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Circularly polarized few-cycle optical rogue waves: Rotating reduced Maxwell-Bloch equations
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The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical
pulses in a transparent media with two isotropic polarized electronic field components, are derived from a
system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two
hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue
waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation.
In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue
waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we
find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further
a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical
formulas as well as numerical figures.
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I. INTRODUCTION

Ultrashort optical pulses are widely used in many fields
which include testing ultrahigh speed semiconductor devices,
precise processing of materials, triggering and tracing chem-
ical reactions, wavelength division multiplexing, and many
branches of strong-field physics [1,2]. Because of the tremen-
dous progress made in the area of laser technology, pulses
having few cyclic oscillations in the electric and magnetic
fields have been generated in laboratory [1,2]. Furthermore,
more intense and shorter pulses, even a single-cycle pulse, have
been reported recently [3,4]. These remarkable inventions are
responsible for real-time observation and steering of electronic
dynamics on the atomic scale [2]. It is obviously impossible
to use the concept of an envelope to model the propagation of
a few-cycle ultrashort pulse. Thus, a challenging problem in
the study of ultrashort pulses is that the widely used slowly
varying envelope approximation (SVEA) is no longer valid in
the case of short pulses [5–8]. Naturally, two kinds of models,
improved SVEA and non-SVEA models, associated with the
ultrashort pulses have been well studied in Refs. [9–11]. On
one hand, several attempts have been made to improve the
SVEA and show their efficiency, see, e.g., Refs. [12,13]. On
the other hand, non-SVEA models have been equally studied
intensively, see, e.g., Refs. [14–21]; also, one can find more
comprehensive examples in two survey papers [10,11].

It is a well-known fact that the reduced Maxwell-Bloch
(RMB) equations [22–24] have been derived to model self-
induced transparency (SIT) phenomenon [25–27] without
using the so called SVEA method from the mid 1970s
[28–31]. Although such derivation has attracted a lot of interest
among researchers, the generalization of the RMB equations
is of current research interest due to rapid developments and
application of the ultrashort pulses [32–34]. Recently, Steudel
and Zabolotskii have constructed the RMB equations for
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circularly polarized light with two isotropic electronic field
components, which are called rotating RMB equations of the
form [35]

(c∂z + ∂t )εx = −2πdn∂tRx,

(c∂z + ∂t )εy = −2πdn∂tRy,

∂tRx = −ω0Ry − 2d

�
εyRz, (1)

∂tRy = ω0Ry + 2d

�
εxRz,

∂tRz = 2d

�
(Rxεy − Ryεx).

Here, εx and εy are the electric field components, and
(Rx,Ry,Rz) is the Bloch vector. c is the velocity of light in
vacuum, d is the dipole moment, ω0 is a common resonance
frequency, � is the Planck constant, and n denotes the number
density of atoms. Using the following transformations

χ = 4πd2n

�c
z, τ = ω0

(
t − z

c

)
,

Ex,y = 2d

�ω0
εx,y, E = Ex + iEy, (2)

R = Rx + iRy, Rz = Rz,

Eq. (1) can be rewritten in the following form [35]:

Rτ = i(R + ERz), Sτ = −i(S + FRz),
(3)

Rz
τ = i

2
(RF − SE), Eχ = −Rτ , Fχ = −Sτ ,

with the condition F = E∗ and S = R∗. Here, E and R
represent complex field envelopes, Rz is a real variable,
and asterisk denotes complex conjugation. It is worth noting
that rotating RMB equations is an integrable system that
admits the Kaup-Newell-type spectral problem [36] with the
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compatibility condition

Uχ − Vτ + [U,V ] = 0 (4)

of the following linear spectral problem [35]:

∂τψ = Uψ = 1

2
(Jξ 2 + U1ξ )ψ, (5)

∂χψ = V ψ = − ξ

2(1 + ξ 2)
(−JRzξ + V0)ψ, (6)

with

J =
(−i 0

0 i

)
, U1 =

(
0 E

F 0

)
,

V0 =
(

0 R

S 0

)
, ψ =

(
ψ1

ψ2

)
.

Here, ξ is an eigen value parameter. Later, the rotating
RMB equations with anisotropy have been derived [37–
39], and the solutions of rotating RMB equations with
and without anisotropy were constructed using Bäcklund
transformation and inverse scattering method. Note that the
differences between rotating RMB equations with and without
isotropy [35,37] depends on the relationship between the
dipole moments dx and dy . The paper mainly considered the
rotating RMB equations with the dipole moment condition
dx = dy . On the basis of detailed explanation of the RMB
equations from the idea of the physical relevance of ultrashort
optical pulses, several integrable models of a few cycle pulses
associated with the extensions of the RMB equations were also
reported in Refs. [32–34].

Our recent results regarding the rogue waves [40,41] of
nonlinear Schrödinger (NLS) equation coupled with Maxwell-
Bloch (MB) equation and the Hirota equation coupled with
MB equation motivate us to study the possibilities of rogue
waves in the rotating RMB [35] equations. Rogue waves
have not only been reported in the investigation of oceanic
conditions [42–44] but also in photonic crystal fibers [45,46],
etc. One of the widely accepted prototypes of rogue waves in
one-dimensional space and time is the Peregrine soliton [47]
derived from the NLS equation, which is usually in the form
of a single dominant peak accompanied by one deep cave
at each side in a plane with a nonzero boundary. Recently,
by applying Darboux transformation (DT) method [48–51],
different patterns of the rogue waves for NLS and the derivative
nonlinear Schrödinger (DNLS) equations have been reported
in Refs. [52–59]. Therefore, the purpose of this paper is
twofold. First, we attempt to find rogue waves of Eq. (3) [35]
as a model of few-cycle optical pulse propagation. These rogue
wave solutions may be useful to generate ultraintense optical
pulses because of its very large amplitude and ultrabroad
frequency spectrum. Second, it aims at identifying differences
and similarities between the two circularly polarized electric
field components εx,y . For simplicity, we study their equivalent
counterparts Ex,y in Eq. (2) with the help of rogue wave
solutions. The second result will show a main difference
between a circularly polarized wave and a plane polarized
wave that has not been discussed in Ref. [35].

In order to derive rogue waves, we need to consider the
rational solutions of the rotating RMB equations [35]. These

equations are integrable systems that admit the Kaup-Newell
spectral problem [36]. We must notice that Steudel and
Zabolotskii first have given some nondegenerate solutions,
such as the breather solution corresponding to the 2π -pulse
of self-induced transparency in terms of Vandermonde-like
determinants by using n-fold Bäcklund transformation. How-
ever, unlike the usual Bäcklund transformation, they used
solutions of Riccati equations for the quotient β = ψ2/ψ1

(see Eqs. (12) and (13) in Ref. [35]), which fails to generate
the degenerate higher-order Bäcklund transformation if the
component ψ1 of eigenfunction ψ of the Kaup-Newell spectral
problem has a zero point. However, as we have discussed in
Ref. [57], it is necessary to set ξ0 (which will be defined
explicitly later) to be a zero point of the eigenfunction ψ in
order to generate rogue waves by means of the degenerate
Darboux (or Bäcklund) transformation. So we shall construct
the determinant representation of the n-fold DT and formulas
of E[n], F [n], R[n], S[n], and Rz[n] by eigenfunctions ψ of
spectral problem. Furthermore, two kinds of rational solutions,
including rational solitons and rogue waves, of the rotating
RMB equations are given by the degenerate DT from the
vacuum and monochromatic wave. By taking advantage of
a simpler form of the first-order rational soliton, we can
construct a two-peak rational soliton of R and a criterion of
its existence. We also shall construct the higher-order rogue
waves of the rotating RMB equations and then use it to discuss
the relationship between two electric field components Ex

and Ey .
The structure of this paper is arranged as follows: In Sec. II,

we provide the expressions of the E[n], R[n], and Rz
[n] of the

rotating RMB equations by using n-fold DT. In Sec. III, we
present the nth-order rational solutions of the rotating RMB
equations from the vacuum and monochromatic wave through
degenerate DT and discuss its properties for the rational
solutions. Finally, we summarize our results in Sec. IV.

II. DARBOUX TRANSFORMATION

In the following, onefold DT of the unreduced linear
problem Eqs. (5) and (6) is defined as a 2 × 2 matrix
transformation in terms of ψ , U , and V ,

ψ [1] = T ψ, U [1] = (Tτ + T U )T −1,
(7)

V [1] = (Tχ + T V )T −1,

to retain the Lax pair, i.e.,

ψ [1]
τ = U [1]ψ [1], ψ [1]

χ = V [1]ψ [1]. (8)

At the same time, the old potential (or seed solution)(E, F ,
R, S, Rz) in spectral matrices U , V are mapped into new
potentials (or new solution) (E[1], F [1], R[1], S[1], Rz[1]) in
terms of transformed spectral matrixes U [1], V [1]. Considering
the application of the representation for the n-fold DT by
means of the determinant of unreduced linear problem Eqs. (5)
and (6) with different eigenvalues in the following context, we
need to introduce n eigenfunctions ψk associated with ξk as

ψk = ψk(ξk) =
(

ψk1

ψk2

)
, k = 1,2, . . . . n,

(9)
ψk1 = ψk1(τ,χ,ξk), ψk2 = ψk2(τ,χ,ξk).
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A. Onefold Darboux transformation

Without loss of generality, let the Darboux matrix T be
defined in the form [35]

T1 = T1(ξ ; ξ1) =
(

a1 0
0 d1

)
ξ +

(
0 b0

c0 0

)
. (10)

Here, a1,d1 are undetermined function of (τ , χ ), which will be
parametrized by the eigenfunction ψ1 associated with ξ1 and
seed (E, F , R, S, Rz) in the spectral problem. Note that b0

and c0 are constants from the coefficients of ξ 0 in Eqs. (A3)
and (A5), which are given in Appendix A.

Theorem 1. The elements of onefold DT are parametrized
by the eigenfunction ψ1 associated with ξ1 as

d1 = 1

a1
, a1 = −ψ12

ψ11
, b0 = c0 = ξ1, (11)

then

T1(ξ ; ξ1) =
(

−ξ
ψ12

ψ11
ξ1

ξ1 −ξ
ψ11

ψ12

)
. (12)

T1 implies the following new solutions

E[1] = E
a1

d1
+ 2ib0

d1
,

F [1] = F
d1

a1
− 2ic0

a1
,

Rz[1] = Rz + 2ia1χ

a1
, (13)

R[1] = −2b0χ

d1
+ R

a1

d1
− 2iRz b0

d1
+ 2a1χb0,

S[1] = −2c0χ

a1
+ S

d1

a1
+ 2iRz c0

a1
+ 2d1χc0,

and the corresponding new eigenfunction associated with ξk is

ψ
[1]
k =

⎛⎜⎜⎜⎝
1

ψ11

∣∣∣∣−ξkψk1 ψk2

−ξ1ψ11 ψ12

∣∣∣∣
1

ψ12

∣∣∣∣−ξkψk2 ψk1

−ξ1ψ12 ψ11

∣∣∣∣

⎞⎟⎟⎟⎠ . (14)

Proof. We need to parametrize T1 by the eigenfunctions
associated with ξ1. This can be realized through a system of
equations defined by its kernel, i.e., T1(ξ )|ξ=ξ1ψ1 = 0. Solving
this system of algebraic equations for (a1,d1,b0,c0), Eq. (11)
is obtained. Next, substituting (a1,d1,b0,c0) into the equations
from the coefficients of ξ 2 in Eqs. (A3) and (A5), new solutions
E[1], F [1], R[1], S[1], and Rz[1] are given as in Eq. (13). Further,
by using explicit matrix representation Eq. (12) of T1, the
new eigenfunction takes the form ψ

[1]
j = T1(ξ ; ξ1)|ξ=ξj

ψj for
j � 2. �
It is trivial to confirm that ψ

[1]
1 = 0 by making use of T1 in

Eq. (12) or by the representation of transformed eigenfunction
in Eq. (14).

B. n-fold Darboux transformation

The main result in this subsection is the determinant
representation of the n-fold DT for unreduced rotating RMB

equations. According to the form of T1 in Eq. (10), the n-fold
DT is assumed to be in the form [35] of

Tn = Tn(ξ ; ξ1,ξ2, . . . ,ξn) =
n∑

k=0

Pkξ
n−k, (15)

with

P2l =
(

a2l 0
0 d2l

)
, P2l−1 =

(
0 b2l−1

c2l−1 0

)
,

Pn =
(

ξ1ξ2 . . . ξn 0
0 ξ1ξ2 . . . ξn

)
(if n is even),

Pn =
(

0 ξ1ξ2 . . . ξn

ξ1ξ2 . . . ξn 0

)
(if n is odd).

Here, Pn is a constant matrix, Pi is the function of τ and χ .
In particular, if n is even or odd, Pn leads to the separate
discussion on the determinant representation of Tn in the
following by means of its kernel. Specifically, from algebraic
equations,

ψ
[n]
l = Tn(ξ ; ξ1,ξ2, . . . ,ξn)|ξ=ξl

ψl =
n∑

k=0

Pkξ
n−k
l ψl = 0,

(16)
l = 1,2, . . . ,n,

the coefficients of Pi are solved by Cramer’s rule. The resulting
determinant representation of the Tn is given in Appendix B.

Theorem 2. Starting from a seed (E, F , R, S, Rz), the
n-fold DT Tn defined by Appendix B generates the following
new solutions (E[n], F [n], R[n], S[n], and Rz[n]).

E[n] = E
a0

d0
+ 2i b1

d0
, F [n] = F

d0

a0
− 2 i c1

a0

Rz[n] = Rz + 2ia0χ

a0
,

(17)

R[n] = −2b1χ

d0
+ R

a0

d0
− iRz

(
b1

d0
+ a0b1

)
+ 2a0χb1,

S[n] = −2c1χ

a0
+ S

d0

a0
+ iRz

(
c1

a0
+ d0c1

)
+ 2d0χc1.

Proof. We consider the transformed new solutions (E[n],
F [n], R[n], S[n], and Rz[n]) of unreduced RMB equations
corresponding to the n-fold DT. Under covariant requirement
of spectral problem, the transformed form of spectral problem
should be

∂τψ
[n] = U [n]ψ = 1

2

(
Jξ 2 + U

[n]
1 ξ

)
ψ, (18)

∂χψ [n] = V [n]ψ = − ξ

2(1 + ξ 2)

(−JRz[n]
ξ + V

[n]
0

)
ψ, (19)

with

U1 =
(

0 E[n]

F [n] 0

)
, V0 =

(
0 R[n]

S[n] 0

)
, ψ =

(
ψ1

ψ2

)
,
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and then satisfy the following equation on τ -part

Tnτ + TnU = U [n]Tn. (20)

Substituting Tn given by Eq. (15) into Eq. (20), and then
comparing the coefficients of ξn+1, it yields

E[n] = E
a0

d0
+ 2ib1

d0
,

(21)

F [n] = F
d0

a0
− 2ic1

a0
.

Similarly, from the equation of χ -part

Tnχ + TnV = V [n]Tn, (22)

and then comparing the coefficients of ξn+2 and ξn+1, we
get

Rz[n] = Rz + 2ia0χ

a0
,

R[n] = −2b1χ

d0
+ R

a0

d0
− iRz

(
b1

d0
+ a0b1

)
+ 2a0χb1, (23)

S[n] = −2c1χ

a0
+ S

d0

a0
+ iRz

(
c1

a0
+ d0c1

)
+ 2d0χc1.

Furthermore, substituting a0, d0, b1, c1 from Eq. (B2) (n = 2k)
and from Eq. (B4) (n = 2k + 1) into Eqs. (21) and (23), we
get the final form of new solutions (E[n], F [n], R[n], S[n], and
Rz[n]). �

Here, Rz[n], R[n], and S[n] are the expressions obtained in
terms of n × n determinant of eigenfunctions (a0, d0, b1, c1),
but which are expressed by (n + 1) × (n + 1) determinants in
Ref. [35]. Moreover, we use eigenfunctions ψj to construct
determinants in n-fold DT instead of quotient βj = ψj2/ψj1

of two components as reported in Ref. [35].

C. Reduction of the Darboux transformation

Under the reduction conditions F = E∗, S = R∗, Rz is
real, the eigenfunction ψk = (ψk1

ψk2
) associated with eigenvalue

ξk has the following relationship [35]:
(i) ψ∗

k1 = ψk2, ξk = ξk
∗;

(ii) ψk1
∗ = ψl2, ψk2

∗ = ψl1, ξk
∗ = ξl , where k �= l.

According to this property of the eigenfunctions, and setting
n = 2k and l = 1,3, . . . ,2k − 1, and if we now choose k

distinct eigenvalues and eigenfunctions in n-fold DTs as

ξl ↔ ψl =
(

ψl1

ψl2

)
, and

ξ2j = ξ ∗
2j−1 ↔ ψ2j =

(
ψ∗

2j−1 2

ψ∗
2j−1 1

)
, (24)

j = 1,2,3, . . . ,k,

we finally find that reduction conditions hold good, i.e., F [n] =
(E[n])∗, S[n] = (R[n])∗, and Rz[n] is real. With the help of
choice in Eq. (24), Tn is the n-fold DT of the rotating RMB
equations, and thus Theorem 2 provides new solutions of them.
Similarly, for n = 2k + 1, we can also find suitable generating
functions to obtain the reduction of n-fold DT.

III. THE TWO HIERARCHY OF RATIONAL SOLUTIONS

In this section, we shall present explicit solutions of the
rotating RMB equations through DT by using Eq. (24). Thus,
it is easy to check that

Wn = (−1)
n
2 W̃n

∗
, δn1 = (−1)

n
2 δ∗

n2

in Appendix B. Taking Eq. (B2) (n = 2k) into Eqs. (21)
and (23), these solutions become

E[k] = Ea2
0 + 2ib1a0,

R[k] = −2b1χa0 + Ra2
0 − 2iRzb1a0 + 2a0χb1, (25)

Rz[k] = Rz + 2ia0χ

a0
,

with

a0 = Hn1
∗(−1)

n
2

Hn1
, b1 = −Hn2

Hn1
,

Hn1 =

∣∣∣∣∣∣∣∣∣∣∣

ξn−1
1 ψ11 ξn−2

1 ψ12 . . . ξ1ψ11 ψ12

ξ ∗
1

n−1ψ∗
12 ξ ∗

1
n−2ψ∗

11 . . . ξ ∗
1 ψ∗

12 ψ∗
11

...
...

...
...

...
ξn−1
n−1 ψn−11 ξn−2

n−1 ψn−12 . . . ξn−1ψn−11 ψn−12

ξ ∗
n−1

n−1ψ∗
n−12 ξ ∗

n−1
n−2ψ∗

n−11 . . . ξ ∗
n−1ψ

∗
n−12 ψ∗

n−11

∣∣∣∣∣∣∣∣∣∣∣
, (26)

Hn2 =

∣∣∣∣∣∣∣∣∣∣∣

ξn
1 ψ11 ξn−2

1 ψ11 . . . ξ1ψ12 ψ11

ξ ∗
1

nψ∗
12 ξ ∗

1
n−2ψ∗

12 . . . ξ ∗
1 ψ∗

11 ψ∗
12

...
...

...
...

...
ξn
n−1ψn−11 ξn−2

n−1 ψn−11 . . . ξn−1ψn−12 ψn−11

ξ ∗
n−1

nψ∗
n−12 ξ ∗

n−1
n−2ψ∗

n−12 . . . ξ ∗
n−1ψ

∗
n−11 ψ∗

n−12

∣∣∣∣∣∣∣∣∣∣∣
.

In order to get the rational solutions, we only need to seek the eigenvalue degeneration of H ∗
n1

Hn1
and Hn2

Hn1
.

062925-4



CIRCULARLY POLARIZED FEW-CYCLE OPTICAL ROGUE . . . PHYSICAL REVIEW E 88, 062925 (2013)

FIG. 1. (Color online) The profiles of rational solutions |E[1]
r1 |2, |R[1]

r1 |2, and Rz[1]
r1 in Eq. (29) with specific value of α1 = 1

3 .

Theorem 3. Set n = 2k and define ψ
j,l

1i in the form

ψ
j,l

1i = 1

l!

∂l

∂εl
[(ξ1 + ε)jψ(ξ1 + ε)],

i = 1,2; l = 0,1,2, . . . ,k − 1;

j = 0,1,2, . . . ,n.

So the new expressions for a0 and b1 are obtained in the form

a0 = H̃n1
∗
(−1)

n
2

H̃n1
, b1 = − H̃n2

H̃n1
, (27)

where

H̃n1 =

∣∣∣∣∣∣∣∣∣∣∣

ψ
n−1,0
11 ψ

n−2,0
12 . . . ψ

1,0
11 ψ

0,0
12

ψ∗
12

n−1,0 ψ∗
11

n−2,0 . . . ψ∗
12

1,0 ψ∗
11

0,0

...
...

...
...

...
ψ

n−1,k−1
11 ψ

n−2,k−1
12 . . . ψ

1,k−1
11 ψ

0,k−1
12

ψ∗
12

n−1,k−1 ψ∗
11

n−2,k−1 . . . ψ∗
12

1,k−1 ψ∗
11

0,k−1

∣∣∣∣∣∣∣∣∣∣∣
,

H̃n2 =

∣∣∣∣∣∣∣∣∣∣∣

ψ
n,0
11 ψ

n−2,0
11 . . . ψ

1,0
12 ψ

0,0
11

ψ∗
12

n,0 ψ∗
12

n−2,0 . . . ψ∗
11

1,0 ψ∗
12

0,0

...
...

...
...

...
ψ

n,k−1
11 ψ

n−2,k−1
11 . . . ψ

1,k−1
12 ψ

0,k−1
11

ψ∗
12

n,k−1 ψ∗
12

n−2,k−1 . . . ψ∗
11

1,k−1 ψ∗
12

0,k−1

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Under the condition of all the eigenvalues ξk −→ ξ1,
H ∗

n1
Hn1

and Hn2
Hn1

degenerate into an indeterminate form 0
0 . So we

can consider the degeneration of Hn1 and Hn2, respectively.
We illustrate the process as follows:

(i) For the first (second) row, we can substitute the
eigenvalue ξ1 (ξ2 = ξ ∗

1 ) and eigenfunction ψ1 directly.
(ii) Set ξ3 = ξ1 + ε (ξ4 = ξ1

∗ + ε), and do Taylor expansion
in all elements of the third (fourth) with respect to ε, then
subtracting the first (second) row from the third (fourth) row.

(iii) Considering ξ2m−1 = ξ1 + ε (or ξ2m = ξ1
∗ + ε)(m =

3,4, . . . ,k) and taking the similar procedure in the (2m − 1)th
(or 2mth) row. Note that we should do order-(m − 1) Taylor
expansion with respect to ε at the (2m − 1)th (or 2mth) row.

(iv) Taking ε → 0 in a0 and b1, then terms with higher-order
O[εk(k−1)+1] vanish. The final expression actually implies
Eq. (27).

A. The first kind of rational solutions from the vacuum

Let us consider from the vacuum E = 0, R = 0, and Rz =
−1, the Eqs. (5) and (6) are solved by using the following
eigenfunctions

ψk =
(

ψk1

ψk2

)
, ψk1 = exp

[
i
ξk

2

2

(
1

1 + ξ 2
k

χ − τ

)]
,

(28)

ψk2 = exp

[
−i

ξk
2

2

(
1

1 + ξ 2
k

χ − τ

)]
.

Case (i). Substituting ξ1 = α1 + iβ1 into Eq. (27) and letting
β1 → 0, Eq. (25) admits the following three first-order rational
solutions as follows:

E[1]
r1 = −4

[
A1 − i

(
α2

1 + 1
)2] (

α2
1 + 1

)2
α1[

A1 + i
(
α2

1 + 1
)2]2

× exp

[
i
( − τ α2

1 − τ + χ
)
α2

1

α2
1 + 1

]
,

R[1]
r1 = −4

[
A1 + i

(
α2

1 + 1
)(

α2
1 − 1

)] (
α2

1 + 1
)
α1[

A1 + i
(
α2

1 + 1
)2]2

(29)

× exp

[
i
( − τ α2

1 − τ + χ
)
α2

1

α2
1 + 1

]
,

Rz[1]
r1 = −A2

1 + (
α1

2 + 2α1 − 1
)(

α1
2 − 2α1 − 1

)(
α1

2 + 1
)2

A2
1 + (

α1
2 + 1

)4

A1 = 2α1
2
(
α2

1 + 1
)2

τ − 2 α2
1 χ.

Letting τ → ∞, χ → ∞, from the above, we obtain
|E[1]

r1 |2 → 0, |R[1]
r1 |2 → 0 and Rz[1]

r1→ −1. The trajectory
of |E[1]

r1 |2 is defined explicitly by χ = (α1
2 + 1)2τ and

the maximum amplitude is 16α1
2. Note that |R[1]

r1 |2 has
two peaks when (α1

2 + 2α1 − 1)(α1
2 − 2α1 − 1) < 0. The

amplitude of |R[1]
r1 |2 is separately equal to 16α1

2(α1
2−1)2

(α1
2+1)4

and 1 at the lines χ = (α1
2 + 1)2τ and χ = (α1

2 + 1)2τ ±
(α1

2+1)
√

−(α1
2+2α1−1)(α1

2−2α1−1)
2α1

2 . However, the amplitude of

Rz[1]
r1 occurs at the line χ = (α1

2 + 1)2τ and is equal
to −(α1

2+2α1−1)(α1
2−2α1−1)

(α1
2+1)2 . In order to show the asymptotic
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FIG. 2. (Color online) The profiles of rational solutions |E[1]
r1 |2, |R[1]

r1 |2, and Rz[1]
r1 in Eq. (29) with α1 = 1

2 . Note that there are two
peaks in Fig. 2(b).

properties, Figs. 1 and 2 are, respectively, plotted for the
rational solutions |E[1]

r1 |2, |R[1]
r1 |2, and Rz[1]

r1 with specific
value of parameters α1 = 1

3 and α1 = 1
2 . Note that there are

two peaks in Fig. 2(b). It is trivial to know from Eq. (29) that
these rational solutions |E[1]

r1 |2, |R[1]
r1 |2, and Rz[1]

r1 exhibit

algebraic decay behavior instead of exponential decay as in
the case of solitons.

Case (ii). Assuming k = 2 and α1 = 1
2 in Eqs. (25) and (27),

we also construct the following three second-order rational
solutions

E[2]
r1 = 200 i(−18750000 − 3840000 χ2 − 9375000 τ 2 + 390625 τ 4 + 10080000 χ τ

+ 960000 χ2 τ 2 − 409600 χ3 τ − 1000000 τ 3 χ + 65536 χ4 − 3125000 i τ 3

+ 8640000 i χ + 6000000 i χ τ 2 + 819200 i χ3 − 37500000 i τ − 3840000 i χ2 τ )

× (375000 − 7680 χ2 − 93750 τ 2 + 72000 χ τ + 4096 i χ3 − 19200 i χ2 τ

+ 30000 i χ τ 2 − 15625 i τ 3 − 187500 i τ + 177600 i χ ) exp(1/20 i (−5 τ + 4 χ ))/(P1 + iP2)2

R[2]
r1 = −160 exp(1/20 i (−5 τ + 4 χ ))(−751875000000 χ τ 4 + 780000000000 χ2 τ 3 − 394752000000 χ3 τ 2

+ 96829440000 χ4 τ − 35840000000 χ4 τ 3 − 52500000000 χ2 τ 5 + 56000000000 χ3 τ 4 + 13762560000 χ5 τ 2

− 2936012800 χ6 τ + 27343750000 χ τ 6 + 268435456 χ7 − 6997500000000 χ τ 2 + 2520000000000 χ2 τ

+ 266015625000 i τ 4 + 80566406250 i τ 6 + 3192187500000 i τ 2 + 2160000000000 i χ2 − 290625000000 i τ 5 χ

− 36175872000 i χ5 τ − 345600000000 i χ3 τ 3 − 1035000000000 i τ 3 χ − 448512000000 i χ3 τ

− 7290000000000 i τ χ − 365568000000 χ3 + 5725781250000 τ 3 + 284179687500 τ 5 − 9122611200 χ5

− 6103515625 τ 7 + 3870000000000 χ − 10659375000000 τ + 71368704000 i χ4 + 3523215360 i χ6

+ 1080000000000 i χ2 τ 2 + 435000000000 i τ 4 χ2 + 153600000000 i χ4 τ 2 − 1181250000000 i)/(P1 + iP2)2,

Rz[2]
r1 = −(−102400000000 χ3 τ 3 − 360000000000 τ 4 χ2 + 188743680000 χ5 τ + 1125000000000 τ 5 χ

− 147456000000 χ4 τ 2 − 917504000000 χ5 τ 3 + 1792000000000 τ 4 χ4 − 2240000000000 τ 5 χ3

− 781250000000 τ 7 χ + 1750000000000 τ 6 χ2 + 293601280000 χ6 τ 2 − 53687091200 χ7 τ

− 296437500000000 − 683593750000 τ 6 − 1602000000000000 χ τ + 156960000000000 χ2 τ 2

− 56156160000000 χ3 τ − 175500000000000 τ 3 χ + 4294967296 χ8 + 152587890625 τ 8

+ 167040000000000 χ2 + 2495812500000000 τ 2 + 72117187500000 τ 4 + 7066091520000 χ4

− 46976204800 χ6)/
(
P1

2 + P2
2
)
,

with P1 = 18750000 + 3840000 χ2 + 9375000 τ 2 − 390625 τ 4 − 10080000 χ τ

− 960000 χ2 τ 2 + 409600 χ3 τ + 1000000 τ 3 χ − 65536 χ4,

P2 = −3125000 τ 3 + 8640000 χ + 6000000 χ τ 2 + 819200 χ3 − 37500000 τ − 3840000 χ2 τ. (30)

The dynamical evolution of |E[2]
r1 |2, |R[2]

r1 |2, and Rz[2]
r1 are given in the Fig. 3. According to the physical meaning of the

rotating RMB equations, these rational solutions can also be called as rational few cycle optical solitons, which have never been
reported in the literature.
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FIG. 3. (Color online) The dynamical evolution of the second-order rational solutions |E[2]
r1 |2, |R[2]

r1 |2, and Rz[2]
r1 in Eq. (30).

B. The second kind of rational solutions from the monochromatic wave

Let a, b, and c be three real constants, then substituting E = c exp
[
i(aτ + bχ )

]
, R = − bc

a
exp [i(aτ + bχ )

]
, and Rz = − b(a−1)

a

into the spectral problem Eqs. (5) and (6), and using the method of separation of variables and the superposition principle, the
eigenfunction ψk associated with ξk is given by(

ψk1(τ,χ,ξk)
ψk2(τ,χ,ξk)

)
=

(
C1�1(τ,χ,ξk)[1] + C2�2(τ,χ,ξk)[1] + C3�

∗
1 (τ,χ,ξ ∗

k )[2] + C4�
∗
2 (τ,χ,ξ ∗

k )[2]
C1�1(τ,χ,ξk)[2] + C2�2(τ,χ,ξk)[2] + C3�

∗
1 (τ,χ,ξ ∗

k )[1] + C4�
∗
2 (τ,χ,ξ ∗

k )[1]

)
. (31)

Here (
�1(τ,χ,ξk)[1]
�1(τ,χ,ξk)[2]

)
=

(
exp

( − iK(ξk) aτ+aξk
2τ+bχ

2(1+ξk
2)a

+ 1
2 iθ

)
−i

−a−ξk
2+K(ξk )

ξkc
exp

( − iK(ξk) aτ+aξk
2τ+bχ

2(1+ξk
2)a

− 1
2 iθ

)) ,

(
�2(τ,χ,ξk)[1]
�2(τ,χ,ξk)[2]

)
=

(
exp

(
iK(ξk) aτ+aξk

2τ+bχ

2(1+ξk
2)a

+ 1
2 iθ

)
i

a+ξk
2+K(ξk )
ξkc

exp
(
iK(ξk) aτ+aξk

2τ+bχ

2(1+ξk
2)a

− 1
2 iθ

)) ,

�1(τ,χ,ξk) =
(

�1(τ,χ,ξk)[1]
�1(τ,χ,ξk)[2]

)
, �2(τ,χ,ξk) =

(
�2(τ,χ,ξk)[1]
�2(τ,χ,ξk)[2]

)
,

K(ξk) =
√

a2 + 2aξk
2 + ξk

4 − ξk
2c2, θ = aτ + bχ,

and a, b, c, τ, χ ∈ R, C1, C2, C3, C4 ∈ C. Note that �1(τ,χ,ξk) and �2(τ,χ,ξk) are two linear independent solutions.
In order to derive the second kind of rational solutions, i.e., the rogue wave solutions, of the RMB equations, a crucial step is

to find a common zero point of K and the eigenfunctions ψk such that exponential functions vanish and the indeterminate form
0
0 appear in Eq. (27) as in the case of the NLS equation [57]. After tedious calculations, we observe the following fact: By setting

C1 = −1 + i(K0 + 1) + exp

⎡⎣1

2
iK(ξk)

k−1∑
j=0

Sj (ξk − ξ0)j

⎤⎦ ,

C2 = −1 + i(K0 + 1) + exp

⎡⎣−1

2
iK(ξk)

k−1∑
j=0

Sj (ξk − ξ0)j

⎤⎦ ,

(32)

C3 = K0 + exp

⎡⎣1

2
iK(ξk)

k−1∑
j=0

Lj (ξk − ξ0)j

⎤⎦ ,

C4 = K0 + exp

⎡⎣−1

2
iK(ξk)

k−1∑
j=0

Lj (ξk − ξ0)j

⎤⎦ ,

then ξ0 = c
2 + i

√
4a−c2

2 is only one zero point of K and eigenfunction ψk in Eq. (31). Here K0, Sj , Lj ∈ C. Because ξ0 is a zero
point of eigenfunction ψk , we must add first-order derivatives of every row in determinants of Eq. (27). Letting ξ1 → ξ0, the
second kind of rational solutions, i.e., the rogue waves, can be constructed from Eqs. (25), (27), (31), and (32).
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FIG. 4. (Color online) The dynamical evolution of the first-order rogue waves |E[1]
r2 |2, |R[1]

r2 |2, and Rz[1]
r2 in Eq. (33). These pictures

clearly show the asymptotic localized property and large amplitude of the rogue wave.

Case (iii). For simplicity, let a = b = c = 1,K0 = S0 = L0 = 0, Eqs. (25) and (27) reduce to rogue wave solutions of the
following form:

E[1]
r2 = −exp [ i(χ + τ )] (χ2 + χ τ + τ 2 + 1 + iτ ) (χ2 + χ τ + τ 2 − 3 + iτ + 4 i χ )

(−χ2 − χ τ − τ 2 − 1 + iτ )2
,

R[1]
r2 = exp [ i(χ + τ )](χ2 + χ τ + 2 i χ + τ 2 + 3 i τ − 1) (χ2 + χ τ + 2 i χ + τ 2 − iτ − 1)

(−χ2 − χ τ − τ 2 − 1 + iτ )2
, (33)

Rz[1]
r2 = 4 τ (2 χ + τ )

(χ2 + χ τ + τ 2 + 1)2 + τ 2
.

Figure 4 is plotted for |E[1]
r2 |2, |R[1]

r2 |2, and Rz[1]
r2 . From Fig. 4(a), we infer that |E[1]

r2 |2 → 1 by setting τ → ∞, χ → ∞,
which gives an asymptotic plane, and the maximum amplitude of |E[1]

r2 |2 is equal to 9, which occurs at the coordinate origin

(τ = 0, χ = 0), and the minimum amplitude of |E[1]
r2 |2 is equal to 0, which occurs at two points (τ = − 4

√
39

13 ,χ =
√

39
13 ) and

(τ = 4
√

39
13 ,χ = −

√
39

13 ). In Fig. 4(b), we observe that the height of the asymptotical plane is 1 because |R[1]
r2 |2 → 1 when

τ → ∞, χ → ∞, and the maximum amplitude of |R[1]
r2 |2 occurs at the two lines τ = 0 and χ = − τ

2 , and is equal to 1.
These two lines match quickly with the asymptotical plane at the same height, such that the localized property of |R[1]

r2 |2 is

preserved. The minimum amplitude of |R[1]
r2 |2 is equal to 0, which occurs at four points (τ = − 2

√
7

7 ,χ = 3
√

7
7 ), (τ = 2

√
7

7 ,χ =
− 3

√
7

7 ), (τ = 2
√

7
7 ,χ =

√
7

7 ), and (τ = − 2
√

7
7 ,χ = −

√
7

7 ). From Fig. 4(c), we conclude that the height of the asymptotical plane is

0, the maximum amplitude of Rz[1]
r2 is located at (τ = 2

√
7

7 ,χ =
√

7
7 ), (τ = − 2

√
7

7 ,χ = −
√

7
7 ) and is equal to 1, and the minimum

amplitude of Rz[1]
r2 is located at (τ = − 2

√
7

7 ,χ = 3
√

7
7 ), (τ = 2

√
7

7 ,χ = − 3
√

7
7 ) and is equal to −1. Finally, the extreme value of

the amplitude Rz[1]
r2 occurs at point (τ = 0, χ = 0) and is equal to 0. To show the localized distribution on (x,t) plane of the

first-order rogue waves, we give their density plots in Fig. 5. Furthermore, taking eigenfunctions in Eq. (31) back into Eq. (25),
the first-order breather solutions of the rotating RMB equations are obtained, which are plotted in Fig. 6 for the same parameters

FIG. 5. (Color online) The corresponding density plots of pictures described in the legend of Fig. 4.

062925-8



CIRCULARLY POLARIZED FEW-CYCLE OPTICAL ROGUE . . . PHYSICAL REVIEW E 88, 062925 (2013)

FIG. 6. (Color online) Density plots of the first-order breathers |E[1]|2, |R[1]|2, and Rz[1]. These solutions are plotted by taking Eq. (31)
into Eq. (25) for the same parameters as described in the legend of Fig. 4, except β1 = 3

4 . Note that the central peaks look very similar to the
corresponding profiles of rogue waves as described in the legend of Fig. 5.

in Fig. 4 except β1 = 3
4 . Under this choice, the eigenfunction ψ1 does not have zero point thus allows smooth breathers by DT.

This can be verified visually by comparing Figs. 5 and 6.
Case (iv). To further illustrate the construction method of the different-order rogue waves, we shall provide the second-order

and third-order rogue waves of the rotating RMB equations. Setting k = 2, a = b = c = 1,K0 = S0 = S1 = L0 = 0, L1 = 50
in Eqs. (25), (27), (31), and (32), we get the second-order rogue waves in triangular pattern as follows:

E[2]
r2 = exp ((τ + χ ) i)(6 χ4 τ 2 + 3 χ5 τ + 3 χ τ 5 + 7 χ3 τ 3 + 6 τ 4 χ2 − 78 χ3 τ − 33 χ τ 3 − 9 χ τ + 450 χ2 τ

− 54 τ 2 χ2 − 45 i τ − 36 i χ − 15 i τ 3 − 120 i χ3 + 12 i χ5 + 750 i χ2 + 300 i τ 2 + 3 i τ 5 − 90 i τ χ2 − 57 χ4

+ 150 χ3 − 12 τ 4 + χ6 + τ 6 − 150 τ 3 + 99 χ2 − 72 τ 2 + 7545 − 450 i − 1650 τ − 1650 χ + 54 i τ 2 χ + 18 i χ τ 4

+ 33 i χ2 τ 3 + 42 i τ 2 χ3 + 27 i χ4 τ + 2100 i τ χ )(6 χ4 τ 2 + 3 χ5 τ + 3 χ τ 5 + 7 χ3 τ 3 + 6 τ 4 χ2 + 18 χ3 τ

+ 15 χ τ 3 − 9 χ τ + 450 χ2 τ + 54 τ 2 χ2 − 300 i τ 2 + 3 i τ 5 + 150 i χ2 + 27 i τ + 9 i τ 3 − 300 i τ χ + 3 χ4

+ 150 χ3 + χ6 + τ 6 − 150 τ 3 + 27 χ2 + 36 τ 2 + 750 τ − 450 χ + 18 i τ 2 χ + 6 i χ τ 4

+ 6 i τ 2 χ3 + 3 i χ4 τ + 9 i τ 3 χ2 + 54 i χ2 τ + 7509 + 150 i)/(Q1 + iQ2)2,

R[2]
r2 = − exp ((τ + χ ) i)(−12 i χ3 − 18 i χ − 3 i τ 5 + 7491 + 750 i + 6 χ4 τ 2 + 3 χ5 τ + 3 χ τ 5 + 7 χ3 τ 3 + 6 χ3 τ

+ 15 χ τ 3 + 27 χ τ + 450 χ2 τ + 36 τ 2 χ2 + 150 i χ2 + 600 i τ 2 + 6 i χ5 + 3 i τ 3 + 6 τ 4 χ2 − 18 i τ χ2 − 15 χ4

+ 150 χ3 − 6 τ 4 + χ6 + τ 6 − 150 τ 3 − 9 χ2 − 54 τ 2 + 150 τ + 150 χ + 45 i τ + 72 i τ 2 χ + 12 i τ 2 χ3 + 9 i χ4 τ

+ 1500 i τ χ + 3 i χ2 τ 3)(−12 i χ3 − 18 i χ − 33 i τ 3 − 600 i τ 2 + 6 χ4 τ 2 + 3 χ5 τ + 3 χ τ 5 + 7 χ3 τ 3 + 6 τ 4 χ2

− 42 χ3 τ − 57 χ τ 3 − 117 χ τ + 450 χ2 τ − 36 τ 2 χ2 + 750 i χ2 + 6 i χ5 + 9 i τ + 9 i τ 5 + 7491 + 150 i

− 15 χ4 + 150 χ3 − 30 τ 4 + χ6 + τ 6 − 150 τ 3 − 9 χ2 + 18 τ 2 + 1350 τ − 1050 χ + 54 i χ2 τ

+ 300 i τ χ + 24 i χ τ 4 + 39 i χ2 τ 3 + 36 i τ 2 χ3 + 21 i χ4 τ )/(Q1 + iQ2)2,

Rz[2]
r2 = 12(−22500 + 486 χ4 τ 2 + 108 χ5 τ + 270 χ τ 5 + 360 χ3 τ 3 + 270 τ 4 χ2 − 59928 χ3 τ − 120216 χ τ 3

− 299838 χ τ + 12600 χ2 τ − 134244 τ 2 χ2 − 22500 τ 2 χ − 6600 χ τ 4 − 9600 χ2 τ 3 − 3000 τ 2 χ3 + 4800 χ4 τ

+ 7500 χ4 + 600 χ5 + 600 χ3 − 30126 τ 4 − 9 τ 6 − 600 τ 3 + 45000 χ2 + 74865 τ 2 − 2400 τ 5 + 746400 τ

− 748200 χ + 54 χ5 τ 5 + 9 χ8 τ 2 + 24 χ7 τ 3 + 2 χ9 τ + 18 χ2 τ 8 + 6 χ τ 9 + 51 χ4 τ 6

+ 36 χ3 τ 7 + 42 χ6 τ 4 − 600 χ2 τ 5 + 108 χ τ 7 + 162 χ2 τ 6 + 198 χ4 τ 4 + 216 χ5 τ 3

+ 72 χ7 τ + 500 χ τ 6 − 3400 χ4 τ 3 + 180 χ6 τ 2 − 200 χ6 τ − 2600 χ3 τ 4 − 2100 χ5 τ 2

+ 180 χ3 τ 5 + 200 χ7 + τ 10 + 100 τ 7 + 18 τ 8)/
(
Q1

2 + Q2
2
)
,

withQ1 = −6 χ4 τ 2 − 3 χ5 τ − 3 χ τ 5 − 7 χ3 τ 3 − 6 τ 4 χ2 − 18 χ3 τ − 15 χ τ 3 + 9 χ τ − 450 χ2 τ − 54 τ 2 χ2

− 3 χ4 − 150 χ3 − χ6 − τ 6 + 150 τ 3 − 27 χ2 − 36 τ 2 − 750 τ + 450 χ − 7509,

Q2 = −300 τ 2 + 3 τ 5 + 150 χ2 + 27 τ + 9 τ 3 − 300 τ χ + 18 τ 2 χ + 6 χ τ 4 + 6 τ 2 χ3 + 3 χ4 τ

+ 9 τ 3 χ2 + 54 χ2 τ + 150. (34)
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FIG. 7. (Color online) Density plots of triangular pattern of the second-order rogue waves |E[2]
r2 |2, |R[2]

r2 |2, and Rz[2]
r2 in Eq. (34).

These solutions are plotted in Fig. 7. Similarly, choosing a =
b = c = 1,K0 = S0 = S1 = S2 = L0 = 0 for the third-order
rogue waves solutions |E[3]

r2 |2, |R[3]
r2 |2, and Rz[3]

r2 , Fig. 8
is plotted for triangular pattern with L1 = 100, L2 = 0, but
Fig. 9 is plotted for circular pattern with L1 = 0, L2 = 800.
Figures 8 and 9 show that profiles of the rogue waves could
be changed dramatically only by selecting the values of
combination coefficients Ci(i = 1, 2, 3, 4) through L1 and L2.
Needless to say, we have also constructed analytical formulas
of the third-order rogue waves, but it is too long to present
here. It is possible to get more interesting patterns from the
higher-order rogue waves of the rotating RMB equations as
we have done for the NLS equation [57]. According to the
physical meaning of the rotating RMB equations, solutions
above are actually few-cycle optical rogue waves, which
are derived for the first time. As we have discussed in the
introduction, the RMB equation has been analyzed for the
past four decades and different solutions have been reported,
including highly localized soliton solutions. In particular, in
the case of SIT-type solitons, the theoretical results about
the existence of solitons have been experimentally supported
by several groups. However, the rogue-type rational solutions
have not been reported for RMB equations. In addition to the
above, the multi-rogue wave solutions have not been reported
for this equation. In all the published results on RMB equations
so far, it is well documented that the non-SVEA method has
been widely used to develop the system of governing equation

and several interesting results have been reported. As the
non-SVEA method is mainly used for ultrashort few-cycle
optical pulse propagation through nonlinear optical media, we
strongly believe that the results of this paper will be very useful
to understand and analyze the generation of high-power laser
pulses in optics as well as their evolution by suitably choosing
the pulse parameters.

C. The reflections of the rogue waves on the electric fields

We know from the above results that E has rogue waves,
but the real physical fields in ultrashort pulse are two polarized
electric fields εx and εy . So it is essential for us to find the
reflections of the rogue waves on them or equivalently on
Ex = 2d

�ω0
εx (the real part of E) and Ey = 2d

�ω0
εy(the imaginary

part of E). Figures 10–13 are density plots for the real
and imaginary parts of all rogue waves of E, respectively.
In these figures, a green bar denotes a vale and a purple
bar denotes a upward ridge in profiles of Ex and Ey . A
group of red bright points (GRBPs) in green area denotes
a downward peak, but a GRBPs in purple area denotes a peak
in upward ridge. In general, a GRBPs for two cases denotes
a localized large amplitude oscillation of a polarized electric
field. In most cases, two kinds of GRBPs are paired except
the one in Fig. 10(a). By comparing Figs. 5(a), 7(a), 8(a),
and 9(a) with Figs. 10–13 in order, it is easy to find that the
patterns of the GRBPs (or paired GRBPs) are similar to the

FIG. 8. (Color online) Density plots of triangular pattern of the third-order rogue waves |E[3]
r2 |2, |R[3]

r2 |2, and Rz[3]
r2 , with parameters

a = b = c = 1, K0 = S0 = S1 = S2 = L0 = 0, L1 = 100, L2 = 0.
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FIG. 9. (Color online) Density plots of the third-order rogue waves |E[3]
r2 |2, |R[3]

r2 |2, and Rz[3]
r2 with same values of parameters as

described in the legend of Fig. 8, except L1 = 0, L2 = 800.

FIG. 10. (Color online) Density plots of E[1]
r2,x(real part of E[1]

r2 ) and E[1]
r2,y(imaginary part of E[1]

r2 ) for the values described in the
legend of Fig. 5.

FIG. 11. (Color online) Density plots of E[2]
r2,x (real part of E[2]

r2 ) and E[2]
r2,y (imaginary part of E[2]

r2 ) for the values described in the
legend of Fig. 7.
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FIG. 12. (Color online) Density plots of E[3]
r2,x (real part of E[3]

r2 ) and E[3]
r2,y (imaginary part of E[3]

r2 ) for the values described in the
legend of Fig. 8.

corresponding patterns of rogue waves of |E|2; thus, we think
a paired GRBPs corresponds to a first-order rogue wave. In
other words, the GRBPs (or paired GRBPs), or a localized
large amplitude oscillation is the first reflection of the rogue
wave on the two polarized electric fields.

According to the analytical formulas of rogue waves
E[j ]

r2 (j = 1,2,3), and setting τ → ∞, χ → ∞, then
E[j ]

r2,x = − cos(τ + χ ), E[j ]
r2,y = − sin(τ + χ ) for j = 1

and j = 3, but E[2]
r2,x = cos(τ + χ ), E[2]

r2,y = sin(τ + χ ),
which is the second reflection of the localized property of
rogue wave. Thus, there is a complementary relationship of
two electric field components Ex and Ey when χ and τ

are sufficiently large. This can be verified by the alterative
appearance of blue and purple bars in Figs. 10–13.

IV. SUMMARY AND DISCUSSION

In this article, we have reported the determinant repre-
sentation of DT for the rotating RMB equations associated
with SIT effect and the propagation of few-cycle pulses. By
using the degenerate DT, we have constructed two kinds of
rational solutions, i.e., rational solitons and multi-rogue wave

of rotating RMB equations. The two lowest-order rational
solitons and rogue wave solutions are given explicitly and
plotted in figures. The triangular and circular patterns of
the third-order rogue waves are also analyzed in detail. The
obtained solutions have also been confirmed by symbolic
computation and validated, this forms the main results of
the work. We have found two reflections of rogue wave on
the polarized electric fields: (1) a localized large amplitude
oscillation on a periodic background; (2) a complementary
relationship of two electric field components Ex and Ey

when χ and τ are sufficiently large. Note that the periodic
background is given by the asymptotical behavior of Ex and
Ey of rogue waves. From the physical point of view of the
rotating RMB equations, these solutions are actually rational
type few-cycle optical solitons and few-cycle optical rogue
waves. Our solutions open several new avenues in the area
of ultrashort pulse dynamics in optics. As rogue wave-type
solutions have been observed in many branches of physics, the
results of this paper may be useful to explore the production of
high-power few-cycle optical pulses for different applications
in optics, in particular, in the area of near-field nonlinear optics
and fabrication of new optical white light coherent sources.

FIG. 13. (Color online) Density plots of E[3]
r2,x (real part of E[3]

r2 ) and E[3]
r2,y (imaginary part of E[3]

r2 ) for the values described in the
legend of Fig. 9.
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APPENDIX A: THE MATRIX FORM OF THE ONEFOLD
DARBOUX MATRIX

Considering the universality of DT, the trial Darboux matrix
T in Eq. (7) is assumed to be of the form

T = T (ξ ) =
(

a1 b1

c1 d1

)
ξ +

(
a0 b0

c0 d0

)
, (A1)

where a0,b0,c0,d0,a1,b1,c1,d1 are functions of τ , χ , which are
to be determined. From

Tτ + T U = U [1]T , (A2)

and comparing the coefficients of ξ j (j = 3,2,1,0), yields

ξ 3 : b1 = 0, c1 = 0,

ξ 2 : Ea1 + 2ib0 − E[1]d1 = 0, −F [1]a1 + Fd1 − 2ic0 = 0,

ξ 1 : a1τ + 1
2Fb0 − 1

2E[1]c0 = 0, d1τ + 1
2Ec0 − 1

2F [1]b0 = 0,

Ea0 − E[1]d0 = 0, − F [1]a0 + Fd0 = 0,

ξ 0 : a0τ = b0τ = c0τ = d0τ = 0. (A3)

Similarly, from

Tχ + T V = V [1]T , (A4)

and comparing the coefficients of ξ j ,j = 3,2,1,0, we get

ξ 3 : 1
2 iRz[1]

a1 − 1
2 iRza1 + a1χ = 0, − 1

2 iRz[1]
d1 + 1

2 iRzd1 + d1χ = 0,

ξ 2 : a0χ + 1
2 iRz[1]

a0 − 1
2 iR[z]a0 = 0, c0χ − 1

2Sd1 − 1
2 iRzc0 − 1

2 iRz[1]
c0 + 1

2S[1]a1 = 0,

b0χ − 1
2Ra1 + 1

2 iRzb0 + 1
2 iRz[1]

b0 + 1
2R[1]d1 = 0, d0χ − 1

2 iRz[1]
d0 + 1

2 iR[z]d0 = 0, (A5)

ξ 1 : a1χ + 1
2R[1]c0 − 1

2Sb0 = 0, d1χ + 1
2S[1]b0 − 1

2Rc0 = 0,

− Ra0 + R[1]d0 = 0, S[1]a0 − Sd0 = 0,

ξ 0 : a0χ = b0χ = c0χ = d0χ = 0.

In order to obtain nontrivial solutions, we shall construct a basic (or onefold) Darboux matrix T with a0 = 0 and d0 = 0. If we
set a0 �= 0, then d0 is not zero. Furthermore, we know that some coefficients (a0,d0) of T are constants, which generates trivial
DT: E[1] = a0

d0
E and F [1] = d0

a0
F .

APPENDIX B: DETERMINANT REPRESENTATION OF n-ORDER DARBOUX MATRIX, a0, d0, b1, AND c1

(1) For n = 2k (k = 1,2,3, . . .), the n-fold DT of the unreduced rotating RMB equations can be expressed as

Tn = Tn(ξ ; ξ1,ξ2, . . . ,ξn) =
⎛⎝ (̃Tn)11

Wn

(̃Tn)12
Wn

(̃Tn)21

W̃n

(̃Tn)22

W̃n

⎞⎠ , (B1)

a0 = W̃n

Wn

= 1

d0
,b1 = δn1

Wn

,c1 = δn2

W̃n

(B2)

with

Wn =

∣∣∣∣∣∣∣∣∣∣∣

ξn−1
1 ψ11 ξn−2

1 ψ12 . . . ξ1ψ11 ψ12

ξn−1
2 ψ21 ξn−2

2 ψ22 . . . ξ2ψ21 ψ22
...

...
...

...
...

ξn−1
n−1 ψn−11 ξn−2

n−1 ψn−12 . . . ξn−1ψn−11 ψn−12

ξn−1
n ψn1 ξn−2

n ψn2 . . . ξnψn1 ψn2

∣∣∣∣∣∣∣∣∣∣∣
,

(̃Tn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn 0 . . . ξ 2 0 1
ξn

1 ψ11 ξn−1
1 ψ12 . . . ξ 2

1 ψ11 ξ1ψ12 ψ11

ξn
2 ψ21 ξn−1

2 ψ22 . . . ξ 2
2 ψ21 ξ2ψ22 ψ21

...
...

...
...

...
...

ξn
n−1ψn−11 ξn−1

n−1 ψn−12 . . . ξ 2
n−1ψn−11 ξn−1ψn−12 ψn−11

ξn
n ψn1 ξn−1

n ψn2 . . . ξ 2
nψn1 ξnψn2 ψn1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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(̃Tn)12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ξn . . . 0 ξ 0

ξn
1 ψ11 ξn−1

1 ψ12 . . . ξ 2
1 ψ11 ξ1ψ12 ψ11

ξn
2 ψ21 ξn−1

2 ψ22 . . . ξ 2
2 ψ21 ξ2ψ22 ψ21

...
...

...
...

...
...

ξn
n−1ψn−11 ξn−1

n−1 ψn−12 . . . ξ 2
n−1ψn−11 ξn−1ψn−12 ψn−11

ξn
n ψn1 ξn−1

n ψn2 . . . ξ 2
nψn1 ξnψn2 ψn1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

W̃n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn−1
1 ψ12 ξn−2

1 ψ11 . . . ξ1ψ12 ψ11

ξn−1
2 ψ22 ξn−2

2 ψ21 . . . ξ2ψ22 ψ21

...
...

...
...

...

ξn−1
n−1 ψn−12 ξn−2

n−1 ψn−11 . . . ξn−1ψn−12 ψn−11

ξn−1
n ψn2 ξn−2

n ψn1 . . . ξnψn2 ψn1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(̃Tn)21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ξn . . . 0 ξ 0

ξn
1 ψ12 ξn−1

1 ψ11 . . . ξ 2
1 ψ12 ξ1ψ11 ψ12

ξn
2 ψ22 ξn−1

2 ψ21 . . . ξ 2
2 ψ22 ξ2ψ21 ψ22

...
...

...
...

...
...

ξn
n−1ψn−12 ξn−1

n−1 ψn−11 . . . ξ 2
n−1ψn−12 ξn−1ψn−11 ψn−12

ξn
n ψn2 ξn−1

n ψn1 . . . ξ 2
nψn2 ξnψn1 ψn2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(̃Tn)22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn 0 . . . ξ 2 0 1

ξn
1 ψ12 ξn−1

1 ψ11 . . . ξ 2
1 ψ12 ξ1ψ11 ψ12

ξn
2 ψ22 ξn−1

2 ψ21 . . . ξ 2
2 ψ22 ξ2ψ21 ψ22

...
...

...
...

...
...

ξn
n−1ψn−12 ξn−1

n−1 ψn−11 . . . ξ 2
n−1ψn−12 ξn−1ψn−11 ψn−12

ξn
n ψn2 ξn−1

n ψn1 . . . ξ 2
nψn2 ξnψn1 ψn2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

δn1 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn
1 ψ11 ξn−2

1 ψ11 . . . ξ1ψ12 ψ11

ξn
2 ψ21 ξn−2

2 ψ21 . . . ξ2ψ22 ψ21

...
...

...
...

...

ξn
n−1ψn−11 ξn−2

n−1 ψn−11 . . . ξn−1ψn−12 ψn−11

ξn
n ψn1 ξn−2

n ψn1 . . . ξnψn2 ψn1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

δn2 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn
1 ψ12 ξn−2

1 ψ12 . . . ξ1ψ11 ψ12

ξn
2 ψ22 ξn−2

2 ψ22 . . . ξ2ψ21 ψ22

...
...

...
...

...

ξn
n−1ψn−12 ξn−2

n−1 ψn−12 . . . ξn−1ψn−11 ψn−12

ξn
n ψn2 ξn−2

n ψn2 . . . ξnψn1 ψn2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2) For n = 2k + 1(k = 1,2,3, · · · ), then

Tn = Tn(ξ ; ξ1,ξ2, . . . ,ξn) =
⎛⎝ (̂Tn)11

Qn

(̂Tn)12
Qn

(̂Tn)21

Q̂n

(̂Tn)22

Q̂n

⎞⎠ , (B3)

a0 = −Q̂n

Qn

= 1

d0
,b1 = δn3

Qn

,c1 = δn4

Q̂n

(B4)
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with

Qn =

∣∣∣∣∣∣∣∣∣∣∣

ξn−1
1 ψ11 ξn−2

1 ψ12 . . . ξ 2
1 ψ11 ξ1ψ12 ψ11

ξn−1
2 ψ21 ξn−2

2 ψ22 . . . ξ 2
2 ψ21 ξ2ψ22 ψ21

...
...

...
...

...
...

ξn−1
n ψn1 ξn−2

n ψn2 . . . ξ 2
nψn1 ξnψn2 ψn1

∣∣∣∣∣∣∣∣∣∣∣
,

(̂Tn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn 0 . . . ξ 3 0 ξ 0

ξn
1 ψ11 ξn−1

1 ψ12 . . . ξ 3
1 ψ11 ξ 2

1 ψ12 ξ1ψ11 −ψ12

ξn
2 ψ21 ξn−1

2 ψ22 . . . ξ 3
2 ψ21 ξ 2

2 ψ22 ξ2ψ21 −ψ22

...
...

...
...

...
...

...

ξn
n ψn1 ξn−1

n ψn2 . . . ξ 3
nψn1 ξ 2

nψn2 ξnψn1 −ψn2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(̂Tn)12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ξn−1 . . . 0 ξ 2 0 −1

ξn
1 ψ11 ξn−1

1 ψ12 . . . ξ 3
1 ψ11 ξ 2

1 ψ12 ξ1ψ11 −ψ12

ξn
2 ψ21 ξn−1

2 ψ22 . . . ξ 3
2 ψ21 ξ 2

2 ψ22 ξ2ψ21 −ψ22

...
...

...
...

...
...

...

ξn
n ψn1 ξn−1

n ψn2 . . . ξ 3
nψn1 ξ 2

nψn2 ξnψn1 −ψn2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Q̂n =

∣∣∣∣∣∣∣∣∣∣∣

ξn−1
1 ψ12 ξn−2

1 ψ11 . . . ξ 2
1 ψ12 ξ1ψ11 ψ12

ξn−1
2 ψ22 ξn−2

2 ψ21 . . . ξ 2
2 ψ22 ξ2ψ21 ψ22

...
...

...
...

...
...

ξn−1
n ψn2 ξn−2

n ψn1 . . . ξ 2
nψn2 ξnψn1 ψn2

∣∣∣∣∣∣∣∣∣∣∣
,

(̂Tn)21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ξn−1 ... 0 ξ 2 0 −1

ξn
1 ψ12 ξn−1

1 ψ11 . . . ξ 3
1 ψ12 ξ 2

1 ψ11 ξ1ψ12 −ψ11

ξn
2 ψ22 ξn−1

2 ψ21 . . . ξ 3
2 ψ22 ξ 2

2 ψ21 ξ2ψ22 −ψ21

...
...

...
...

...
...

...

ξn
n ψn2 ξn−1

n ψn1 . . . ξ 3
nψn2 ξ 2

nψn1 ξnψn2 −ψn1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(̂Tn)22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn 0 . . . ξ 3 0 ξ 0

ξn
1 ψ12 ξn−1

1 ψ11 . . . ξ 3
1 ψ12 ξ 2

1 ψ11 ξ1ψ12 −ψ11

ξn
2 ψ22 ξn−1

2 ψ21 . . . ξ 3
2 ψ22 ξ 2

2 ψ21 ξ2ψ22 −ψ21

...
...

...
...

...
...

...

ξn
n ψn2 ξn−1

n ψn1 . . . ξ 3
nψn2 ξ 2

nψn1 ξnψn2 −ψn1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

δn3 =

∣∣∣∣∣∣∣∣∣∣∣

ξn
1 ψ11 ξn−2

1 ψ11 . . . ξ 2
1 ψ12 ξ1ψ11 ψ12

ξn
2 ψ21 ξn−2

2 ψ21 . . . ξ 2
2 ψ22 ξ2ψ21 ψ22

...
...

...
...

...
...

ξn
n ψn1 ξn−2

n ψn1 . . . ξ 2
nψn2 ξnψn1 ψn2

∣∣∣∣∣∣∣∣∣∣∣
,

δn4 =

∣∣∣∣∣∣∣∣∣∣∣

ξn
1 ψ12 ξn−2

1 ψ12 . . . ξ 2
1 ψ11 ξ1ψ12 ψ11

ξn
2 ψ22 ξn−2

2 ψ22 . . . ξ 2
2 ψ21 ξ2ψ22 ψ21

...
...

...
...

...
...

ξn
n ψn2 ξn−2

n ψn2 . . . ξ 2
nψn1 ξnψn2 ψn1

∣∣∣∣∣∣∣∣∣∣∣
.

062925-15



SHUWEI XU, K. PORSEZIAN, JINGSONG HE, AND YI CHENG PHYSICAL REVIEW E 88, 062925 (2013)

[1] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545
(2000).

[2] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[3] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev,

J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.
Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science
320, 1614 (2008).

[4] G. Mourou and T. Tajima, Science 331, 41 (2011).
[5] E. M. Belenov and A. V. Nazarkin, Pis’ma Zh. Eksp. Teor. Fiz.

51, 252 (1990) [JETP Lett. 51, 288 (1990)].
[6] J. E. Rothenberg, Opt. Lett. 17, 1340 (1992).
[7] J. K. Ranka and A. L. Gaeta, Opt. Lett. 23, 534 (1998).
[8] E. D. Farnum and J. Nathan Kutz, Opt. Lett. 35, 3033 (2010).
[9] H. Leblond and D. Mihalache, Rom. Rep. Phys. 63, 1254

(2011).
[10] H. Leblond and D. Mihalache, Phys. Rep. 523, 61 (2013).
[11] S. V. Sazonov, Bull. Russ. Acad. Sci: Phys. 75, 157 (2011).
[12] T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[13] G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, Opt. Expr.

15, 5382 (2007).
[14] A. I. Maimistov and M. Basharov, Nonlinear Optical Waves

(Kluwer Academic Publishers, Dordrecht, 1999).
[15] M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and

T. Brabec, Phys. Rev. Lett. 83, 2930 (1999).
[16] M. Agrotis, N. M. Ercolani, S. A. Glasgow, and J. V. Moloney,

Physica D. 138, 134 (2000).
[17] A. I. Maimistov and J.-G. Caputo, Opti. Spectrosc. 94, 245

(2003).
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