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Quasiperiodic graphs at the onset of chaos
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We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV)
algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos.
The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases
with the size of the network. We determine families of Pesin-like identities between entropy growth rates and
generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued
fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.
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I. INTRODUCTION

The onset of chaos is a prime dynamical phenomenon that
has attracted continued attention motivated by the aim to both
expand its understanding and to explore its manifestations in
many fields of study [1]. From a theoretical viewpoint, chaotic
attractors generated by low-dimensional dissipative maps have
ergodic and mixing properties and, not surprisingly, they can
be described by a thermodynamic formalism compatible with
Boltzmann-Gibbs (BG) statistics [2]. But at the transition
to chaos, the infinite-period accumulation point of periodic
attractors, these two properties are lost and this suggests
the possibility of exploring the limit of validity of the BG
structure in a precise but simple enough setting. The horizontal
visibility (HV) algorithm [3,4] that transforms time series into
networks has offered [5-9] a view of chaos and its genesis in
low-dimensional maps from an unusual perspective favorable
for the appreciation and understanding of basic features. Here
we present the scaling and entropic properties associated with
the connectivity of HV networks obtained from trajectories
at the quasiperiodic onset of chaos of circle maps [10] and
show that this is an unusual but effective setting to observe the
universal properties of this phenomenon.

The three well-known routes to chaos in low-dimensional
dissipative systems, period doubling, intermittency, and
quasiperiodicity, have been analyzed recently [5—9] via the HV
formalism, and complete sets of graphs that encode the dynam-
ics of all trajectories within the attractors along these routes
have been determined. These graphs display structural and
entropic properties through which a distinct characterization
of the families of time series spawned by these deterministic
systems is obtained. The quantitative basis for these results
is provided by the corresponding analytical expressions for
the degree distributions. The graph at the transition to chaos
has been studied only for the period-doubling route for which
connectivity expansion and entropy growth rates have been
determined and found to be linked by Pesin-like identities
[7]. Here we present results for the transition to chaos for the
quasiperiodic route that expand on this finding and suggest
that structural and entropic properties of such networks are
linked by Pesin-like equalities that use generalizations of the
ordinary Lyapunov and BG entropy expressions.

We refer to Pesin-like identities as those that were first
found to occur at the period-doubling transitions to chaos that
link generalized Lyapunov exponents to entropy growth rates
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at finite, but all, iteration times [11,12]. Recently [7] these
identities were retrieved in a network context via the HV
method. Pesin-like identities differ from the genuine Pesin
identity, the single positive Lyapunov exponent version of the
Pesin theorem [13], for chaotic attractors in one-dimensional
iterated maps. The Pesin identity links asymptotic quantities
that are invariant under coordinate transformations, whereas
the finite-time Pesin-like identities that appear for vanishing
ordinary Lyapunov exponents are coordinate dependent. How-
ever, in the case of period doubling it has been seen that the
identities remain valid when different coordinate systems are
used to determine them, as in Refs. [7,11].

The rest of this paper is as follows: We first recall the HV
algorithm [3,4] that converts a time series into a network and
focus on the quasiperiodic graphs [8] as the specific family
of HV graphs generated by the standard circle map. We then
expose the universal scale-invariant structure of the graphs that
arise at the infinite period accumulation points by focusing
on the golden ratio route. We describe the diagonal structure
of these graphs when represented by the exponential of the
connectivity, and introduce a generalized graph-theoretical
Lyapunov exponent appropriate for the subexponential growth
of connectivity fluctuations. Subsequently, we show how the
collapse of the diagonal structure into a single one represents
the scale-invariant property that governs the degree fluctua-
tions. Following this, we analyze the network expression for
the entropy rate of growth and find a spectrum of Pesin-like
identities. Finally, we show that all the previous results can
be generalized by considering winding numbers given by any
quadratic irrational. We discuss our results.

II. QUASIPERIODIC GRAPHS AT THE GOLDEN
RATIO ONSET OF CHAOS

The idea of extracting graphs from time series is hardly new
and over the past years several approaches have been proposed
and are currently developed [14-21]. The HV approach is
chosen here because of both its simplicity of implementation
and its capability to produce analytical results in closed form
for quantities that are generally difficult to determine. As we
see below this is corroborated for the present enterprise. For
the circle map it has been possible to determine previously the
relevant dynamical quantities at the transition to chaos only
for the golden route [22]. In contrast, in the present study
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FIG. 1. Six levels of the Farey tree and the periodic motifs of the graphs associated with the corresponding rational fractions p/g taken as
dressed winding numbers w in the circle map (for space reasons only two of these are shown at the sixth level). (a) In order to show how graph
inflationary process works, we have highlighted an example using different gray tones on the left side. See Ref. [8] for details. (b) First five
steps along the golden ratio route, b = 1 (thick solid line). (c) First three steps along the silver ratio route, b = 2 (thick dashed line).

it has been possible to generalize this result effortlessly for
an infinite number of routes to chaos associated with all the
quadratic irrational numbers.

The horizontal visibility (HV) algorithm is a general
method to convert time series data into a graph [3,4] and is
minimally stated as follows: assign a node i to each datum 6;
of the time series {6;};=1 », . of real data, and then connect any
pair of nodes 7, j if their associated data fulfill the criterion
0;,6; > 6, for all n such thati < n < j. We note that the HV
algorithm is related to the permutation entropy scheme [23]
in which the problem of the partition of symbols of a time
series is sorted out by simple comparison of nearest-neighbor
values within the series. The HV method addresses in a similar
way this problem, but in addition it makes use of comparisons
of values between neighbors that can be separated by long
distances, and consequently it stores additional information of
the series in the structure of the resulting HV graph.

The HV method has been applied [8] to trajectories
generated by the standard circle map [10,24-29] given by

K .
Orr1 = fax®) =0 +Q— E sin(276,), mod 1, (1)

representative of the general class of nonlinear circle maps:
Orr1 = fa.x(0) =6, + Q2+ K - g(f;), mod 1, where g(0) is
a periodic function that fulfills g(6 + 1) = g(@). This family
of maps exhibits universal properties that are preserved by the
HYV algorithm [8] so that without loss of generality we explain
below our findings in terms of the standard circle map, where
0,,0 < 6, < 1,is the dynamical variable, the control parameter
Q2 is called the bare winding number, and K is a measure of the
strength of the nonlinearity. The dressed winding number for
the map is defined as the limit of the ratio: w = lim,—_, o, (6; —
0p)/t. For K < 1 trajectories are periodic (locked motion)
when the corresponding dressed winding number w(£2) is a
rational number p/q and quasiperiodic when it is irrational.
For K = 1 (critical circle map) locked motion covers the entire
interval of 2 leaving only a multifractal subset of €2 unlocked.

The periodic time series of period ¢ that constitutes the
trajectory within an attractor with w(€2) = p/q is represented

in the HV graph by the repeated concatenation of a motif,
a number of which are shown in Fig. 1. The display of these
motifs in the Farey tree in Fig. 1 helps visualize the inflationary
process that takes place when the HV network grows at the
onset of chaos [8]. For illustrative purposes in Fig. 1 we show
the periodic motifs of the HV graphs that are associated with
the irreducible rational numbers p/q € [0,1], and we place
them on the Farey tree [10] along which routes to chaos take
place. A well-studied case is the sequence of rational approx-
imations of we = ¢! = (V/5—-1)/2=0.618034..., the
reciprocal of the golden ratio, which yields winding numbers
{w, = Fy_1/Fy}n=123.., where F, is the Fibonacci number
generated by the recurrence F, = F,_; + F,,_, with F =1
and F; = 1. The first few steps of this route can be seen in
Fig. 1(b).

The trajectories generated by the map with initial condition
6y = 1 at the golden ratio onset of chaos define a multifractal
attractor that forms a striped pattern of positions when plotted
in logarithmic scales, i.e., In6; vs Inz. See Fig. 3 in Ref. [22].
This attractor corresponds to the accumulation point Q. =
lim,_, o €2, of bare winding numbers €2, that characterize
superstable trajectories of periods F,,, n = 1,2,3,..., Qy =
0.606661 ... [22]. A sample of this time series is shown in
the top panel of Fig. 2. In the bottom panel of the same
figure we plot, in logarithmic scales, the outcome of the HV
method with use of the variable exp k(N), where k(N) is the
degree of node N in the graph generated by the time series
0, (that is, N =1t =1,2,3,...). Notice that the distinctive
striped pattern of the attractor [22] is present in the figure,
although in a simplified manner where the fine structure is
replaced by single lines of constant degree. The HV algorithm
transforms the multifractal attractor into a discrete set of
connectivities.

III. DIAGONAL STRUCTURE OF THE
CONNECTIVITY FLUCTUATIONS

It is clear from the bottom panel of Fig. 2 that the degree
k(N), and also exp k(N), fluctuates when N is increased step
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FIG. 2. (Color online) Top: Positions 6, as a function of ¢ for the first 55 data for the orbit with initial condition 6y= 1 at the golden ratio
onset of chaos (see text) of the critical circle map K = 1. The data highlighted are associated with specific subsequences of nodes (see text).
Bottom: Log-log plot of exp k(N) as a function of the node N for the HV graph generated from same time series as as for the upper panel but
for 3 x 107 iterations, where N = t. The distinctive band pattern of the attractor manifests through a pattern of single lines of constant degree.
The node positions of some node subsequences along diagonals is highlighted as guide lines to the eye. The inset shows the collapse of all

nodes in the graph into a single diagonal (see text).

by step via a deterministic pattern of ever increasing amplitude.
Notice also in the same panel the diagonal lines that are drawn
to connect sequences of node-connectivity (N, k) values; there
is a main diagonal followed by two other diagonals close to
each other. These (N,k) sequences fall asymptotically along
parallel straight lines, that begin after the initial steps from the
lowest values of the degree, k = 2 or k = 3, skip the absent
k = 4, and reach the values k = 5 or k = 6, and therefore the
sequences obey a power law with the same exponent. There
are many more sequences along same-slope diagonals, not
highlighted in the figure, arranged in close groups and that
trace all other possible connectivities k(N). See also Fig. 3 in
Ref. [22]. It is by examining the dependence of k(N) along
each member of this family of diagonals that the scaling and
entropic properties of the network are determined.

Thus, the (N,k) pairs in the graph define a structure in
diagonals d = 1,2,3, ..., and on each diagonal d we label the
particular nodes that lieonitasn = 0,1,2, .... Thus, N(n;d)
indicates the node/time for the nth position on diagonal d.
For example, in the first and main diagonal d = 1 in Fig. 2 we
have N(O;1) = 1= F|,N(1;1) =3 = F3,N(2;1) =8 = F5,
N@3;1) =21 = Fy,.... As can be seen in the top panel of
Fig. 2, the matching positions 6;, t = F,,4+; (highlighted)
grow monotonically when removed from the rest of the
time series, and according to the HV algorithm this implies

increasing values for the degrees of their corresponding
nodes. For d = 2 (the second diagonal in Fig. 2) N(0;2) = 2,
N(1;2) =6, N(2;2) =16, N(3;2) =42, .... All the nodes
N(n;d) can be expressed via the recurrence formula

N@QO;d) =mex{N(n;i): 1 <i <d,n >0},

N(1;d) =2N(0;d) +d, 2)
N@m;d)=3Nmn — 1;d) — N(n —2;d),
with d =1,2,... and n =0,1,2, ..., where the term mex

stands for MinimumEXclude value [30] that in this case means
the smallest value of N that has not appeared in the previous
diagonals. In Ref. [31] it is demonstrated that every integer N
appears only once under the above recurrence and this exotic
enumeration occurs in a natural way in the golden ratio route.
In fact, all the time labels n along the diagonals d = 1,2, ...
can be expressed as Fibonacci numbers F,fd) = Fﬁ)l + Frf‘g
with different initial conditions for each one of them,

Fy"=d, F”=NO;d), Nud)=Fs,. )

This recurrence is the consequence of the inflationary process
that takes place in the generation of graphs via the golden
ratio route [8]. Notice that this route goes through successive
approximants of the continued fraction [1,1,1,...] [see
Fig. 1(b)]. These approximants permanently alternate from
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FIG. 3. First substructures of the quasiperiodic graph associated
with the golden ratio route to chaos. The resulting patterns follow
from the universal order with which an orbit visits the positions of
the attractor. The quasiperiodic graph associated with the time series
generated at the onset of chaos (n — 00) is the result of an infinite
application of the inflationary process by which a graph at period
F,,+1 s generated out of graphs at periods F>, and F,,_; [8]. The first
few node/time steps along the first diagonal (d = 1) are highlighted.

larger to smaller to larger values around the golden number,
such that an approximant graph is generated by concatenation
of the two preceding approximant graphs alternating the order
of concatenation at each stage. This can be seen explicitly in
Fig. 3.

The recurrence formula in Eq. (2) can be solved leading to
an explicit expression convenient for our purposes. First, it can
be demonstrated [31] that

N(0;d) = [(d — D¢] + 1,
4)
N(n;d) = [N(n — 1;d)¢*| + 1.

Then, use of the approximation N(n;d) ~ N(n — 1; d)¢? and
of the definition C; = N(1;d) = ({[(d — Dp] + 1}¢?) + 1
yields the solution

N(n;d) = Cyp™ 2, n>1. (5)
This equation captures the values N(n; d) along the diagonals
starting always from n = 1, that, as we can observe in the
bottom panel of Fig. 2, are the nodes with connectivities
k =5 or k = 6. Furthermore, all the (parallel straight line)
diagonals can be collapsed into a single one by first redefining
the connectivities in each of them such that the degree is zero
in the initial position n = 1. To do this it is only necessary
to subtract 5 or 6 according to the given diagonal, with
the outcome that k =2n — 2 with n = 1,2,.... To get the
collapse it is sufficient to introduce the change of variable
N(n;d) = N(n;d)/Cy so that N(n;d) = ¢*'~2. We can see
the result in the inset in the bottom panel of Fig. 2. To keep
notation simple we make use of this variable and write k instead
of k from now on.

IV. GENERALIZED LYAPUNOV EXPONENTS AT THE
ACCUMULATION POINT OF THE GOLDEN RATIO
ROUTE TO CHAOS

We define now a connectivity expansion rate for the graph
under study. The formal network analog of the sensitivity to
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initial conditions in the map is [7]

explk(n)]
= ———— = explk(n)], (6)

explk(D] "
since k(1) = k(N(1;d)) = 0. That is, we compare the ex-
pansion exp[k(n)] with the minimal exp[k(1)] = 1 occurring
always at nodes at positions N(1; d).

From Eq. (5) we have

E(N(n;d))

1/Ing
K(N(n;d)) =2n —2 =In <—) , )
Cq
or
N\ /e
§(N(n;d)) = <C_) . ®)
4

The standard network Lyapunov exponent is defined as
.1
A= NII_I&NIHE(N), ©))

but since Eq. (8) indicates that the bounds of the fluctuations
of £(N) grow with N slower than exp N we have A = 0, in
agreement with the ordinary Lyapunov exponent at the onset
of chaos.

To get a suitable expansion rate that grows linearly with
the size of the network, we deform the ordinary logarithm
in In§(N) = k(N) into In; §(N) by an amount g > 1 such
that In, §(N) depends linearly on N, where In, x = (x!177 —
1)/(1 — g) and Inx is restored in the limit ¢ — 1 [32,33].
And through this deformation we define the generalized graph-
theoretical Lyapunov exponent as

1
by = 5 Ing E(NV), (10)

where AN = N(n;d) — Cy is the node distance or iteration
time duration between an initial node N (1;d) where d is fixed
and N(n;d) is the final node position. From Eq. (8) we obtain
(i)(lfq)/lntﬁ _1

)‘q (d) = =

= , D
N —Cy 1—g¢g Cilng

where the degree of deformation ¢ is found to be ¢ =1 —
In ¢. This way we have determined a spectrum of generalized
Lyapunov exponents A,(d), one for each diagonald = 1,2, . ..
in Fig. 2. The largest value is for the main diagonal, A,(1) =
(Ciln d))’l, and the others gradually decrease as d — oo.

V. ¢-DEFORMED ENTROPY EXPRESSION AND
PESIN-LIKE IDENTITIES

Having obtained the family of generalized Lyapunov
exponents A,(d) from a suitable expansion rate Ing §(N), we
proceed to analyze the entropic properties of the network.
At the transition to chaos for the golden ratio the HV
method creates a single network that represents many different
trajectories. Trajectories initiated at different positions of the
attractor produce networks related to each other by a node
translation equal to the number of iterations needed from
one initial position 951) to reach the second 952). The two
positions appear in the trajectory initiated at 8y = 0 at times
t; and 1, 0(()1) =6, and 952) = 6,,, and the node translation
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FIG. 4. Log-log plot of the distance between two nearby trajecto-
ries I, = |6, — /| close to 6y= 1, where [y= 10~*, measured at times
t =N(n;d), n=0,1,2, ..., along the main diagonal d =1 at the
transition to chaos for the golden, silver, and bronze routes (see text).

is SN = t, — t; > 0. This shift property can be visualized in
Fig. 2, and is implicated in the derivation of Eq. (10) for A, (d).
But also, trajectories initiated at positions off the attractor,
but sufficiently close to a position of this set, generate the
same network, as the HV method distinguishes differences in
trajectory positions only when they surpass threshold values.
There is a basic property of trajectories at the onset of chaos
that combines with the previous remark and that can be used to
describe the rate of entropy growth of the network with its size.
This property is that for a small interval of length [y with N/
uniformly distributed initial conditions around, say, 8y = 0, all
trajectories behave similarly, remain uniformly distributed at
later times, and follow the concerted pattern shown in Fig. 3 in
Ref. [22]. Studies of entropy growth associated with an initial
distribution of positions with iteration time ¢ of several chaotic
maps [34] have established that a linear growth occurs during
an intermediate stage in the evolution of the entropy, after an
initial transient dependent on the initial distribution and before
an asymptotic approach to a constant equilibrium value. In
relation to this it was found, both at the period doubling [11,12]
and at the quasiperiodic golden ratio [22] transitions to chaos,
that (i) there is no initial transient if the initial distribution is
uniform and defined around a small interval of an attractor
position, and (ii) the distribution remains uniform for an
extended period of time due to the subexponential dynamics.
In Fig. 4 we demonstrate this property by presenting the time
evolution of the distance between two nearby trajectories, say
the end points of the interval of length /; containing the N
uniformly distributed positions at time ¢, for the golden ratio
transition to chaos, and also for other quasiperiodic transitions
to chaos along other routes discussed below. But the time
evolution of the trajectory distances in Fig. 4 can also be that
between any pair of adjacent positions in the initial uniform
distribution and therefore the trajectories distribution remains
uniform after continued iterations.

We denote the above-referred distribution by m(f) =
1/W(t) where W(0) =1Iy/N is the number of cells that
cover the initial interval ly. As stated, all such trajectories

PHYSICAL REVIEW E 88, 062918 (2013)

give rise to the same HV graph, and at iteration times, say,
of the form t = N(n;d), n = 1,2,3,..., the HV criterion
assigns k = 2n — 2 links to the common node N(n;d). The
distribution 7 is defined in the map but we can look at its
n dependence, w(N(n;d)), if the scaling properties of the
network retain the scaling property of 7 in the map. We
can corroborate this and also that the entropic properties
derived from this distribution are connected to the network
Lyapunov exponents described in the previous section. The
scaling property of the network that yields the collapse of the
diagonals in Fig. 2 described above implies that the uniform
distributions 7 for the consecutive node-connectivity pairs
(N(n;d),2n —2) and (N(n + 1;d),2(n + 1) — 2) along the
same diagonal d scale with the same factors and this leads
us to conclude that the n dependence for these distributions is

n(N) =W, =exp(—2n +2). (12)
But since
N 1/In¢
W, = exp(2n —2) = (-) : (13)
Caq

the ordinary entropy associated with 7 grows logarithmically
with the number of nodes N, Si[x(N)]=InW; ~InN.
However, the ¢-deformed entropy

1
S, (N)] =1n, W, = l—[Wn'“’ —1]. (14)
-9
where the amount of deformation ¢ of the logarithm has the
same value as before, grows linearly with N, as W, can be
rewritten as

W, = equ[kqAN], (15)

with ¢ = 1 —In¢ and A,(d) = (C4In¢)~". Therefore, if we
define the entropy growth rate

1
hylm(N)] = ﬁsq[n(N)] (16)
we obtain
hylmw(N)] = Ay(d), (17

a Pesin-like identity at the onset of chaos (effectively one iden-
tity for each subsequence of node numbers, n = 1,2,3, ...,
given each by a value of d = 1,2,3, .. .).

VI. QUASIPERIODIC GRAPHS AT THE ONSET OF CHAOS
FOR QUADRATIC IRRATIONALS

We can generalize the above results for every quadratic
irrational in [0, 1] with pure periodic continued fraction rep-
resentation: d)b_l =[b,b,b,...] =[] (b =1,2,3, correspond
to the golden, silver, and bronze routes, respectively). These
irrationals are the solutions of the equation x> — bx — 1 =0,
where b is a natural number. The dressed winding num-
ber is NoW weo = lim, . oo[1 — (F,_1/F,)] = ¢, ' with F, =
bF,_ 1+ F,_», Fp =0, F|; = 1 and the route to chaos is the
infinite sequence of attractors with periods F,,, n = 1,2,3, ...
(notice now F,, is only a Fibonacci number when b = 1). The
first few steps of the silver route b = 2 can be seen in Fig. 1(c),
whereas Fig. 5 shows results for the attractor at the onset of
chaos via this route. Similarly to Fig. 2 for b = 1, in the top
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FIG. 5. (Color online) Top: Positions 6, as a function of ¢ for the first 70 data for the orbit with initial condition 6= 1 at the silver number
onset of chaos (see text) of the critical circle map K = 1. The data highlighted are associated with specific subsequences of nodes (see text).
Bottom: Log-log plot of exp k(N) as a function of the node N for the HV graph generated from same time series as as for the upper panel but
for 3 x 107 iterations, where N = t. The distinctive band pattern of the attractor manifests through a pattern of single lines of constant degree.
The node positions of some node subsequences along diagonals are highlighted as guide lines to the eye.

panel of Fig. 5 is the time series for the first 70 iteration
times, while in the bottom panel of the same figure we plot,
in logarithmic scales, the outcome of the HV method with use
of the variable exp k(). As can be observed, the networks
for the two cases are qualitatively similar, although there are
differences, mainly the absence of even connectivities when
k > 5.

This absence can be verified by inspection of the degree dis-
tribution Py, (k) for the graphs at the woo = ¢, I"accumulation
points [8]

¢, k=2,
1—2¢;" k=3
Poo(k) = ’ (18)
(1—¢, )5 ™" k= bn+3, neN,
0 otherwise,

where we can see explicitly which values of k are not present
for a given value of b. This and other connectivity properties
can be worked out from the inflation process of the graphs.
See Fig. 6.

We will center our attention on the first diagonal d = 1.
For every b, the node positions on the first diagonal, n =
1,2,3,..., are

N(n;1) = Fo, 19)

dn—l d“

dn-l d"

FIG. 6. First substructures of the quasiperiodic graph associated
with (a) the silver number b = 2 and (b) the bronze number b = 3
routes to chaos. The resulting patterns follow from the universal
order with which an orbit visits the positions of the attractors. The
quasiperiodic graph associated with the time series generated at
the onset of chaos (n — 00) is the result of an infinite application of
the inflationary process by which a graph at period F», is generated
out of graphs at periods F5,_, and F,,_; [8].
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that with the use of the generalized Binet formula

1 -1\" oy
Fn=—¢"—(—)}%— (20)
N2 +4[ "\ Vhr + 4
can be written as
1 1
N(Vl; 1) ~ ¢2n — ¢2¢2n72 =C ¢2n74’
N AN~ o
(2D
where the position n = 1 is
1
N D)=Fh~ ——¢> =C,. (22)
2 m¢b b

We note that the connectivity of the first node is k(n = 1) =
b+ 3 and in general k(n) =b+3+2b(n —1), n > 2. As
before we redefine the connectivities such that the degree
is zero at the initial position n = 1, k(n) = 2b(n — 1), n =
1,2,3, . ... Following the same procedure as in Sec. IV, from
Eq. (21) we have

1/Ing,
K(N(n:1)) = 2b(n — 1) = In <—> , (23)
Cp

and use of it in the sensitivity £(N(n; 1)) = exp[k(n)] yields

N 1/Ingy
§(N(n; 1) = <C_b) . (24)

Since all the features required for the ¢ deformation described
in Sec. IV are present for general b, we obtain for the
generalized Lyapunov exponent the expression

(ﬁ)(lfq)/ln% 1

1 C

N—GC, 1—¢ T Cyingy’

where g = 1 — In ¢,,. Likewise, the contents of Sec. V can also
be reproduced for general b with the result that

hln(N)] = 2 (1). (26)

M) = (25)

VII. SUMMARY AND DISCUSSION

At the quasiperiodic onset of chaos the HV method leads to
a self-similar network with a structure illustrated by the related
periodic networks obtained from the sequence of attractors of
finite periods along the route to chaos [8]. Under the HV
algorithm many nearby trajectory positions lead to the same
network, since only when the values of trajectory positions
cross a threshold the corresponding node increases its degree
with new links. (See the succinct definition of the algorithm
and the top panel in Fig. 2.) Therefore trajectories off the
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attractor but close to it transform into the same network
structure. As we have seen the fluctuations of the degree
capture the anomalous but basic behavior of the fluctuations
of the sensitivity to initial conditions at the transition to
chaos [22]. The graph-theoretical analog of the sensitivity was
identified as exp(k) while the amplitude of the variations of
k grows logarithmically with the number of nodes N. These
deterministic fluctuations are described by a discrete spectrum
of generalized graph-theoretical Lyapunov exponents that are
shown to relate to an equivalent spectrum of generalized
entropy growth rates, yielding a set of Pesin-like identities.
This behavior is similar to what was observed for the case
of the more straightforward period-doubling accumulation
point [7]. The definitions of these quantities involve a scalar
deformation of the ordinary logarithmic function that ensures
their linear growth with the number of nodes. Therefore the
entropy expression involved is extensive and of the Tsallis
type with a precisely fixed value of the deformation index
q, g =1—In¢,, where ¢, is the inverse of the irrational
(dressed) winding number.

We have considered special families of time series and
converted each into a network; each family consists of the
trajectories associated with an attractor at the quasiperiodic
transition to chaos of circle maps. The attractors studied are
defined by a winding number given by a quadratic irrational
or, equivalently, by a pure periodic continued fraction. Each
winding number singles out a specific route to chaos. Among
these we described in some detail the so-called golden route,
but also we have shown results for those known as the silver
and bronze routes [8]. See Figs. 1 and 4. The HV algorithm
proved to be capable of generating a single network that
contains the scaling and entropic properties of the trajectories
associated with each attractor. The results presented here are
of the same kind as those obtained for the period-doubling
route to chaos [7] suggesting that the HV networks associated
with the onset of chaos are useful for describing the universal
properties at these special systems. The Pesin identity is
a reflection of a basic connection between BG statistical
mechanics and chaos so that our results provide elements
for an analogous connection for the case of nonergodic
and nonmixing dynamics at vanishing ordinary Lyapunov
exponent.
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