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Circularly polarized few-cycle optical rogue waves: Rotating reduced Maxwell-Bloch equations
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The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical
pulses in a transparent media with two isotropic polarized electronic field components, are derived from a
system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two
hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue
waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation.
In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue
waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we
find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further
a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical

formulas as well as numerical figures.
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I. INTRODUCTION

Ultrashort optical pulses are widely used in many fields
which include testing ultrahigh speed semiconductor devices,
precise processing of materials, triggering and tracing chem-
ical reactions, wavelength division multiplexing, and many
branches of strong-field physics [1,2]. Because of the tremen-
dous progress made in the area of laser technology, pulses
having few cyclic oscillations in the electric and magnetic
fields have been generated in laboratory [1,2]. Furthermore,
more intense and shorter pulses, even a single-cycle pulse, have
been reported recently [3,4]. These remarkable inventions are
responsible for real-time observation and steering of electronic
dynamics on the atomic scale [2]. It is obviously impossible
to use the concept of an envelope to model the propagation of
a few-cycle ultrashort pulse. Thus, a challenging problem in
the study of ultrashort pulses is that the widely used slowly
varying envelope approximation (SVEA) is no longer valid in
the case of short pulses [5-8]. Naturally, two kinds of models,
improved SVEA and non-SVEA models, associated with the
ultrashort pulses have been well studied in Refs. [9-11]. On
one hand, several attempts have been made to improve the
SVEA and show their efficiency, see, e.g., Refs. [12,13]. On
the other hand, non-SVEA models have been equally studied
intensively, see, e.g., Refs. [14-21]; also, one can find more
comprehensive examples in two survey papers [10,11].

It is a well-known fact that the reduced Maxwell-Bloch
(RMB) equations [22-24] have been derived to model self-
induced transparency (SIT) phenomenon [25-27] without
using the so called SVEA method from the mid 1970s
[28-31]. Although such derivation has attracted a lot of interest
among researchers, the generalization of the RMB equations
is of current research interest due to rapid developments and
application of the ultrashort pulses [32—-34]. Recently, Steudel
and Zabolotskii have constructed the RMB equations for
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circularly polarized light with two isotropic electronic field
components, which are called rotating RMB equations of the
form [35]

(c0, 4+ 0,)ey = —2mwdnoR,,
(cd; 4 9,)ey = —2mdnd, Ry,
2d
R, = —woR, — Eesz, (1)
2d
Ry = woR, + ESXRZ’
2d
R, = ?(Rxsy — Ryey).

Here, ¢, and ¢, are the electric field components, and
(Ry,R,,R;) is the Bloch vector. ¢ is the velocity of light in
vacuum, d is the dipole moment, @, is a common resonance
frequency, A is the Planck constant, and n denotes the number
density of atoms. Using the following transformations

4 d’n z
X = Z, r:a)()(t——),
he c
2d .
Ex,y = h_wogx,ya E=E, +lEya (2)
R=RX+iR)” RZ=RZv

Eq. (1) can be rewritten in the following form [35]:

R, = i(R + ERY),

S: = —i(S + FR%),
3)
R*;

%(RF _SE), E,=—R,, F, =-S5,

with the condition F = E* and S = R*. Here, E and R
represent complex field envelopes, R* is a real variable,
and asterisk denotes complex conjugation. It is worth noting
that rotating RMB equations is an integrable system that
admits the Kaup-Newell-type spectral problem [36] with the
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compatibility condition
U, -V +[UV]=0 “)

of the following linear spectral problem [35]:

1
@y =Uy = §<J52 + Uiy, )
by = Vi = —ﬁ(—ms VY. (6)

with

=i 0 0 E
JZ(O i)’ Ul:(F 0)’
w=(s o) v=(0)

Here, £ is an eigen value parameter. Later, the rotating
RMB equations with anisotropy have been derived [37-
39], and the solutions of rotating RMB equations with
and without anisotropy were constructed using Backlund
transformation and inverse scattering method. Note that the
differences between rotating RMB equations with and without
isotropy [35,37] depends on the relationship between the
dipole moments d, and d,. The paper mainly considered the
rotating RMB equations with the dipole moment condition
d, =d,. On the basis of detailed explanation of the RMB
equations from the idea of the physical relevance of ultrashort
optical pulses, several integrable models of a few cycle pulses
associated with the extensions of the RMB equations were also
reported in Refs. [32-34].

Our recent results regarding the rogue waves [40,41] of
nonlinear Schrodinger (NLS) equation coupled with Maxwell-
Bloch (MB) equation and the Hirota equation coupled with
MB equation motivate us to study the possibilities of rogue
waves in the rotating RMB [35] equations. Rogue waves
have not only been reported in the investigation of oceanic
conditions [42—44] but also in photonic crystal fibers [45,46],
etc. One of the widely accepted prototypes of rogue waves in
one-dimensional space and time is the Peregrine soliton [47]
derived from the NLS equation, which is usually in the form
of a single dominant peak accompanied by one deep cave
at each side in a plane with a nonzero boundary. Recently,
by applying Darboux transformation (DT) method [48-51],
different patterns of the rogue waves for NLS and the derivative
nonlinear Schrodinger (DNLS) equations have been reported
in Refs. [52-59]. Therefore, the purpose of this paper is
twofold. First, we attempt to find rogue waves of Eq. (3) [35]
as amodel of few-cycle optical pulse propagation. These rogue
wave solutions may be useful to generate ultraintense optical
pulses because of its very large amplitude and ultrabroad
frequency spectrum. Second, it aims at identifying differences
and similarities between the two circularly polarized electric
field components ¢, . For simplicity, we study their equivalent
counterparts Ey , in Eq. (2) with the help of rogue wave
solutions. The second result will show a main difference
between a circularly polarized wave and a plane polarized
wave that has not been discussed in Ref. [35].

In order to derive rogue waves, we need to consider the
rational solutions of the rotating RMB equations [35]. These
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equations are integrable systems that admit the Kaup-Newell
spectral problem [36]. We must notice that Steudel and
Zabolotskii first have given some nondegenerate solutions,
such as the breather solution corresponding to the 2w -pulse
of self-induced transparency in terms of Vandermonde-like
determinants by using n-fold Backlund transformation. How-
ever, unlike the usual Backlund transformation, they used
solutions of Riccati equations for the quotient 8 = ¥ /v
(see Egs. (12) and (13) in Ref. [35]), which fails to generate
the degenerate higher-order Backlund transformation if the
component i of eigenfunction v of the Kaup-Newell spectral
problem has a zero point. However, as we have discussed in
Ref. [57], it is necessary to set & (which will be defined
explicitly later) to be a zero point of the eigenfunction i in
order to generate rogue waves by means of the degenerate
Darboux (or Backlund) transformation. So we shall construct
the determinant representation of the n-fold DT and formulas
of EM_  F_ R sl and R by eigenfunctions ¥ of
spectral problem. Furthermore, two kinds of rational solutions,
including rational solitons and rogue waves, of the rotating
RMB equations are given by the degenerate DT from the
vacuum and monochromatic wave. By taking advantage of
a simpler form of the first-order rational soliton, we can
construct a two-peak rational soliton of R and a criterion of
its existence. We also shall construct the higher-order rogue
waves of the rotating RMB equations and then use it to discuss
the relationship between two electric field components E,
and E,.

The structure of this paper is arranged as follows: In Sec. II,
we provide the expressions of the E"1, R and R, of the
rotating RMB equations by using n-fold DT. In Sec. III, we
present the nth-order rational solutions of the rotating RMB
equations from the vacuum and monochromatic wave through
degenerate DT and discuss its properties for the rational
solutions. Finally, we summarize our results in Sec. IV.

II. DARBOUX TRANSFORMATION

In the following, onefold DT of the unreduced linear
problem Eqgs. (5) and (6) is defined as a 2 x 2 matrix
transformation in terms of v, U, and V,

Yy =1y, UM=(T +TUT,
. . @)
vl = (1, + TV)T,

to retain the Lax pair, i.e.,
1 1,11 1 1,11
Iﬂ[]f :U[].(p[]’ w[ ]X — V[]w[]_ 8)

At the same time, the old potential (or seed solution)(E, F,
R, S, R®) in spectral matrices U, V are mapped into new
potentials (or new solution) (EM, FUI R gl Rzl i
terms of transformed spectral matrixes U1, VI, Considering
the application of the representation for the n-fold DT by
means of the determinant of unreduced linear problem Eqgs. (5)
and (6) with different eigenvalues in the following context, we
need to introduce n eigenfunctions ¥, associated with & as

Y2
Y1 = Y (T, X80,

Ui = V(60 = (‘”"1), k=12....n,

)
Yo = Yoz, X, 60)-
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A. Onefold Darboux transformation

Without loss of generality, let the Darboux matrix 7 be
defined in the form [35]

nzﬂ@ah(%‘@s+@)%) (10)

Here, a,,d; are undetermined function of (z, ), which will be
parametrized by the eigenfunction v, associated with &, and
seed (E, F, R, S, R?) in the spectral problem. Note that by
and ¢y are constants from the coefficients of £° in Eqs. (A3)
and (AS), which are given in Appendix A.

Theorem 1. The elements of onefold DT are parametrized
by the eigenfunction v, associated with &; as

1
di=r a=-Y2 p=e=g. a1
a v’
then
—gle &
7}@;&)=:< gw“ e ) (12)
1 Y2
T, implies the following new solutions
PRI
d; d’
Flll — Fﬂ — @,
aq aq
RZ[I] :RZ+2iaIX, (13)
aj
2b0 a) b()
RYW = X 4L R— —2iR*— + 2a,,by,
d d l d Hx0
2c d,
R L Ox +S—+2lRZ—+2d1XC(),
aq ap

and the corresponding new eigenfunction associated with & is

L’_%_Hpkl Vi

" | =&Y Y

1 _ . (14)
=&Y Yu
Ve =&Y Y

Proof. We need to parametrize 7; by the eigenfunctions
associated with &;. This can be realized through a system of
equations defined by its kernel, i.e., T1(§)|z=¢ Y1 = 0. Solving
this system of algebraic equations for (a,d;,bg,co), Eq. (11)
is obtained. Next, substituting (a;,d},bg,cp) into the equations
from the coefficients of £2 in Eqs. (A3) and (A5), new solutions
EW pFil RIS and R*M are given as in Eq. (13). Further,
by using explicit matrix representation Eq. (12) of Tj, the
new eigenfunction takes the form 1//[” T1(§;81)|s=¢, ¥ for
j=2. |
It is trivial to confirm that wl[l] = 0 by making use of 7} in
Eq. (12) or by the representation of transformed eigenfunction
in Eq. (14).

B. n-fold Darboux transformation

The main result in this subsection is the determinant
representation of the n-fold DT for unreduced rotating RMB
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equations. According to the form of 7 in Eq. (10), the n-fold
DT is assumed to be in the form [35] of

E) =) P& (15)

k=0

_f(ay O (0 by
Py = <0 dﬂ), Py = (CZZI 0 >,

Pn=<§1%'z(.)..§n 51529--%) (if n is even),

T, =T,(:61.6, ...

with

_ 0 &1&...&, e
P"_<§1§2-~-$n 0 ) (if n is odd).

Here, P, is a constant matrix, P; is the function of t and .
In particular, if n is even or odd, P, leads to the separate
discussion on the determinant representation of 7, in the
following by means of its kernel. Specifically, from algebraic
equations,

¥ =T 8.8, E)le—g Wi = =0,

(16)

n
> P
k=0

l=12,...,n,

the coefficients of P; are solved by Cramer’s rule. The resulting
determinant representation of the 7, is given in Appendix B.

Theorem 2. Starting from a seed (E, F, R, S, R?), the
n-fold DT T, defined by Appendix B generates the following
new solutions (EU, Flnl| RI1 g1l and Rz,

E[”]:E@_f_Zi_bl’ F[”] F@—Ziq

dy do ap ap
Rell — g 4 21900 21a0x

aop
(17)
Rln]__2b1X+R@—iRz ﬁ+ab +2a b
dy do d ! o

2c d
s — 2 q%0 4 pe <c—1 +d001) + 2doy c1.-

ap ap ap

Proof. We consider the transformed new solutions (EU,
Fir R st and Ry of unreduced RMB equations
corresponding to the n-fold DT. Under covariant requirement
of spectral problem, the transformed form of spectral problem
should be

arw[n] — U[n]w — %(]52 + Ul[nlé')lﬁ, (18)

_5
2(1+§2)

0 RW
0= <S[n] 0 >’ Y= (5;)’

g,y = Yy — _ (IR + vy, (19)

with

0 EWM
U1=<F[n] 0 >,
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and then satisfy the following equation on t-part
Tye + T,U = U, (20)

Substituting 7, given by Eq. (15) into Eq. (20), and then
comparing the coefficients of £7F!, it yields

E[Vl] — E@ 2lb1
dy = dy
0 0 @1
plnl _ F@ B 2icy
ao ao
Similarly, from the equation of x-part
Ty + T,V = VT, (22)

and then comparing the coefficients of £"+? and £"*!, we
get

RIM — R 4 2iagy
ao
2b1 a bl
RM = ——%X 4 R— —iR*| — +apb 2a0, by, (23
d0+ a i <d0+6101 + 2a0, b1, (23)
[n] 2C1X d C1
St = + S— 4+ iR*[ — + dycy +2d0XC1-
ap ap ap

Furthermore, substituting ay, dy, b, c| fromEq. (B2) (n = 2k)
and from Eq. (B4) (n = 2k + 1) into Eqgs. (21) and (23), we
get the final form of new solutions (E™, FI"I, RI" §"l and
REM, ]

Here, R, R and SI"! are the expressions obtained in
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C. Reduction of the Darboux transformation
Under the reduction conditions F = E* § = R*, R* is
real, the eigenfunction v = (W‘) associated with eigenvalue

& has the following relatlonshlp [35]:

) i = Y2, & = &7

() Y™ =V, Yo" =vyn, & =&, where k # [.

According to this property of the eigenfunctions, and setting
n=2k and [ =1,3,...,2k— 1, and if we now choose k
distinct eigenvalues and eigenfunctions in n-fold DTs as

Wn)

Vi
&) =81 V= (

&,

€z<—>1/fz=( and

j=12.3,...
we finally find that reduction conditions hold good, i.e., FI"] =
(EMys, s = (R and R*™ is real. With the help of
choice in Eq. (24), T, is the n-fold DT of the rotating RMB
equations, and thus Theorem 2 provides new solutions of them.
Similarly, for n = 2k 4 1, we can also find suitable generating
functions to obtain the reduction of n-fold DT.

III. THE TWO HIERARCHY OF RATIONAL SOLUTIONS

In this section, we shall present explicit solutions of the
rotating RMB equations through DT by using Eq. (24). Thus,
it is easy to check that

Wy = (=W, 8= (=128,

in Appendix B. Taking Eq. (B2) (n = 2k) into Egs. (21)
and (23), these solutions become

EM = Eaf + 2ibay,

terms of n x n determinant of eigenfunctions (ao, do, b1, c1), RW = —2by, a0 + Rag — 2iR*b1ap + 2ao, by, (25)
but which are expressed by (n + 1) x (n 4 1) determinants in .
. . 2 k] ZZaOX
Ref. [35]. Moreover, we use eigenfunctions y/; to construct R¥™ = R* +
determinants in n-fold DT instead of quotient B; = ¥rj2/¥j1 .
of two components as reported in Ref. [35]. with
J
Hy*(—1)° H,
ao - —7 1 = __7
Hnl Hnl
B 1Wll - 21/f12 &Y Y12
*n 1ﬂ12 *n 1//11 5{‘(%3 wiﬁl
Hy = : L (26)
51:1] ‘/fn—ll £ zl/fn 12 Enc1Vn—11 VYn-12
x n—1_y % x n—2 * * *
n—1 n—12 n—1 n—ll n—17n—12 n—11
'Y _Zlﬂn §1v12 Y
) i le ETY, Vi
o= : DL
& Un-ni s,’::fwn,n E1¥nnn Yaon
% Mg ok % n—2 g % * * 1//*
n—1 n—12 n—1 n—12 n—1%n—11 n—12

In order to get the rational solutions, we only need to seek the eigenvalue degeneration of ”‘ and

an
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Theorem 3. Set n = 2k and define wlj;l in the form

= Lt + /v + o,
i=121=012,....k—1;
i=0,1,2,....n

So the new expressions for ¢y and b, are obtained in the form

—~ . —~
Hnl (_1)i Hn2
a@p=——~——, b=——, 27
Hn] Hnl
where
n—1,0 n-2,0 1,0 0,0
Y1 127 e Yy Vs
* n—1,0 * n—2,0 * 1,0 % 0,0
12 11 e 12 11
Hi=| S at
n—1k—1 n—2,k—1 1,k—1 0,k—1
Vi 12 Vi Vi
* n—1,k—1 x n—2,k—1 * 1,k—1 * 0,k—1
12 11 R 4 V) 11
n,0 n—2,0 1,0 0,0
Vi L4 R ) L2
* n,0 * n—2,0 * 1,0 * 0,0
12 12 aE 11 12
Ho=| S :
nk—1 n—2k—1 1,k—1 0,k—1
w“k 1 Vi 21 Iplzlk 1 1lfl%)k 1
* n,k— * n—2,k— * 1,k— *
12 LY Y 12
Proof. Under the condition of all the eigenvalues ék — &,
H
L and H"z degenerate into an indeterminate form 5- So we

Hy
can Cons1cier the degeneration of H,; and H,,, respectively.

We illustrate the process as follows:

(i) For the first (second) row, we can substitute the
eigenvalue &, (&, = &/°) and eigenfunction v, directly.

(ii) Set&3 = & + € (§4 = &1* + €), and do Taylor expansion
in all elements of the third (fourth) with respect to €, then
subtracting the first (second) row from the third (fourth) row.

(iii) Considering &,y = & + € (or &, = &* + €)(m =
3,4, ....k) and taking the similar procedure in the (2m — 1)th
(or 2mth) row. Note that we should do order-(m — 1) Taylor
expansion with respect to € at the (2m — 1)th (or 2mth) row.

(iv) Taking e — Oinagand b, then terms with higher-order
O[ek®=D+1] vanish. The final expression actually implies
Eq. (27).

A. The first kind of rational solutions from the vacuum

Let us consider from the vacuum E = 0, R = 0, and R* =
—1, the Egs. (5) and (6) are solved by using the following
eigenfunctions

_(Yn . &1
wk_(dsz)’ Wkl—eXP|:17<l+§2X— )],

(28)
-5 ()]
Vie = exp| —i— 1+$2X .

Case (i). Substituting £, = «; + i) into Eq. (27) and letting
B1 — 0, Eq. (25) admits the following three first-order rational
solutions as follows:

C4[A =i+ 1) (@ + 1) e

En 22
(A +i(a} +1)7]
|: (_f‘xl_f-i-x o :|
X exp
o} +1
Rl 4[A1 +i(ef +1)(af — 1)] (2} + 1) o
r [A1+l(0[12+1)2]2
(29)
|:i(—ta1—r+x)a1:|
X exp > ’
ol + 1
et _ AT (e 20— (e 20— (e + 1)’
r —_

A2 (@2 + 1)

Ay =202 (a] + 1)t —2a] x.

Letting 7 — oo, x — oo, from the above, we obtain
|EW, 1> — 0, |[RW, |> = 0and R?!M, — —1. The trajectory
of |EM, |? is defined explicitly by x = (o;> + 1)*t and
the maximum amplitude is 16a;%. Note that |R!!, |> has
two peaks when (o;? + 20 — 1)(e;? — 20 — 1) < 0. The

2 2 2
amplitude of |RM, |? %
and 1 at the lines x = (12 + 1)%t and x = (a2 + 1)t =
(@ 24+ 1)/ — (@ 2420 — D2 —2a; — 1)

20,2
RN occurs at the line x = (1> 4 1)>t and is equal
—(0r1® 20 — (0t > —2011 — 1)
(ar’+1)?

is separately equal to

. However, the amplitude of

to . In order to show the asymptotic
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(a) o - 10

FIG. 2. (Color online) The profiles of rational solutions |E!,, 2, |R!, |2, and R, in Eq. (29) with &; = 1. Note that there are two
peaks in Fig. 2(b).

properties, Figs. 1 and 2 are, respectively, plotted for the algebraic decay behavior instead of exponential decay as in
rational solutions |E!, 2, |[RW, |2, and R, with specific  the case of solitons.

value of parameters o) = % and o) = % Note that there are Case (ii). Assumingk = 2and o) = %in Egs. (25)and (27),
two peaks in Fig. 2(b). It is trivial to know from Eq. (29) that ~ we also construct the following three second-order rational
these rational solutions |E!,, |2, |[RU', |2, and R*!Y, exhibit  solutions

J

E®. = 200i(—18750000 — 3840000 x> — 9375000 7> + 390625 * 4+ 10080000 x T
+960000 x2 2 — 409600 x> t — 1000000 * ¥ + 65536 x* — 3125000 7*
+ 8640000 x 4+ 6000000 x T2 + 819200 x> — 37500000 T — 3840000 x> 7)
x (375000 — 7680 x> — 93750 7% + 72000 x T + 4096 x> — 19200i x>t
+30000i x 7> — 15625i ©° — 1875007 T + 1776007 x)exp(1/20i (=51 + 4 x))/(P; + i P,)*
R, = —160 exp(1/20i (=5 7 + 4 x))(—=751875000000 x * 4 780000000000 x> t* — 394752000000 x> z*
+ 96829440000 x* T — 35840000000 x* T3 — 52500000000 x 2 7° + 56000000000 x° t* 4+ 13762560000 x> 7>
— 2936012800 x°® 7 + 27343750000 x ¢ + 268435456 x — 6997500000000 x 72 + 2520000000000 x> T
+ 266015625000 * 4 80566406250 t° 4 3192187500000 T2 4 2160000000000 x> — 290625000000 7> x
—36175872000i x> v — 345600000000 x> v3 — 1035000000000 73 ¥ — 4485120000007 x>t
— 7290000000000 T x — 365568000000 x> + 5725781250000 * + 284179687500 ° — 9122611200 x>
— 6103515625 77 + 3870000000000 x — 10659375000000 7 + 71368704000 x* + 3523215360 x°
+ 1080000000000 i %% 72 + 435000000000 T x* + 153600000000 x* v2 — 1181250000000)/(P; + i P»)?,
R = —(=102400000000 x> 73 — 360000000000 7* x 2 + 188743680000 x° 7 + 1125000000000 7> x
— 147456000000 x* v2 — 917504000000 x> > 4+ 1792000000000 t* x* — 2240000000000 7> x>
— 781250000000 7 x + 1750000000000 ¢ %% + 293601280000 x° v> — 53687091200 x ' ©
— 296437500000000 — 683593750000 7° — 1602000000000000 x T + 156960000000000 x> 72
— 56156160000000 x* t — 175500000000000 7> x + 4294967296 x® + 152587890625 v*
+ 167040000000000 x> + 2495812500000000 7> 4 72117187500000 t* 4+ 7066091520000 x*
— 46976204800 x°)/ (P> + P,?),
with P, = 18750000 + 3840000 x % + 9375000 % — 390625 t* — 10080000 yx T
— 960000 x2 7% 4+ 409600 x> T + 1000000 73 x — 65536 x*,
P, = —3125000 7> + 8640000 x + 6000000 x T2 + 819200 x> — 37500000 T — 3840000 x 7. (30)
The dynamical evolution of |E™), |2, |R1?], |2, and R*/?, are given in the Fig. 3. According to the physical meaning of the

rotating RMB equations, these rational solutions can also be called as rational few cycle optical solitons, which have never been
reported in the literature.
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-5 i}

FIG. 3. (Color online) The dynamical evolution of the second-order rational solutions | E'?, |2, |[R!, |2, and R*™,, in Eq. (30).

B. The second kind of rational solutions from the monochromatic wave

Leta, b, and c be three real constants, then substituting £ = c exp [l (at+b x)] R=-—= exp [iat + b X)] and R? = —2 (“ D)

into the spectral problem Egs. (5) and (6), and using the method of separation of vanables and the superposition principle, the
eigenfunction v, associated with & is given by

(wk1<r,x,sk>> _ (Clan(r,x,sk)[l] + Cym (T, X8I + Cymi (7, x,£0)I2] + C4w2*(f,x,$,§‘)[2§ 31
WkZ(T7X7Ek) C] w_l(TaX7ék)[2] + C2w2(T7X7Ek)[2] + C3w_1*(T’X’$[:<)[1] + C4w_2*(‘[7Xa§]j)[1 '

Here

(wl(r,x,sw[u) _ exp (= i K (6) 5% 4 Lig)
o (T, x,802]) _iwexp(_m@ )ar+ask T+by i) ’

& 2(14+&7)a 2

(‘Z’Z(T’X’ék)“]> _ ( exp (K (6“1 + 5i0)
)]

2 - a+&24+K (&) ; at+ag’t+bx 1
@ (T, x,50[2] i G oxp (i K (& ) Lio

(o g (o gl
@1(T x4 = (zm(r,x,sk)[z])’ @27 X80 = (wz(r,x,sk)[zl)’

K(é&) = \/a2 + 2052 + 54— %2, 0 =at +by,

anda,b,c,t, x € R, Cy, Cy, C3,C4 € C. Note that (7, x,&) and @,(7, x,&) are two linear independent solutions.

In order to derive the second kind of rational solutions, i.e., the rogue wave solutions, of the RMB equations, a crucial step is
to find a common zero point of K and the eigenfunctions ¥, such that exponential functions vanish and the indeterminate form
g appear in Eq. (27) as in the case of the NLS equation [57]. After tedious calculations, we observe the following fact: By setting

k—1

1 .
Ci=—1+i(Ko+ 1) +exp| iK@Y S —&) |

1 k—1 )

Cy=—1+i(Ko+1)+exp —EiK(ék);Sj(ék — &) |,

- (32)
k—1

Cs = Ko +exp —zK@k)ZL (& — &)

k—1

Cs = Ko +exp ——zK@k)ZL(sk &) |,
j=0

then& = 5 +i —“4“2_62 is only one zero point of K and eigenfunction v in Eq. (31). Here Ky, S;, L; € C. Because & is a zero

point of eigenfunction ¥, we must add first-order derivatives of every row in determinants of Eq. (27). Letting & — &, the
second kind of rational solutions, i.e., the rogue waves, can be constructed from Egs. (25), (27), (31), and (32).
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(a)

FIG. 4. (Color online) The dynamical evolution of the first-order rogue waves |E!",, |2, |R", |2, and R!",, in Eq. (33). These pictures
clearly show the asymptotic localized property and large amplitude of the rogue wave.

Case (iii). For simplicity, leta =b =c =1, Ky = So = Lo = 0, Egs. (25) and (27) reduce to rogue wave solutions of the
following form:

exp[z(x+t)](x +xt+PHl+iny( P+ xT+ 1 —3+lt+4l)()

EN =
: (—x2=—xt—12=1+i1)?
1 exp[z(x+t)]()( Fxr+2ix+24+3it—D(*+xt+2ix+12 —l‘L'—l)
R, = : ; (33)
(=x*—x1t—12-14i1)
4t 2x+1)
R =

O+ xTt+2+12 4+

Figure 4 is plotted for |E",,|2, |R",, |2, and R, . From Fig. 4(a), we infer that |E!"],,|> — 1 by setting T — oo, x — o0,
which gives an asymptotic plane, and the maximum amplitude of |E!!,,|? is equal to 9, which occurs at the coordinate origin

(t =0, x = 0), and the minimum amplitude of |E!,,|? is equal to 0, which occurs at two points (7 = 4‘/37, X = gg) and
(t = 4*1?, X = 39). In Fig. 4(b), we observe that the height of the asymptotical plane is 1 because [RU,)> — 1 when
T — 00, X — 00, and the maximum amplitude of |R[1],2|2 occurs at the two lines T =0 and x = —3, and is equal to 1.

These two lines match quickly with the asymptotical plane at the same height, such that the localized property of |R[” RN
preserved. The minimum amplitude of |R!",,|? is equal to 0, which occurs at four points (7 = —2{ 3“/5) (r= 7 X =

3*f) (r = 7 X = ﬁ), and (t = —27ﬁ, X =— ﬁ) From Fig. 4(c), we conclude that the height of the asymptotical plane is

0, the maximum amplitude of R*!"!,, is located at (r = 2{, X = ﬁ) (rt = —ZT‘ﬁ, X = —4) and is equal to 1, and the minimum
amplitude of RZ[”,2 is located at (r = —2“7[ 3’*f) (r = M X = 3*Tf7) and is equal to —1. Finally, the extreme value of

the amplitude RZU],2 occurs at point (t =0, x = 0) and is equal to 0. To show the localized distribution on (x,¢) plane of the
first-order rogue waves, we give their density plots in Fig. 5. Furthermore, taking eigenfunctions in Eq. (31) back into Eq. (25),
the first-order breather solutions of the rotating RMB equations are obtained, which are plotted in Fig. 6 for the same parameters

FIG. 5. (Color online) The corresponding density plots of pictures described in the legend of Fig. 4.
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10+

FIG. 6. (Color online) Density plots of the first-order breathers |E"|2, |[RI|?, and R*!Y. These solutions are plotted by taking Eq. (31)
into Eq. (25) for the same parameters as described in the legend of Fig. 4, except 8, = %. Note that the central peaks look very similar to the
corresponding profiles of rogue waves as described in the legend of Fig. 5.

in Fig. 4 except f; = %. Under this choice, the eigenfunction ¥; does not have zero point thus allows smooth breathers by DT.
This can be verified visually by comparing Figs. 5 and 6.

Case (iv). To further illustrate the construction method of the different-order rogue waves, we shall provide the second-order
and third-order rogue waves of the rotating RMB equations. Setting k =2, a=b=c=1,Kg=S =8 =Ly =0,L; =50
in Egs. (25), (27), (31), and (32), we get the second-order rogue waves in triangular pattern as follows:

EP =exp(t+0)DO0x* T +3° 14330 +7° 0 +6t* x> =78 x 1 =33 x> =9t +450° ¢

— 541 % —45iT —36i x —15i 7> — 1200 x> + 120 x> + 7500 x> +300i t> +3i 1> —90i v x> — 57 x*
+150 %3 = 127 + x® + 1% — 15073 + 99 x> — 72> 4+ 7545 — 4500 — 16507 — 1650 x + 54i v x + 18i x t*
+33i 2+ 420 3 270 )t 21000 T )G X P30 T3 x T+ TP+ 6t P+ 183

+ 155 =9t +450 x2 1+ 547 x> —=300i T2 +3it° 4+ 1500 x> +27it +9it> —300it x +3 x*
+150 )3 + X0+ 10— 1507% +27 x> + 361>+ 7507 — 450 x + 18it? x +6i x t*

+6i )3 +3ix t+9i T )P+ 540 xP T 47509 + 1500) /(01 +i02)%,

R, = —exp((t+ )i)N—=12i x> —18i x =3it° +7491 +750i + 6 x* > +3x°t+3x 0 +7x° T +6°¢
153+ 2T x T +450 x> T + 3672 x> + 1500 x> +600i 2 +6i x° +3it° +67* x> —18it x> — 15 x*
+150x3 =61t + 40+ 10— 15077 =942 — 5412 + 1507t + 150 x +45it+72i > x +12i 2 x> +9i x* ¢
+1500i T x +3i x> ed)(—12i x> —18i x = 33i7° —600i t> + 6 x* > +3x° 1+ 3x P+ TP P+ 614 42
— 23T 5T = 11T x T +450 2t =362 x>+ 7500 x>+ 6i x> +9it+9i 1>+ 7491 + 150
—15x* 150 % =301 4+ O+ 10— 15073 —9 x> + 1872 + 13507 — 1050 x + 54i x* ¢
+300iT x +24i x 4390 x2 3 +36i 12 x3 +21i x* 1)/(Q1 +i0)%,

R, = 12(—22500 4 486 x* 12 + 108 x> 7 + 270 x 7° + 360 x> 73 + 270 t* x? — 59928 x> r — 120216 x °
—299838 x T 4 12600 x2 7 — 134244 1% x> — 225002 x — 6600 x T4 — 9600 x> > — 3000 72 x> + 4800 x* ©
+7500 x* 4 600 x> + 600 x> — 30126 7% — 9 7% — 600 T3 + 45000 x 2 + 74865 % — 2400 7° + 746400 ©
—748200 x + 54 P T+ 9 P+ 24 x P+ 2 v+ 182 B+ 6 x 7 +51 x4 18
+36 33 t7 +42 %1 — 600 x2 7+ 108 x t7 + 162 x> 10 4+ 198 x* 4 4216 x° ¢°
+72 x7 T 4500 x 8 — 3400 x* v3 4+ 180 x® v2 — 200 x® v — 2600 x> v — 2100 x° 72
+180 7 v +200 x" 4+ '+ 1007 +187%)/(01* + 057).

withQ, = =6 x* 12 =3 x° t =3 x00 =73 P =61t x> =183t = 15x 3 + 957 — 450 x% t — 54 7% 2
—3x* =150 %3 — x® =4+ 15073 — 27 x2 — 36 t% — 750 T + 450 x — 7509,
0> =-300724+37°+150x24+271+97> =300t x + 1872 x + 6 x t* + 612 x> +3 x* ¢
+973 x4 54 x%  + 150. (34)
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FIG. 7. (Color online) Density plots of triangular pattern of the second-order rogue waves |E™,, |, |[R™,, |2, and R*?,, in Eq. (34).

These solutions are plotted in Fig. 7. Similarly, choosing a =
b=c=1,Ky=8y,=3S; =85, =Ly =0 for the third-order
rogue waves solutions |EP), 2, |RP), |2, and R*™,,, Fig. 8
is plotted for triangular pattern with L; = 100, L, = 0, but
Fig. 9 is plotted for circular pattern with L; = 0, L, = 800.
Figures 8 and 9 show that profiles of the rogue waves could
be changed dramatically only by selecting the values of
combination coefficients C;(i = 1, 2, 3, 4) through L, and L,.
Needless to say, we have also constructed analytical formulas
of the third-order rogue waves, but it is too long to present
here. It is possible to get more interesting patterns from the
higher-order rogue waves of the rotating RMB equations as
we have done for the NLS equation [57]. According to the
physical meaning of the rotating RMB equations, solutions
above are actually few-cycle optical rogue waves, which
are derived for the first time. As we have discussed in the
introduction, the RMB equation has been analyzed for the
past four decades and different solutions have been reported,
including highly localized soliton solutions. In particular, in
the case of SIT-type solitons, the theoretical results about
the existence of solitons have been experimentally supported
by several groups. However, the rogue-type rational solutions
have not been reported for RMB equations. In addition to the
above, the multi-rogue wave solutions have not been reported
for this equation. In all the published results on RMB equations
so far, it is well documented that the non-SVEA method has
been widely used to develop the system of governing equation

and several interesting results have been reported. As the
non-SVEA method is mainly used for ultrashort few-cycle
optical pulse propagation through nonlinear optical media, we
strongly believe that the results of this paper will be very useful
to understand and analyze the generation of high-power laser
pulses in optics as well as their evolution by suitably choosing
the pulse parameters.

C. The reflections of the rogue waves on the electric fields

We know from the above results that E has rogue waves,
but the real physical fields in ultrashort pulse are two polarized
electric fields €, and €,. So it is essential for us to find the
reflections of the rogue waves on them or equivalently on
E, = hz—a‘fosx (thereal partof E)and £, = ;—(j‘i}ey (the imaginary
part of E). Figures 10-13 are density plots for the real
and imaginary parts of all rogue waves of E, respectively.
In these figures, a green bar denotes a vale and a purple
bar denotes a upward ridge in profiles of E; and E,. A
group of red bright points (GRBPs) in green area denotes
a downward peak, but a GRBPs in purple area denotes a peak
in upward ridge. In general, a GRBPs for two cases denotes
a localized large amplitude oscillation of a polarized electric
field. In most cases, two kinds of GRBPs are paired except
the one in Fig. 10(a). By comparing Figs. 5(a), 7(a), 8(a),
and 9(a) with Figs. 10-13 in order, it is easy to find that the
patterns of the GRBPs (or paired GRBPs) are similar to the

FIG. 8. (Color online) Density plots of triangular pattern of the third-order rogue waves |E®,,|?, R, |2, and R*®!, | with parameters

(1=b=C=1,K0=SO=S1=S2=L0=0,L1=100,L2=0.
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()

FIG. 9. (Color online) Density plots of the third-order rogue waves |EP,, |2, |[R™,,|?, and R, with same values of parameters as
described in the legend of Fig. 8, except L; = 0, L, = 800.

(a) (b)

FIG. 10. (Color online) Density plots of E'!,, ,(real part of E"!,,) and E'",, ,(imaginary part of E'"),,) for the values described in the
legend of Fig. 5.

E R R

(a) T

FIG. 11. (Color online) Density plots of E?,, , (real part of E™?,)) and E™,, , (imaginary part of E?,)) for the values described in the
legend of Fig. 7.
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157

101}

FIG. 12. (Color online) Density plots of EBl,, , (real part of EP,)) and EP!,, , (imaginary part of EP,)) for the values described in the

legend of Fig. 8.

corresponding patterns of rogue waves of | E|?; thus, we think
a paired GRBPs corresponds to a first-order rogue wave. In
other words, the GRBPs (or paired GRBPs), or a localized
large amplitude oscillation is the first reflection of the rogue
wave on the two polarized electric fields.

According to the analytical formulas of rogue waves
EVl (j =1,2,3), and setting 7 — oo, x — oo, then
EUl, = —cos(t + x), EY,,, = —sin(r + x) for j =1
and j =3, but E?,, , = cos(t + x), EP?,, , = sin(t + x),
which is the second reflection of the localized property of
rogue wave. Thus, there is a complementary relationship of
two electric field components E, and E, when x and 7
are sufficiently large. This can be verified by the alterative
appearance of blue and purple bars in Figs. 10-13.

IV. SUMMARY AND DISCUSSION

In this article, we have reported the determinant repre-
sentation of DT for the rotating RMB equations associated
with SIT effect and the propagation of few-cycle pulses. By
using the degenerate DT, we have constructed two kinds of
rational solutions, i.e., rational solitons and multi-rogue wave

of rotating RMB equations. The two lowest-order rational
solitons and rogue wave solutions are given explicitly and
plotted in figures. The triangular and circular patterns of
the third-order rogue waves are also analyzed in detail. The
obtained solutions have also been confirmed by symbolic
computation and validated, this forms the main results of
the work. We have found two reflections of rogue wave on
the polarized electric fields: (1) a localized large amplitude
oscillation on a periodic background; (2) a complementary
relationship of two electric field components E, and E,
when x and t are sufficiently large. Note that the periodic
background is given by the asymptotical behavior of E, and
E, of rogue waves. From the physical point of view of the
rotating RMB equations, these solutions are actually rational
type few-cycle optical solitons and few-cycle optical rogue
waves. Our solutions open several new avenues in the area
of ultrashort pulse dynamics in optics. As rogue wave-type
solutions have been observed in many branches of physics, the
results of this paper may be useful to explore the production of
high-power few-cycle optical pulses for different applications
in optics, in particular, in the area of near-field nonlinear optics
and fabrication of new optical white light coherent sources.

-10 5 0 5 10

FIG. 13. (Color online) Density plots of E,, , (real part of E®*,)) and E¥,, , (imaginary part of E*,)) for the values described in the

legend of Fig. 9.
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APPENDIX A: THE MATRIX FORM OF THE ONEFOLD Eay— E"dy =0, — Fao + Fdo =0,
DARBOUX MATRIX £%: ay, = by, = co, = do, = 0. (A3)

and comparing the coefficients of £/(j = 3,2,1,0), yields

Considering the universality of DT, the trial Darboux matrix Similarly, from

T in Eq. (7) is assumed to be of the form

_ _ (a1 b1 ap b()
T=TE) = (m d1> &+ <Co do) , (A1)
|

T, + 71TV =VviT, (Ad)

and comparing the coefficients of £/, j = 3,2,1,0, we get

g LiRay — LiR%a) + a1, =0, — LiRMd, + LiR%d) + 4y, =0,

£ 1 ag, + %iRzmao - %iRZ[I]co + 18Ma; =0,
bo, — SRay + 3iR%bo + 3iR*Mby + JRMd) = 0, dy,

' var, + $RMeg — 1Sby =0, dy, + 15"bg — 1Rco =0,
— Rag + R"dy = 0, S"ay — Sdy = 0,

1: plz 1 1: pz
EZR[Z](IO =0, coy — 38d1 — 3iR*co —

— LiRMdy + LiR¥dy = 0, (AS)

%‘0 . aox ZbOX :COX :dOX =0.

In order to obtain nontrivial solutions, we shall construct a basic (or onefold) Darboux matrix 7 with ap = 0 and dy = 0. If we
set ap # 0, then dj is not zero. Furthermore, we know that some coefficients (ag,dy) of T are constants, which generates trivial
DT: EM = ©E and FI' = & F.

0 ap

APPENDIX B: DETERMINANT REPRESENTATION OF n-ORDER DARBOUX MATRIX, ay, dy, b1, AND ¢;
(1) Forn =2k (k = 1,2,3,...), the n-fold DT of the unreduced rotating RMB equations can be expressed as

Ton Tow

W, W,
T, =T, 6.6, ... &)= " " |, B1
(&:61,6 &n) T T (BI)
W, W,
‘% 8111 8n2
= — = —,b = —, = = B2
ap W T w c W (B2)
with
iy 2, §1vn Y12
7 2 &1 Y2
W, = : : : e
E Wt E T EiiVn-n Va—i2
%_,;1_1 1ﬁnl é,?_zwrﬂ “;:n I/fnl an
gn 0 g2 0 1
'Y KV £ §1v12 Vi
— &Y (Vo E51 SN Va1
(T = : : : : :
E" Yt E T Wan E2 Vel EniVu-12 Vn-n
& ¥ £ "o £ &nn2 Y1
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E" Ynern  E W E2 Yne12  Enc1Vn—ni
Ey’:'(an E;,lilwnl E;%WnZ Enwnl
§" 0 g2 0
&' £y EXYn &Y
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E'Vn2 Vs &Y Y12
&V £ Y & Y
dnp = — : : : :
& Yn-12 5,:’:121/01—12 En1Vn—11 Yn-12
%_yl: dfnZ %-’?—anz En 1/fnl Ian
(2)Forn =2k + 1(k =1,2,3,--+), then
T, =T,(§:51,62, ..., &) = (@ (T/)\zz)
0. 0.
_ O L bu
=0, T4 T e T,
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