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Nucleation in bistable dynamical systems with long delay
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In an asymmetric bistable dynamical system with delayed feedback, one of the stable states is usually “stronger”
than the other one: The system relaxes to it not only from close initial conditions, but also from oscillatory initial
configurations which contain epochs of stay near both attractors. However, if the initial nucleus of the stronger
phase is shorter than a certain critical value, it shrinks, and the weaker state is established instead. We observe
this effect in a paradigmatic model and in an experiment based on a bistable semiconductor laser and characterize
it in terms of scaling laws governing its asymptotic properties.
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I. INTRODUCTION

Traditionally, the term “nucleation” refers to the spatial
effect encountered in the context of phase transitions of the
first order: birth of localized buds of the new phase in the
bulk of the old one. Immediate examples are crystallization in
liquids cooled below the melting temperature and formation of
bubbles at the transition to the gaseous phase. Typically, when
the nucleus of the new phase is created inside the old one,
the gain in free energy is proportional to the nucleus volume,
whereas, the loss is proportional to its surface area. The balance
is reached at a certain critical size of the nucleus, below
which the nuclei shrink [1]. In the context of reaction-diffusion
systems, nucleation occurs in bistable situations in which one
of two stable regimes dominates. Here, again, survival and
subsequent growth of the newborn nucleus of the dominating
(below, we refer to it as “strong”) phase require that, at the
moment of birth, this nucleus occupies a sufficiently large
portion of available space. Since, in physical and chemical
systems, phases typically fill volumes or (in the case of shallow
cavities) can be characterized in terms of occupied areas,
most of theoretical and experimental research on nucleation
concerns two- and three-dimensional media [2,3]. In one
dimension, for a large class of systems, phase transitions do not
occur [1,4]. Theoretically and numerically, one-dimensional
nucleation has been studied in amplitude equations [5–7] and
in excitable media [8].

Here, we discuss one-dimensional nucleation which, in
a seeming contrast to the above cases, occurs not in space
but in time. Accordingly, a nucleus occupies not the spatial
region but the time interval, and the critical size is replaced by
the critical duration. This effect takes place in bistable long-
delayed dynamical systems. Explicit introduction of delays
into the governing equations is common in situations with finite
velocities of the signal propagation, such as the dynamics in
ensembles of interacting agents; it arises in a natural way, e.g.,
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in problems of neuroscience [9,10] and various semiconductor
laser systems (see, e.g., Ref. [11] and references therein). Quite
often, in applications, the delay is long: It strongly exceeds the
typical time scale of the system in the absence of delay.

For the differential equation with a delay, the initial
conditions are posed on the appropriate interval. If, on the
whole interval, the dependent variable takes values sufficiently
close to either of the stable states (for simplicity, let the latter
be time independent), that state is established as a result of the
subsequent evolution. If, on the contrary, the initial interval is
prepared as a sequence of alternating epochs close to different
stable states, the competition starts, out of which one of them
(the strong one) emerges as a winner. To ensure this, on the
initial interval, the epoch (nucleus) spent near the stronger
equilibrium should exceed a certain critical time: Otherwise,
the too short nucleus of the strong phase shrinks, and the
“weaker” state of equilibrium is established instead.

To visualize nucleation, we use the formalism, elaborated
for the case of long delay in Refs. [12–16] and transform
temporal dynamics into a spatiotemporal one by constructing
the appropriate “pseudospace.” Below, we concentrate on the
aspects related to the survival and lifetimes of nuclei, both
from the theoretical and from the experimental points of view:
In Sec. II, we illustrate nucleation in bistable delay systems
with the help of a phenomenological scalar delay equation,
and in Sec. III, we report on the experimental observation of
nucleation in a laser with delayed optoelectronic feedback.

II. NUCLEATION IN THE BISTABLE DELAY
DIFFERENTIAL EQUATION: A CASE STUDY

A. Dynamical system and its properties

Aiming at the description of dynamics in the bistable situa-
tion, we consider the overdamped one-dimensional motion in
a double-well potential U (x). The governing equation is

dx(t)

dt
= −U ′(x) + gx(t − τ ), (1)

where the parameter g measures the strength of the delayed
feedback. We take the simple quartic potential with U ′(x) =
x(x + 1 + a)(x − 1) where the parameter a characterizes
asymmetry in the system: When a vanishes, U (x) is even.
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FIG. 1. Coarsening of solutions in Eq. (1) at a = 0.5, g = 10, and τ = 10. Profiles of length τ = 10, measured at (a) t = 0, (b) t = 30,
(c) t = 90, (d) t = 190, (e) t = 513, and (f) t = 948.

Equation (1) possesses steady states at x0 = 0, and x± =
[−a ±

√
(2 + a)2 + 4g]/2. Below, we consider the positive

feedback g > 0 when the latter states are stable. At g = 0,
evolution in this system is monotonic; the larger among two
characteristic time scales of relaxation to the equilibria is
given by

max

{
1

2 + a
,

1

(1 + a)(2 + a)

}
.

Accordingly, for a > −0.5, the values of delay τ > 10 can be
viewed as large.

For numerical integration of Eq. (1), we have used the
original algorithm of the recurrent Taylor expansion of the
30th order with a constant time step. As an initial profile
for integration, we take a nonmonotonic sequence x(t) in
which the maxima (minima) lie, respectively, in the range
of positive (negative) values of x. The exact shape of the
initial profile seems to be of little significance: The oscillations
very soon become nearly rectangular with alternating plateaus
near the steady states x±, separated by short ascending and
descending segments. Here, the process of coarsening takes
place: Under positive values of a, the plateaus at x− become
longer, whereas, their counterparts at x+ gradually shrink,
until finally, the oscillations cease, and the steady state x−
is established. Different stages of this process are presented in
Fig. 1. At negative values of a, the same effect takes place, but
the eventual winner is now state x+.

B. Spatiotemporal patterns. Coarsening

At a closer look, temporal evolution of the system appears
to unfold in two characteristic time scales: nearly stationary
intervals which can last almost up to τ alternate with segments
of rapid changes with duration on the order of 1/g. By taking
an appropriate small number δ (0 < δ ∼ 1/g � τ ) and cutting
the sufficiently long trajectory x(t) into the segments (frames)
of length τ + δ, it is possible to ensure that the profile in
each subsequent frame is nearly the same as in the preceding

one. On the much slower time scale, the profile inside the
frame gets deformed: The coarsening takes place. Notably,
the value of δ varies when the parameters a and/or g are
varied, but it is almost insensitive to variation in delay depth
τ . By separating the time scales, we put the purely temporal
process of coarsening into the artificial pseudospace and obtain
a convenient visualization. The spatiotemporal representation
is constructed by decomposition of every positive value t of
time into t = n(τ + δ) + σ with natural n and real σ (0 �
σ < τ + δ). The values of σ and n—respectively, number of
the frame and position inside the frame—play the roles of the
spatial and temporal coordinates. This construction is based
on the well-established analogy between the systems with
long-delay and spatially extended one-dimensional systems
[12–16].

The corresponding visualization of coarsening is presented
in Fig. 2. In these coordinates, the transitions between the
steady states look like propagating ascending and descending
fronts: In the process of coarsening, the fronts coalesce
pairwise and disappear so that, ultimately, only one state
remains. In general, the outcome depends on the balance of the
front velocities: If the ascending front propagates faster than
its descending counterpart, state x+ eventually disappears; in
the opposite case, x− is the weaker phase. Duration of the
coarsening process is inversely proportional to the difference
in the front velocities [17]. The degenerate situation in which
velocities of both fronts coincide will be referred to as
balanced; in Eq. (1), it corresponds to the symmetric potential
at a = 0.

Typically, an initial segment of the stronger phase [green
(dark) in the color box of Fig. 2] expands at the cost of
the weaker phase [respectively, yellow (bright)]. We observe,
however, that, in the initial profile, there are several small
pieces of the stronger phase which fail to grow and eventually
subside. Magnification of one such piece in the right panel
indicates that there is a critical size (duration) for the nucleus
of the strong phase. A nucleus of a subcritical duration (central
dark stripe) is suppressed by the weaker phase. In contrast, a
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FIG. 2. (Color online) Coarsening in pseudospace of Eq. (1). Same parameter values as in Fig 1. Vicinity of x− (strong phase) is painted
green (dark); vicinity of x+ (weaker phase) is painted yellow (bright). (a) Propagation of fronts. (b) Magnification of the segment [delineated
in (a) by the dashed line] near the nucleus of the strong phase.

nucleus with duration slightly bigger than the critical one (the
right dark stripe), after a certain transient process, starts to
expand.

Numerical results confirm that, for τ � 5, the size of the
critical nucleus tcrit is determined by the employed values of
g and a but practically (to the accuracy of 10−15) does not
depend on the value of delay τ [18].

C. Lifetime of a nucleus

Before the final settling to one of the steady states, the
trajectory oscillates back and forth between x+ and x−, hence,
it seems natural to characterize the lifetime for the subcritical
nucleus by the moment of the last zero crossing. Numerical
data, presented in the left panel of Fig. 3, demonstrate that
the lifetime depends monotonically on the deficit of size: The
shorter the original nucleus, the faster it decays. A closer look
at these data allows us to discern two different asymptotic
dependencies and, thereby, to distinguish between the slightly
subcritical nuclei and those whose length (duration) is dis-
tinctly below the critical size.
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FIG. 3. (Color online) Dependence of the lifetime of the subcrit-
ical nucleus on its initial size t0 for Eq. (1) at a = 0.04, g = 5, and
τ = 5. Pluses: last zero crossings (numerics). Solid line: exponential
dependence. Dashed curve: logarithmic law (6). Inset (b): exponential
growth at small t0. Inset (c): logarithmic asymptotics near the critical
nucleus.

Even for relatively short nuclei, their original lengths are
much larger than the widths of the fronts on their borders.
This allows us to characterize the motion of fronts by utilizing
the formalism, developed in Ref. [19] for the dynamics of
weakly interacting kinks in evolution equations without delay.
Formally treating the discrete pseudotime n as a continuous
independent variable, we phenomenologically describe the
time-dependent size W (n) of the nucleus by the equation,

dW

dn
= −Be−βW + A, (2)

with positive coefficients β, A, and B (A < B) where the
first term describes the exponentially weak attraction between
the distant fronts and the constant term is the difference
between the propagation velocities of the solitary ascending
and descending fronts. In the balanced situation [recall that, in
Eq. (1), it corresponds to a = 0], the latter term vanishes. By
rescaling the units of W and of pseudotime n, the parameter
dependence is restricted to the combination A/(βB), which,
close to the balance, is approximately proportional to a in
Eq. (1).

According to Eq. (2), there exists a critical initial duration
Wc = ln(B/A)/β: The nuclei with initial duration W0 < Wc

decrease and vanish within the finite time, whereas, the ones
with W0 > Wc grow unboundedly. The latter case describes
coarsening; the velocity with which the nucleus of the strong
phase broadens tends to A. In contrast, nuclei with subcritical
initial length shrink. Their lifetimes are

nlife = 1

Aβ
ln

B − A

B − A exp(βW0)
. (3)

For a short (but not too short: βW0 � 1) initial nucleus
in a nearly balanced configuration, this is reduced to the
exponential dependence,

nlife ≈ exp(βW0)

Bβ
. (4)

In contrast, for slightly subcritical nuclei whose initial dura-
tions are close to Wc, the asymptotic logarithmic law,

nlife ≈ − 1

Aβ
ln(Wc − W0) (5)

should hold.
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Results of numerical integration of Eq. (1), summarized
in Fig. 3, are in good accordance with the above theoretical
predictions. In the left inset of Fig. 3, for sufficiently small
nuclei, the exponential dependence of lifetime on the initial
duration t0 is well identifiable. Growth of the initial duration
leads, after the crossover interval, into the domain close to
the threshold tcrit in which another asymptotic law takes place.
In appropriate coordinates used in the right inset of Fig. 3,
we observe that the number of delays during which a nucleus
persists, obeys a logarithmic dependence of the type (5),

tlife

τ
≈ −κ ln(tcrit − t0). (6)

Estimates from the dynamics of Eq. (1) at different parameter
values show that slope κ varies with the asymmetry a of the
system but is practically independent of τ (Fig. 4).

Dynamically, the critical nucleus can be viewed as an
unstable periodic solution of Eq. (1) with period τ + δ and
a single Floquet multiplier outside the unit circle. The stable
manifold of this solution has codimension 1 and serves in the
phase space as part of the boundary between the attraction
basins of two fixed points which correspond to the strong
and the weak phases, respectively. A trajectory which starts
from a slightly subcritical nucleus approaches this periodic
solution along its stable manifold, stays in its vicinity for
a certain time, and finally, departs to the equilibrium which
corresponds to the weak phase. A slightly supercritical nucleus
approaches the unstable periodic state as well; its subsequent
evolution, in contrast, leads to growth of the nucleus and
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FIG. 4. (Color online) Lifetime of subcritical nuclei for Eq. (1) at
g = 10 and different values of delay τ. tcrit: critical size of the nucleus;
t0: size of the nucleus in the initial profile. (a) a = 1, nucleus of
x− (tcrit = 0.168 864), κ ≈ 1.45; (b) a = −1/2, nucleus of x+ (tcrit =
0.233 400), κ ≈ 3.05.

ends up in the establishment of the strong phase. The overall
time spent in the vicinity of the unstable periodic solution
constitutes nearly the whole (save for the very beginning and
the short final stage) lifetime of a subcritical nucleus, therefore,
its duration is governed by the largest Floquet multiplier μ,
responsible for the instability. In each next frame, compared
to the previous one, the distance from the stable manifold is
approximately multiplied by μ, until a certain finite distance is
reached, beyond which the unstable periodic solution becomes
irrelevant for dynamics, and linear relaxation to the steady state
(see the next subsection) begins. Hence, slope κ , as introduced
in Eq. (6), is related to μ as

κ = 1

ln μ
←→ μ = exp(1/κ). (7)

The conjecture about the inter-relation between the nucle-
ation and the unstable periodic solution has been confirmed by
independent numerical analysis of the unstable periodic orbit
in Eq. (1), performed with the help of the bifurcation software
package DDE-BIFTOOL [20]. A search for different values of
a, g, and τ has detected the family of unstable periodic orbits
whose unstable manifold has codimension 1. Under fixed
moderate values of a and g, the largest Floquet multiplier
of this orbit is almost τ independent: For τ � 5, its first six
decimal digits do not change. Comparison of the values of
this multiplier with estimates (7) obtained from the fitting data
of lifetimes of the nuclei displays a remarkable coincidence
within 1%. This strengthens our view upon nucleus dynamics
as a passage close to the unstable periodic state.

At positive values of the delay feedback g, Eq. (1) is a
monotone dynamical system and, hence, cannot possess stable
periodic solutions [21]. However, in the case of vanishing
asymmetry a = 0, the relevant periodic state can be made
nearly marginal (for example, at g = 2 and τ = 5, μ < 1.01,
which results in the strong increase in slope κ and noticeably
prolongs the life of slightly subcritical nuclei.

D. Final relaxation

Presented results bear an obvious resemblance to reaction-
diffusion phenomena. In one aspect, however, there is a
distinction: This concerns propagation of the nucleus at its final
stage during linear relaxation to the steady state. There, the
description with the help of Eq. (2) is not valid: The boundaries
of the nucleus at that stage are neither sharp fronts nor distant.

Linearizing the equations near the (weak) stable steady
state, we obtain

φ′
n(σ ) = ηφn(σ ) + gφn−1(σ ), (8)

where a prime denotes differentiation with respect to the
pseudospatial coordinate σ and φn is the profile, which is
localized within the nth frame and vanishes on both of its
borders. Since the steady state is stable, the value of η is
negative. The feedback strength g, in contrast, is positive. A
substitution φk = eησ ξk results in

ξ ′
n = gξn−1,

hence, starting from a non-negative φ0, the functions φj (σ )
keep staying non-negative for all j . We interpret φn as the
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family of distributions and consider their moments,

M (k)
n =

∫
φn(σ )σ kdσ, (9)

where integration is performed over the whole nth frame. Since
φn vanishes identically on the frame borders, integration by
parts yields

kM (k−1)
n + ηM (k)

n + gM
(k)
n−1 = 0. (10)

Dividing these values by M (0)
n = (−g/η)n, we arrive at the

recurrences for normalized moments N (k)
n = M (k)

n /M (0)
n ,

kN (k−1)
n + ηN (k)

n = ηN
(k)
n−1. (11)

Remarkably, normalized moments are independent of the
feedback strength g. For the first moment of the distributions,
(11) results in

N (1)
n = N

(1)
n−1 − 1/η = · · · = N

(1)
0 − n/η, (12)

i.e., in every next frame, the center of mass of the nucleus is
shifted to the right with respect to the previous frame by the
value of 1/|η|: The mean value of the solution drifts with the
velocity −1/η.

The second normalized moment obeys

N (2)
n = N

(2)
n−1 − 2

η
N (1)

n = · · · = N
(2)
0 − 2n

η
N

(1)
0 + n(n + 1)

η2
.

(13)

Hence, the variance Varn = N (2)
n − (N (1)

n )2 increases linearly
with a rate 1/η2,

Varn = Var0 + n/η2, (14)

i.e., in each next frame, the distribution is broader. To
summarize, while proceeding from one frame to the next one,
the decaying nucleus becomes less sharp and drifts to the
right. The drift velocity only depends on the linearization near
the weak state, is independent of the feedback strength g,
and in general, differs from the velocities of ascending and
descending fronts during the nonlinear stage of the nucleus
evolution (the latter are close to 1/g [17]). Therefore, in the
reference frame in which the bulk of the nucleus does not move,
the very “tip” of the decaying part becomes skewed. This is a
clear deviation from the usual properties of reaction-diffusion
in isotropic media where the spatial symmetry of the pulse is
maintained until its complete absorption.

III. NUCLEATION: EXPERIMENT IN A BISTABLE LASER
WITH LONG-DELAYED FEEDBACK

Recently, we have provided evidence of reaction-diffusion-
type dynamics in a bistable laser with long-delayed feedback
with front creation, propagation, and annihilation leading to
coarsening [17]. Here, we use the same experimental setup,
but the focus is placed onto the nucleation-related aspects.

The system is based on a vertical cavity laser in a regime
of bistable emission onto two linear orthogonal polarizations
of the optical field. The polarized laser emission is detected,
and the signal is delayed by means of an acquisition board and
a suitable real-time software, which possibly allows very long

delays. The delayed output is then summed back with the bias
to the pump current of the laser.

Depending on the control parameters, the delayed system
displays two stable states. A jump between them, which can
be induced either by noise or by a choice of the initial state,
may propagate in the (pseudo) space. The switching time
is bandwidth limited at a few microseconds and represents
the typical (and fastest) time scale of the system. In the
measurements reported here, the delay time was set at different
values, usually longer than 19 ms (see the figure caption).
Hence, we are in the long-delay regime with an aspect ratio
exceeding 102 [12–15]; in this case, we did not observe any
influence of the delay time value on the observations.

In the measurements, opposite fronts (e.g., jumps connect-
ing lower to higher and higher to lower intensity values) an-
nihilate when colliding, eventually leading to a homogeneous
(strong) state [17].

As suggested by analysis of the model (1), we expect
formation of nuclei in the strong phase for a proper choice
of the parameters and initial conditions. To this aim, by setting
the laser pump current and the coupling of the feedback loop,
we choose a regime in which a coarsening process takes place.
In this case, the strong phase (shown by white in the figures)
corresponds to the higher laser intensity. Here, preparing the
initial state as a random sequence of the two stable states, the
propagation of the fronts would gradually lead the system to
relax to the strong state through coarsening as shown in Fig. 5.

In this case, analyzing the (pseudo-) temporal behavior of
a random intensity pattern, formation of buds of the strong
phase is observed within islands of the weak phase (see the
inset of Fig. 5). Such structures have finite lifetimes depending
on their initial sizes (i.e., duration in the pseudospace).

To shed light on the dependence of the nuclei lifetimes on
their initial sizes, we perform a measurement by setting, as the

FIG. 5. (Color online) Experiment. Spatiotemporal representa-
tion of the bistable laser intensity; black (respectively, white)
represents the lower (respectively, higher) intensity stable state. The
initial state is a random sequence of the two stable amplitudes
on the first delay interval (here, set to 19 ms). Coarsening is observed
as the motion and annihilation of fronts between the states and the
eventual onset of the homogeneous (strong) state. Formation of nuclei
of the strong phase is observed (inset).
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FIG. 6. (Color online) Experiment. The initial state (in a delay
unit of 19 ms) is prepared as a comb of pulses with linearly increasing
(from left to right) width in the strong phase. A zoom of the full pattern
is presented. Nucleation is observed as a finite lifetime of the pulses
for widths up to a critical value, beyond which the coarsening process
takes place. Final relaxation towards the weak phase occurs with a
different velocity (inset).

initial condition, a comb of pulses with (linearly) increasing
widths, corresponding to increasing durations in the strong
phase. The pulses are sufficiently separated in the pseudospace
to let them be considered as independent. In this way, a single
measurement allows us to test the effect of the different sizes
of the pulses in the same experimental conditions.

As shown in Fig. 6, the choice of a different width for the
initial pulse can drastically change the way it propagates and
survives or not in the coarsening process. More precisely, it
is observed that, for small widths, the pulse propagates and
then disappears due to the annihilation of the two fronts which
delineate it (Fig. 6, leftmost pulses). Notably, the velocity of
the pulse in the final part of the process appears systematically
different from the propagation velocity as predicted in the
analysis of Sec. II D.

We remark that, in such a case, annihilation takes place
even if the state between the fronts is the strong phase.

As the initial width is increased, the duration (in the
pseudotime) of the pulses increases as well, until the threshold
value is reached, beyond which the pulses do not disappear but
expand with time (Fig. 6, rightmost pulses) as expected in the
coarsening regime.

To quantify the observed behavior, we analyze the time
dependence of the area of the pulse, i.e., the spatial integral
over the pulse profile. Such an indicator is roughly proportional
to the pulse width and allows for a substantial reduction in the
undesired signal fluctuations.

The results are shown in Fig. 7 where we plot the temporal
behavior of the pulse area P . For a given (small) width,
relaxation of P towards zero is observed with a slow initial part
whose duration increases strongly with the width duration. The
final part of the relaxation, instead, is apparently triggered by
the crossing of a well-defined threshold and follows a shape
which is independent of the initial width (see the inset of
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FIG. 7. (Color online) Experiment. Temporal behavior of the
pulse area for linearly increasing pulse widths (curves from bottom
to top). Inset: nuclei final relaxation; the curves are shifted in time to
overlap. The horizontal dashed line in the inset marks the crossing
point and is used to evaluate the nucleus lifetime (see the text). The
delay time is 57 ms.

Fig. 7). For widths higher than the critical value, the pulse
eventually broadens, and the area (linearly) diverges in time in
accordance with the coarsening process.

A comparison of experimental results with the predicted
scaling (4) of the nucleus lifetime with its width (or area)
has been carried out as well. In Fig. 8, we plot the variable
exp(P ) for different nuclei. In this case, linear scaling is
expected, and it is, indeed, observed for a large range of time
intervals, thus, confirming the exponential character of the
dependence between the small original width of the nuclei and
their lifetimes.

Increasing the nucleus width and approaching the critical
size Wc, different scaling is expected [see Eq. (5)]. On the
other hand, from the experimental point of view, already, the
exponential dependence of the nuclei lifetimes from their
widths sets a strong limitation on the measurements. In
particular, the fluctuations in the trajectories (as seen, e.g.,
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FIG. 8. Experiment. Temporal behavior of the nucleus area for
linearly increasing widths (curves from bottom to top). The dashed
line represents exponential scaling as predicted by Eq. (4). The delay
time is 57 ms.
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FIG. 9. Experiment. Lifetime of an ensemble of pulses as a
function of their initial widths. The duration is evaluated at the
crossing point (depicted in the inset of Fig. 7) in the case of a nucleus
relaxing to zero and set to the limit of the measurement window
(horizontal dashed line) otherwise. Several runs are carried out for
the same initial width. The full line indicates an exponential increase.
The delay time is 57 ms.

in Fig. 7) are possibly due to the effect of noise on the position
of the fronts.

To partially overcome the problem, the measurement of
the pulse lifetime would better be carried out as a statistical
average over many different realizations. In Fig. 9, we report
the result of several runs, plotting the lifetimes of the nuclei
(evaluated as the time needed to reach the crossing point, see
the inset of Fig. 7) for increasing widths.

In this case, however, only the first exponential increase
is observed for small widths, then the limited measurement
window (depicted by the horizontal dotted line) imposed by
the stability of the experimental system prevents us from
quantitatively characterizing the behavior for larger widths
below the critical value Wc. We remark, however, that an
increase in the spreading of the measurements (described,
e.g., by the standard deviation) is clearly evident, and it

is compatible with possible deviations from the exponential
behavior measured for small widths.

IV. SUMMARY AND CONCLUSIONS

It is becoming increasingly evident that many crucial effects
in purely temporal systems with long delays are related to their
hidden spatiotemporal properties. These properties are instru-
mental in generating such pattern-forming effects as coarsen-
ing [17], Eckhaus instability [16], or chimera states [22] in
delay systems. Here, we have presented our observations of
another typical spatiotemporal phenomenon—nucleation—in
the delay setting. In a phenomenological model, we have
characterized scaling of the nucleus duration with its initial
size, both for the close-to-zero and for the close-to-critical
situations. Numerically observed behavior discloses both
analogies to and distinctions from dynamics of nucleus fronts
in a conventional one-dimensional reaction-diffusion system.

Experimental observation of this effect has also been
performed in a setup with a bistable vertical cavity laser
with long-delayed optoelectronic feedback. Formation and
propagation of nuclei have been observed, and their lifetimes
have been studied by a suitable preparation of the initial
state (a delay unit) of the laser. The observed scaling of the
nucleus lifetime follows the theory for small initial size. The
limitation imposed by the system stability and the exponential
sensitivity of the lifetime to fluctuations of the front position
prevented us from characterizing the scaling for larger initial
nuclei (closer to the critical size). However, the spread in
the measurements is compatible with the predicted scaling.
A more detailed study of close-to-critical regimes could be
handled by several realizations (as described and demonstrated
here) and is planned for a future study.
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