carlo treatment with M → ∞ and the perturbation �T
is assumed to be small. In terms of the right eigenvector u
and the left eigenvector vT of T, for the eigenvalue τ of T
corresponding to τ (M), standard first-order perturbation theory
gives

τ (M) = τ + vT �Tu = vT T(M)u. (A5)

Substitution of (A1) then expresses τ (M) as the Monte Carlo
average

τ (M) = M−1
M∑

j=1

τj , (A6)

where

τj ≡ vT Tj u. (A7)

We recall that all the above matrices, eigenvalues, and
eigenvectors are implicitly functions of the energy E. For
Monte Carlo calculations using M trajectories, semiclassical
levels E(M) are obtained from eigenvalues τ (M) obeying the
condition

τ (M)(E(M)) = 1. (A8)

We wish to estimate such energies in terms of the semiclassical
levels E ≡ E(∞) obtained with an accurate Monte Carlo
calculation using an infinite number of trajectories. These
energies obey the condition

τ (E) = 1. (A9)

To accomplish this we express τ (M) as

τ (M)(E) = τ (E) + �τ (E), (A10)

where �τ = vT �Tu [see (A5)], and decompose E(M) as

E(M) = E + �E, (A11)

which implicitly defines �E. Substituting (A11) into (A10)
and applying condition (A8) gives

τ (E + �E) + �τ (E + �E) = 1. (A12)

Expanding and neglecting terms to second and higher order in
the differences yields

τ (E) + �Eτ ′(E) + �τ (E) = 1, (A13)
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where the prime denotes the energy derivative. Applying (A9)
and rearranging the equation now produces

�E = −�τ (E)/τ ′(E), (A14)

which, using (A9)–(A11), can be expressed as

E(M) = E + [1 − τ (M)(E)]/τ ′(E). (A15)

Finally, applying (A6), Eq. (A15) can be written as the Monte
Carlo average of (A2), where

Ej ≡ E + [1 − τj (E)]/τ ′(E), (A16)

thus establishing the desired result.

APPENDIX B: MONTE CARLO ERROR ESTIMATE

Consider IVR calculations of semiclassical energies em-
ploying two sets of trajectories for the Monte Carlo integration:
the first consisting of M trajectories and the second obtained
by adding another M independent trajectories to this set to
form a total of 2M samples. We would like to establish that
the absolute difference |E(2M) − E(M)| between the resulting
semiclassical energies is an estimate of the standard deviation
s(2M) in the energy E(2M) obtained with 2M trajectories.

Since the calculation with 2M trajectories effectively pools
the results from two separate calculations with M trajectories,
we can apply (A2) to express

E(2M) = 1
2 (E(M) + E(M)′ ) (B1)

in terms of energies obtained with the first and second sets of
M trajectories. Recognizing E(2M) as the mean of these two
energies, we can write

E(M)′ = E(2M) + 1
2δE,

(B2)
E(M) = E(2M) − 1

2δE,

where

δE = E(M)′ − E(M) (B3)

is assumed positive. Equation (B1) allows us to eliminate E(M)′

and express δE as

δE = 2|E(2M) − E(M)|. (B4)

It is now simple to use (B2) to calculate the sample standard
deviation for the pair of energies E(M)′ and E(M). The result is

s(M) = δE/
√

2, (B5)

which can also be expressed as

s(M) =
√

2|E(2M) − E(M)| (B6)

by applying (B4). The standard deviation defined in this
way estimates the statistical error obtained with a sample of
M trajectories. Equation (A2), expressing the semiclassical
energies as a Monte Carlo average, implies that the standard
deviation s(2M), obtained with a sample of 2M trajectories,
should be smaller than s(M) by a factor of

√
2. This yields the

desired estimate

s(2M) = |E(2M) − E(M)|. (B7)
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