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Clustering in delay-coupled smooth and relaxational chemical oscillators
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We investigate cluster synchronization in networks of nonlinear systems with time-delayed coupling. Using a
generic model for a system close to the Hopf bifurcation, we predict the order of appearance of different cluster
states and their corresponding common frequencies depending upon coupling delay. We may tune the delay
time in order to ensure the existence and stability of a specific cluster state. We qualitatively and quantitatively
confirm these results in experiments with chemical oscillators. The experiments also exhibit strongly nonlinear
relaxation oscillations as we increase the voltage, i.e., go further away from the Hopf bifurcation. In this regime,
we find secondary cluster states with delay-dependent phase lags. These cluster states appear in addition to
primary states with delay-independent phase lags observed near the Hopf bifurcation. Extending the theory on
Hopf normal-form oscillators, we are able to account for realistic interaction functions, yielding good agreement
with experimental findings.
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I. INTRODUCTION

The field of nonlinear dynamics in coupled systems has seen
a huge increase in interest in recent years [1–5]. The systems
range from a few coupled elements to complex networks.
Collective dynamics may arise in various patterns, of which
in-phase (or zero-lag) synchronization is the most prominent.
Traveling waves [6,7] and cluster or group synchronization
[8–10] are other examples. In particular, during cluster syn-
chronization, parts of a network synchronize with zero lag, but
with a nonzero phase-lag between different clusters. Interest
in cluster synchrony has led to significant theoretical [8–13]
and experimental [14–18] results.

A recent theoretical study [19] discussed cluster synchro-
nization in delay-coupled networks of Hopf normal-form
oscillators (also known as Stuart-Landau oscillators), which
are given by a generic model of a Hopf bifurcation. Depending
upon the delay time, different cluster states exist and are stable.
These intervals overlap leading to multistable regimes; i.e.,
the specific state that is realized is determined by the initial
conditions. In Ref. [19] it was shown that the phase of a
complex coupling constant can be used to select a desired
cluster state.

Combining theoretical analysis with experiments, chemical
oscillators can be mathematically described by very simple
models like the Kuramoto phase oscillator model or the Stuart-
Landau model in certain regimes of operation. In the present
paper, we study a system of four chemical oscillators coupled
in a unidirectional ring.

We consider two regimes of operation: (1) For low-bias
voltages, the elements show smooth sinusoidal oscillations and
we are able to verify the results of Ref. [19] experimentally.
The theory not only correctly predicts the interval where
each cluster state exists but also quantitatively the common
frequency that arises depending upon the delay time and the
particular cluster state. We show that the time delay can be
used to ensure the existence and stability of a desired cluster
state, instead of the phase of a complex coupling constant,
which is unavailable in the experiment. (2) For a higher bias

voltage, the oscillations become of the strongly nonlinear
relaxational type. In this regime, cluster synchronization
with secondary cluster states, i.e., unequal phase differences
between the clusters, can occur in addition to symmetric
cluster states. We introduce an extended version of the Stuart-
Landau model, based on experimentally measured interaction
functions. Linear stability analysis and numerical continuation
allow for a theoretical treatment of these states.

This paper is organized as follows: In Sec. II we present a
short summary of relevant results from Ref. [19]. We introduce
the theoretical model and carry out the analysis that allows us
to predict intervals of existence and common frequencies of
the different cluster states. The experiment using chemical
oscillators is described in detail in Sec. III. Section IV deals
with the corresponding experimental results for the smooth
oscillators. Having identified limitations in the existing theory,
we adapt the theoretical model for more general use and apply
it again to the chemical oscillators in the relaxational regime
using a higher bias voltage in Secs. V and VI. Details of the
extended theory are given in Sec. VI A. Finally, we conclude
with Sec. VII.

II. THEORETICAL MODEL: SINUSOIDAL
OSCILLATIONS

In this section we give a short summary of the results ob-
tained in Ref. [19], where cluster synchronization and stability
in a network of N Stuart-Landau oscillators were investigated.
We focus on the case that is relevant to the considered
experimental setup (see Sec. III), namely a topology given by
a unidirectionally coupled ring and the case of real coupling
constant. In Refs. [19] and [20] more general topologies and
complex coupling constant were discussed as well.

The dynamics of the Stuart-Landau oscillators in a unidi-
rectionally coupled ring is given by

żj = f (zj ) + Kz(j+1) mod N (t − τ ), (1)

with zj = rj e
iϕj ∈ C, j = 1, . . . ,N , time delay τ , and cou-

pling strength K . For notational convenience, we will drop
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the modulus N in the indices in the following, i.e., zj+1 ≡
z(j+1) mod N . Note that in Ref. [19] a diffusion-like coupling was
used. There, the coupling term reads zj+1(t − τ ) − zj instead
of just zj+1(t − τ ). Nevertheless, this alters the involved
equations only slightly so that we only have to adapt the
analysis of Ref. [19] at a few points.

The local dynamics of each element is given by the normal
form of a supercritical Hopf bifurcation:

f (z) = [λ + iω − (1 + iγ )|z|2]z, (2)

with real constants λ, ω �= 0, and γ . This class of systems arises
naturally as a generic expansion in center manifold coordinates
near a Hopf bifurcation, and therefore its dynamics is generic
for many systems close to the Hopf bifurcation.

In polar coordinates with radius and phase variables the
system Eq. (1) reads as follows:

ṙj = (
λ − r2

j

)
rj + Krj+1(t − τ ) cos[ϕj+1(t − τ ) − ϕj (t)]

(3a)

ϕ̇j = ω − γ r2
j + K

rj+1(t − τ )

rj

sin[ϕj+1(t − τ ) − ϕj (t)].

(3b)

Cluster states with a common amplitude and equal phase
lags between neighboring nodes can be described by rj ≡
r0,m and ϕj = �mt + j�ϕm with collective frequency �m

and �ϕm = 2πm/N . Such states we call primary states. In
contrast, the nodes of secondary states as discussed in Sec. VI
are still characterized by a common collective frequency
but different amplitudes and phase lags. The integer m =
0, . . . ,N − 1 labels the specific states: In the case of four
nodes, m = 0 corresponds to zero-lag synchronization, m = 1
is the splay state, m = 2 the two-cluster state, while m = 3
labels the reverse splay state (see below). Applying this notion
to Eqs. (3) yields the following set of transcendental equations
for the collective amplitude r0,m and frequency �m of the
m-state:

r2
0,m = (λ + K cos 
m) (4a)

�m = ω − γ r2
0,m + K sin 
m, (4b)

where 
m = �ϕm − �mτ . Note that �m only depends on r0,m

if γ �= 0. Thus, the parameter γ couples the frequency to the
oscillation amplitude (anisochronicity).

Considering small deviations δrj and δϕj , we obtain rj =
r0,m(1 + δrj ), ϕj = �mt + j�ϕm + δϕj , ξj = (δrj ,δϕj )T .
This leads to a variational equation for the m-cluster state:

ξ̇ = IN ⊗ (J0,m − KRm)ξ + K(A ⊗ Rm)ξ (t − τ ), (5)

with the 2N -dimensional vector ξ = (ξ1, . . . ,ξN )T , the N × N

identity matrix IN , and matrices Rm = ( cos 
m − sin 
m

sin 
m cos 
m

)
, J0,m =

( −2r2
0,m 0

−2γ r2
0,m 0

)
. The adjacency matrix A describes the unidirec-

tional ring topology: aij = 1 for j = i + 1 and zero other-
wise. Diagonalizing A, we arrive at the block-diagonalized
variational equation

ζ̇k(t) = J0,mζk(t) − KRm[ζk(t) − νkζk(t − τ )], (6)

where νk = e2ikπ/N , k = 0,1, . . . ,N − 1, are the eigenvalues
of A. Note that Eq. (6) can be considered as a master stability

τ
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u
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FIG. 1. (Color online) Collective frequency �m versus the time
delay τ obtained as numerical solutions of Eqs. (4). Stable solutions:
Gray (blue) triangles: in-phase state. Black (green) circles: splay
state. Gray (orange) diamonds: two-cluster state. Black (red) squares:
reverse splay state. Blank curves refer to unstable solutions. The
stability is determined via Eq. (7). Parameters: λ = 1.1025, ω =
3.4228, γ = 0, K = 0.3, N = 4.

equation [21] for Eq. (1). Here, the coefficient matrices J0,m

and Rm do not depend on time. Hence, the Floquet exponents
of the synchronized periodic state are given by the eigenvalues
� of the characteristic equation

det {J0,m − �I2 + K(−1 + e2ikπ/N−�τ )Rm} = 0. (7)

If for all k = 0, . . . ,N − 1 all Floquet exponents (except the
one relating to the Goldstone mode) have a negative real part,
the cluster state with index m will be stable.

Figure 1 depicts the common frequencies of all four
possible states in a unidirectionally coupled ring of four el-
ements. Symbols and blank curves refer to stable and unstable
solutions, respectively, where the stability is calculated via the
characteristic equation (7). It can be seen that for most values
of τ multistability between different states exists, but that all
four cluster states do not necessarily occur for every value of
τ . However, it is always possible to choose the delay in such a
way that the desired m-state exists with a frequency �m. Using
the delay time

τm = 2πm

N�m

, (8)

Eq. (4b) holds for 
m = 0, so that �m = ω − γ (λ + K). From

m = 0 we also have Rm = I2, meaning that Eq. (7) simplifies
to:

[−2r0,m + K(−1 + e2ikπ/N−�τ ) − �]

× [K(−1 + e2ikπ/N−�τ ) − �] = 0. (9)

The dominant Floquet exponent is always obtained by setting
the second factor to zero: � = K(−1 + e2ikπ/N−�τ ). The
solution � of this equation will always have a negative real
part [19]. Note that the choice τm only guarantees the existence
and stability of the m-state, but does not ensure monostability.
In fact, for the parameter choice of Fig. 1 and generally for
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large enough delay times, multistability clearly persists for
τ = τm.

III. EXPERIMENTAL SETUP

The experimental setup is described in the following. Ex-
periments are performed in an electrochemical cell consisting
of four 1-mm-diameter Ni working electrodes (99.98% pure),
a Pt mesh counter electrode, and Hg/Hg2SO4/K2SO4 (sat)
reference electrode, with a 3M H2SO4 electrolyte, shown in
Fig. 2(a). The four electrodes are electrically coupled in a uni-
directional ring. The cell is enclosed in a jacketed glass vessel
maintained at a temperature of 11◦C. An ACM Instruments
multichannel potentiostat is used to set the potentials V0 of
the electrodes such that they undergo transpassive dissolution.
A resistor, Rp = 650 �, is attached to each electrode, causing
the dissolution currents Ij to oscillate [22]. These resulting
electrodissolution currents are measured at 250 Hz using zero
resistance amperemeters (ZRAs) attached to a real-time data
acquisition system.

Four oscillators with similar frequencies are selected from
an array of 64 oscillators. The character of the oscillators
may be varied by the choice of applied voltage. Experiments
are performed at two voltages: a low voltage to induce nearly
harmonic oscillations, which can be modeled by Stuart-Landau
oscillators (cf. Sec. IV), and a higher voltage exhibiting higher
harmonics and more complex behavior (cf. Sec. VI). We will
use the terms smooth and relaxation oscillations, respectively.
Negligible intrinsic electrical interactions exist between the
uncoupled oscillators [23]. The startup or shutdown of an
oscillator does not alter the behavior of the other oscillators.
Furthermore, the oscillator dynamics has no interdependence
when oscillators are functioning in the uncoupled state.

Interactions are introduced using real-time coupling of the
form

Vj (t) = V0 + δVj (t), (10)

where δVj are the changes in the circuit potentials of the j th
elements due to the feedback. These feedback voltages are
given by

δVj (t) = K

N∑
n=1

ajn[Vn(t − τ ) − RpÎn(t − τ )], (11)

where Rp = 650 � is the channel resistance, K is the fixed
overall coupling gain, and τ denotes the coupling time delay,
which is realized by the real-time data acquisition system
combined with the multichannel potentiostat. În are the
normalized currents measured by the ZRAs.

To obtain this quantity, the measurements of the dissolution
current In are first scaled such that the mean value of each chan-
nel Īn is removed as an offset. Then, we perform normalization
of the amplitude of the oscillation Imax

n relative to the mean
amplitude of the electrode ensemble N−1 ∑N

n=1 Imax
n . ajn is

an element of the adjacency matrix A, which describes the
structure of the coupling. We apply unidirectional coupling on

FIG. 2. (Color online) (a) Experimental apparatus with mul-
tichannel addressable feedback, Rp is the channel resistance of
650 �. (b) Electrochemical dissolution time series showing smooth
oscillators at a potential of V0 = 1.105 V. (c) Time series of relaxation
oscillators at V0 = 1.2 V. ZRA: zero resistance amperemeter.

a four-member ring with the adjacency matrix

A =

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎠ . (12)

This coupling scheme is implemented via the multichannel
potentiostat (see Fig. 2).

We calculate the dynamical variables (amplitudes rj and
phases ϕj ) from the ZRAs’ experimental measurement of the
electrodissolution current of each oscillator (see Fig. 2). From
these currents, the phase of each oscillator is found by peak-
to-peak linear interpolation, where the peak is defined as 0 or
2π [24]. From the phases, we can then calculate the average
frequencies of the oscillators. The amplitudes are measured as
half of the difference between the peak and trough value of the
electrodissolution current, giving one data point per period.

The parameters λ and ω that belong to the theoretical
model can be identified by the dynamics of a single uncoupled
oscillator [see Figs. 2(b) and 2(c)]. λ must be set such that
the amplitude r is equal to

√
λ, while ω should be chosen

such that the period of oscillation must be equal to 2π/ω. In
the experiments ω is not identical for each oscillator, but the
oscillators are chosen so that the values of ω are very close to
each other. As such ω is simply taken to be the average (i.e.,
ω = N−1 ∑N

j=1 ωj ). Furthermore, we let γ be equal to zero,
i.e., the frequency does not depend on the radius.
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IV. SMOOTH OSCILLATIONS

In this section we consider the case of smooth sinusoidal
oscillations. The four electrodes were held at a voltage of V0 =
1.105 V. This is slightly above a Hopf bifurcation that occurs
at V0 ≈ 1.05 V. Hence the oscillations are nearly harmonic [cf.
Fig. 2(b)]. Although visually the time series is not perfectly
sinusoidal, in practice we can model the oscillators’ phase
dynamics as linear [25].

The four oscillators operate at ω1 = 3.424 ± 0.063 rad/s,
ω2 = 3.393 ± 0.069 rad/s, ω3 = 3.418 ± 0.063 rad/s, and
ω4 = 3.456 ± 0.057 rad/s. The frequency range is due to the
slow drift of the natural frequencies of the oscillators.

Figure 3 depicts the measured and numerically calculated,
stable states of the compound system depending upon the
time delay in Figs. 3(a) and 3(b), respectively. In Fig. 3(b),
lines are calculated from Eqs. (4) and points are based on
solution continuation of Eqs. (3) using DDE-BIFTOOL. In order
to resolve the multistability present in the coupled system
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FIG. 3. (Color online) Collective frequency �m versus the time
delay τ . (Red) squares, (blue) triangles, and (green) circles represent
a reverse splay state, an in-phase state, and a splay state, respectively.
(a) Experimental data, V0 = 1.105 V, K = 0.15. The arrows indicate
an increase or decrease of τ during the measurement. (b) Solution
continuation of Eqs. (3) using DDE-BIFTOOL (symbols) and numerical
solutions of Eqs. (4) (lines). Parameters as in Fig. 1.

we slowly increase the time delay [shown by arrows in
Fig. 3(a)] up to τ = 1.25 × (2π/ω) at which point we perform
a down-ramping. During the up-sweep, τ is increased from
0.80 × (2π/ω) to 1.25 × (2π/ω) in increments of 0.05 ×
(2π/ω). The system is allowed to reach a stationary state at
each value of τ . The qualitatively different states are marked
by the following symbols: red squares represent the reverse
splay state, blue triangles represent the in-phase state, and
green circles represent the splay state.

We start at τ = 0.8 × (2π/ω) with a reverse splay state,
which is characterized by a phase difference of 3π/2 between
two subsequent oscillators. Increasing to τ = 0.95 × (2π/ω),
we obtain in-phase synchronization with ϕ1 = ϕ2 = ϕ3 = ϕ4.
For larger τ values, the system exhibits a splay state; that is, the
phase difference is π/2 between two subsequent oscillators.

During the down-sweep, the time delay is decremented
by 0.05 × (2π/ω) until τ = 0.75 × (2π/ω). We observe the
same states in the down-sweep as the up-sweep. Each time τ

is decremented, the frequency increases slightly, except when
a cluster transition occurs and the frequency abruptly jumps
to a lower value. The system maintains the splay state until
transitioning to the in-phase cluster state and then the reverse
splay state. The transitions are also shown by arrows for the
up- and down-sweep. Note that they occur at different time
delays depending upon the direction of the time delay sweep.
The coexistence of several cluster states at a given value of τ ,
which depends upon the prior state of the system, demonstrates
hysteresis. In Fig. 3(a), showing the experimental data, the
triangles representing the in-phase cluster state are slightly
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FIG. 4. (Color online) Experimental time series (top) and
schematic diagram (bottom) of an in-phase state (a), a two-cluster
state (b), a reverse splay state (c), and a splay state (d) as shown in
Fig. 3(a). The schematics show phase relations between oscillators
on the phase ring. Oscillator colors in the schematic correspond to
the colors in the times series: ϕ1 is shown in blue (solid), ϕ2 is black
(dashed), ϕ3 is red (dotted), and ϕ4 is green (dot-dashed). Parame-
ters: V0 = 1.105 V, K = 0.15; time delays: (a) τ = 1.05 × 2π/ω,
(b) 0.5 × 2π/ω, (c) 1.2 × 2π/ω, and (d) 0.8 × 2π/ω with ω =
3.4228 rad/s as in Fig. 1, respectively.
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nonidentical near τ = 1 × (2π/ω); this is due to drift in the
natural frequencies during the course of the experiment.

Figures 4(a)–4(d) illustrate the qualitative differences be-
tween the cluster states seen in Fig. 3. Next to the time series,
corresponding schematic diagrams are also depicted. Note that
the two-cluster state [Fig. 4(b)] does not occur in the range of
τ shown in Fig. 3.

We see that the cluster states and hysteresis can be
modeled by the Stuart-Landau oscillator as given in Eqs. (3).
The numerical results, including simulations as well as path
continuation using DDE-BIFTOOL [26,27], shown in Fig. 3(b)
closely match the experimental results. The only discrepancy
seen is that the branches of each cluster state in the experiments
seem to be stable for a shorter range of τ , leading to an
earlier jump to another cluster state. This is probably due to
experimental noise and small heterogeneities in the oscillators’
parameters.

V. INTERACTION FUNCTIONS

If we increase the voltage to V0 = 1.2 V, the profile
of the oscillations deforms from a sinusoidal to a strongly
nonlinear relaxation oscillation. One could use a nonlinear
time transformation to map the relaxation oscillations back to
the sinusoidal model and thus still employ the Stuart-Landau
model for a theoretical description. However, this nonlinear
time transformation will also affect the coupling, which no
longer can be assumed to be sinusoidal. Instead we rewrite
Eqs. (3) in a more general form:

ṙj = (
λ − r2

j

)
rj + Krj+1(t − τ )Hr [ϕj+1(t − τ ) − ϕj (t)]

(13a)

ϕ̇j = ω + K
rj+1(t − τ )

rj

Hϕ[ϕj+1(t − τ ) − ϕj (t)], (13b)

where Hr and Hϕ are coupling functions, also called interac-
tion functions, which can be obtained experimentally.

To determine Hr and Hϕ , we conduct a separate but related
experiment according to the methods described in Refs. [24,28,
29]. We select two oscillators at the same voltage with slightly
different natural frequencies and couple them such that they
interact but do not phase lock. We measure the time-dependent
radius rj [ϕi(t) − ϕj (t)] and the frequency �j [ϕi(t) − ϕj (t)]
of oscillator j as a function of phase difference �ϕ = ϕi(t) −
ϕj (t). We find that rj and �ϕ are approximately constant over
one oscillation period. Following Ref. [28] with stationary
radii rj , we use

Hϕ(�ϕ) = −2π�Tj

T 2
j

1

K
, (14)

where �Tj denotes the deviation from the natural period Tj .
We choose K equal to the maximum of the first factor. This
yields max�ϕ H (�ϕ) = 1 as shown in Figs. 5(a) and 5(b).
Setting ṙj = 0 in Eq. (13a), we obtain

Hr (�ϕ) = 1

K
[r(�ϕ)2 − λ], (15)

where
√

λ is experimentally measured as the time average of
r over the course of the experiment.
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FIG. 5. (Color online) Phase interaction function Hϕ in panels
(a) and (b) for V0 = 1.105 V and V0 = 1.2 V, respectively; radial
interaction function Hr in panels (c) and (d) for V0 = 1.105 V and
V0 = 1.2 V, respectively. Experimentally obtained data is shown in
gray (red) dots. A five-term Fourier fit from evenly sampled data is
shown by the black curve.

Figure 5 shows the two interaction functions Hr and Hϕ for
the low voltage V0 = 1.105 V in Figs. 5(a) and 5(c) and for the
higher voltage V0 = 1.2 V in Figs. 5(b) and 5(d). The (black)
curve is a fifth-order Fourier fit from evenly sampled data.

For V0 = 1.105 V, the radial interaction function remains
approximately constant and the phase interaction function
exhibits a sinusoidal shape. Thus, we have Hϕ(�ϕ) = sin(�ϕ)
as considered in Eqs. (3).

At this point, we also see a possible cause for the difference
between Figs. 3(a) and 3(b). The numerically calculated
frequencies coincide with the use of an appropriate phase
interaction function. Since we have assumed γ = 0, the radial
interaction function does not influence the frequencies, but
it does influence the stability of the particular state. The lack
of an appropriate radial interaction function might explain
the difference between the stability of the states shown in
Figs. 3(a) and 3(b).

For V0 = 1.2 V, both interaction functions have a more
complex structure. In order to take their complex shapes into
account in our theory, we approximate Hr and Hϕ by Fourier
series up to the fifth order. How well this approach works is
the topic of the following section.

VI. RELAXATION OSCILLATIONS

In this section, we present the results for operation at a
higher voltage compared to Sec. IV, that is, further away
from the Hopf bifurcation. We fix the voltage of the system
at V0 = 1.2 V, such that the electrode current oscillates in a
relaxational fashion. We perform experiments similar to the
one in Sec. IV with four oscillators coupled in a unidirectional
ring but consider a different range for the time delay.

The oscillators for these experiments now have different
intrinsic frequencies compared to Sec. IV. For the experiment
yielding the results seen in Fig. 6 the four oscillators operate at

062915-5



KAREN BLAHA et al. PHYSICAL REVIEW E 88, 062915 (2013)

ω1 = 2.421 ± 0.068 rad/s, ω2 = 2.445 ± 0.088 rad/s, ω3 =
2.407 ± 0.069 rad/s, and ω4 = 2.449 ± 0.112 rad/s. During
the experiment yielding the results seen in Fig. 8, they oper-
ate at ω1 = 2.495 ± 0.109 rad/s, ω2 = 2.510 ± 0.124 rad/s,
ω3 = 2.448 ± 0.094 rad/s, and ω4 = 2.515 ± 0.097 rad/s.

For the chosen voltage, the interaction functions have
a more complex shape [cf. Figs. 5(b) and 5(d)] and are
approximated by fifth-order Fourier series. Therefore, we
describe the experiment by the following set of delay-coupled
Stuart-Landau equations:

ṙj = (
λ − r2

j

)
rj + K

N∑
n=1

ajnrn(t − τ )

(
5∑

l=0

al,r cos{l[ϕn(t − τ ) − ϕj ]} + bl,r sin{l[ϕn(t − τ ) − ϕj ]}
)

, (16a)

ϕ̇j = ω + K

N∑
n=1

ajn

rn(t − τ )

rn

(
5∑

l=0

al,ϕ cos{l[ϕn(t − τ ) − ϕj ]} + bl,ϕ sin{l[ϕn(t − τ ) − ϕj ]}
)

, (16b)

τ ( 2π
ω )
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FIG. 6. (Color online) Dynamics in dependence on the time delay
τ . (a) Experimental data, V0 = 1.2 V, K = 0.10. The starting state is
marked by a black arrow. The increasing and decreasing of τ during
the experiment are shown with arrows. (b) Solutions of Eqs. (16)
using the continuation tool DDE-BIFTOOL (markers) and numerical
solutions of Eqs. (4) (lines). In-phase, two-cluster, compressed splay,
reverse splay, compressed reverse splay, and open two-cluster states
are represented by upward-triangles, diamonds, open circles, squares,
open squares, and downward-triangles, respectively. The interaction
functions Hr and Hϕ are chosen as in Eqs. (16) and Table I.
Parameters: λ = 2.890, K = 0.189, and ω = 2.430.

where the Fourier coefficients al,r , bl,r , al,ϕ , and bl,ϕ are
determined by a fit to the experimentally obtained interaction
functions Hr and Hϕ . The coefficients are given in Table I.
They are normalized such that max |Hϕ| = 1. The coupling
strength K still represents the overall coupling strength.

The relaxation oscillators exhibit more complicated cluster
and hysteresis behavior as depicted in Figs. 6(a) and 6(b) for
experimental and numerical data, respectively. For the latter
we use the continuation software DDE-BIFTOOL similar to the
case of smooth oscillators. The detected states agree very well
with the experimental results in Figs. 6(a), where the black
arrow marks the starting configuration. Note that only stable
solutions relevant to the experimental results are shown. For
the comparison between Figs. 6(a) and 6(b), it must also be
noted that while the natural frequency ω varies slowly during
the experiments due to drift, it is kept constant in our numerical
calculations.

We find a sequence of different cluster states as the time
delay τ is increased or decreased. The primary states discussed
earlier in Fig. 4 (in-phase, two-cluster, reverse splay, and
splay states) are also present in the case of the relaxational
oscillators. In the current regime of operation additional
qualitatively different states are possible. These secondary
states are investigated in the following.

The relaxation oscillators still demonstrate hysteresis as
τ is increased and decreased. In a population of smooth

TABLE I. Fourier coefficients used in Eqs. (16).

Radial interaction function

a1,r = −0.97948, b1,r = −1.82354
a2,r = 0.36110, b2,r = −0.07963
a3,r = 0.29724, b3,r = 0.54854
a4,r = 0.05846, b4,r = 0.09098
a5,r = −0.11558, b5,r = −0.09251
a0,r = 0.45579
Angular interaction function
a1,ϕ = −0.00610, b1,ϕ = 0.31622
a2,ϕ = −0.35811, b2,ϕ = 0.29020
a3,ϕ = −0.25341, b3,ϕ = −0.05585
a4,ϕ = −0.13541, b4,ϕ = 0.00799
a5,ϕ = −0.07183, b5,ϕ = 0.00425
a0,ϕ = 0
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oscillators, each cluster state persists over a range of roughly
0.25 × (2π/ω) of delay after it first occurs, as in Fig. 3. With
relaxation oscillators, each cluster state persists over a range
of roughly 0.125 × (2π/ω), as in Fig. 6(a). The relaxation
oscillators tend to alternate between primary and secondary
states as τ is varied. The primary states appear near multiples
of 0.25 × (2π/ω) delay. As τ is ramped, the phase differences
between subsequent elements might vary. As a consequence
there could be different phase differences between subsequent
elements. This gives rise to the secondary states that appear in
between the primary states.

For examples of secondary states, Fig. 7 shows several ex-
perimental time series and corresponding schematic diagrams.
Figure 7(a) depicts a compressed splay state. As in the splay
state, we have ϕ4 − ϕ3 = ϕ3 − ϕ2 = ϕ2 − ϕ1, but these phase
differences are different from a multiple of π/2 (marked by x in
the schematic diagram). There also exists a reverse compressed
splay state as shown in Fig. 7(b). Another secondary state is
the open two-cluster state displayed in Fig. 7(c). For this state,
the phase differences ϕ3 − ϕ1 and ϕ4 − ϕ2 are equal, but the
two clusters have a phase lag between them.

As expected from the experiment [cf. Fig. 6(a)], the open
two-cluster states are located between the two-cluster branch
of solutions and the reverse splay branch in numerical studies
[cf. Fig. 6(b)]. Likewise, the compressed reverse splay states
are located between the reverse splay branch and the in-phase
branch and the compressed splay states are located between
the in-phase branch and the next splay branch (not shown).

The sequence of cluster states in Fig. 6 may seem somewhat
arbitrary at first inspection. For example, when τ ≈ 0.875 ×
(2π/ω) and the branch of compressed reverse splay states
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FIG. 7. (Color online) Experimental time series (top) and
schematic diagram (bottom) for (a) a compressed splay state,
(b) reverse compressed splay state, (c) open 2-cluster state, (d)
compressed 2-cluster state. For the relaxation oscillators, these are in
addition to the possible states seen in Fig. 3. Parameters: V0 = 1.2 V,
K = 0.10; time delays: (a) τ = 1.11 × 2π/ω, (b) 0.82 × 2π/ω,
(c) 0.59 × 2π/ω with ω = 2.43 rad/s as in Fig. 6 and (d) 0.68 ×
2π/ω with ω = 2.492 rad/s as in Fig. 8.

becomes unstable, why does the system transition to an in-
phase state when a two-cluster state is also stable at this value
of τ according to Fig. 6(b)? When we examine an example time
series of the compressed reverse splay state in Fig. 7(b), we can
see that the phase differences of this state are much closer to
those of an in-phase state than to those of a two-cluster state.
The experimental states observed depend upon both initial
conditions and system parameters, as is typical for systems
with multistability.

Having the set of primary states in mind, one might ask
if there is also a scenario of a compressed two-cluster state,
when ϕ1 = ϕ3 and ϕ2 = ϕ4, but the phase differences between
the two clusters is no longer equal to π . Indeed, we find
this state as shown in Fig. 7(d). The corresponding range of
appropriate τ -values is illustrated in Fig. 8. This figure depicts
an experimental measurement for a narrower τ -range and a
starting configuration different from Fig. 6 (see black arrow)
is implemented. This explains why the compressed two-cluster
state was not found in Fig. 6 and thus reflects the multistability

(a)

τ ( 2π
ω )

fr
eq

u
en

cy
Ω

m

(b)

FIG. 8. (Color online) Frequency vs. time delay. (a) Experimental
data, V0 = 1.2 V, K = 0.10. The starting state is marked by a black
arrow. The increasing and decreasing of τ during the experiment are
shown with arrows. (b) Numerical results of Eqs. (16) using DDE-
BIFTOOL (markers) and solutions of Eqs. (4) (lines). The interaction
functions Hr and Hϕ are chosen as in Eqs. (16) and Table I.
Parameters: λ = 2.890, K = 0.189, and ω = 2.492.
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present in the system. Again, only numerical solutions relevant
to the states found in the experiment are shown.

A. Extended theory

The experiments shown in the previous section for the
relaxation oscillator motivate an extension of the theory
introduced in Sec. II. The extended theory includes the
interaction functions with a high order of Fourier coefficients
and takes into account the existence of the secondary states.
The secondary states can be obtained from Eqs. (16) with the
Fourier coefficients given in Table I, if we assume nonequal
radii and phase differences. With the ansatz rj = const. ≡ r0,j ,
and ϕj = �t + �ϕj , �ϕj ∈ R, Eqs. (16) yield

0 = (
λ − r2

0,j

)
r0,j + Kr0,j+1c

j
r , (17a)

� = ω − γ r2
0,j + Kr0,j+1/r0,j c

j
ϕ, (17b)

where we used the abbreviation

c
j

i ≡
L∑

l=1

{al,i cos[l(�ϕj+1 − �ϕj − �τ )]

+ bl,i sin[l(�ϕj+1 − �ϕj − �τ )]}. (18)

Equation (17) is an eight-dimensional (�ϕ1 = 0 without loss
of generality) system of transcendental equations that can be
solved numerically. The variational equation reads

ξ̇ j = Jj ξj + Rj ξ j+1(t − τ ), (19)

with the matrices

Jj =
(

λ − 3r2
0,j −Kr0,j+1d

j
r

−2γ r0,j − K
r0,j+1

r2
0,j

cϕ −K
r0,j+1

r0,j
d

j
ϕ

)
, (20)

and

Rj = K

(
c
j
r r0,j+1d

j
r

c
j
ϕ/r0,j r0,j+1/r0,j d

j
ϕ

)
, (21)

using the abbreviation

d
j

i ≡
L∑

l=1

{−al,i sin[l(�ϕj+1 − �ϕj − �τ )]

+ bl,i cos[l(�ϕj+1 − �ϕj − �τ )]}. (22)

Because of the unequal phase differences and radii, the
variational equation cannot be block-diagonalized (cf. Sec. II)
but the Floquet exponents � can be obtained from the
transcendental equation det M = 0, where the matrix M has
the following form:

M =

⎛
⎜⎜⎜⎝

J1 − �I2 R1e
−�τ 0 0

0 J2 − �I2 R2e
−�τ 0

0 0 J3 − �I2 R3e
−�τ

R4e
−�τ 0 0 J4 − �I2

⎞
⎟⎟⎟⎠ .

(23)

Solutions of Eq. (17) that were found to be stable (� < 0)
are plotted as lines in Figs. 6(b) and 8(b). As expected, the
lines perfectly agree with the points obtained by the analysis
using DDE-BIFTOOL. The disadvantage of this analytic method

compared to using the continuation software is that it is difficult
to find all solutions of Eq. (17); i.e., in Figs. 6(b) and 8(b) the
secondary states were not found analytically but only with
the help of DDE-BIFTOOL. However, the analytic method gives
further insight into the system, making analysis easier.

VII. DISCUSSION

We have applied a theoretical analysis of the delay-coupled
Stuart-Landau model to a system of chemical oscillators.
The results of experiment and theory match reasonably well
for cluster synchronization with constant phase lag; the
experiment also shows an additional type of dynamics with
delay-dependent phase lag. For these secondary states the need
for a more general approach arises, and we have extended
the model to account for details in the coupling scheme.
This approach allows us to approximate the experimental
interaction functions and include them into the theoretical
model. This yields numerical results that agree well with the
experimental measurements in a parameter regime where the
standard Stuart-Landau model is no longer appropriate.

This work is a good example for the interplay between
theory and experiment, whereby the theory motivates the
experiment and the experiment inspires the improvement or
extension of the theory. On the one hand, the experiment
presents an opportunity to apply the existing theory. The
comparison of results for smooth oscillations shows that the
theory accurately predicts the order of the cluster transitions
in dependence upon the coupling delay and even predicts the
frequencies of each state very well. On the other hand, we have
found a difference in the stability of some states for smooth
oscillators. The use of simple sine and cosine functions as
interaction functions can no longer be justified, in particular for
the radial interaction function. In experiments with relaxation
oscillators, we observe additional secondary cluster states
with different phase lags between subsequent clusters. By
implementing an extended theory, we realize good agreement
between theory and experiment. We can now explain with
the theory the order of transitions between different cluster
states first observed in the experiment. The range of stability
of each solution branch matches to a large extent. There is
still a difference between the exact frequencies of each state,
but this is due to the drift in the intrinsic frequencies of the
chemical oscillators in the experiment.

Our theoretical approach has been shown to produce good
results for a system that is not necessarily located near
the Hopf bifurcation. This means that the extended model,
which accommodates for arbitrary interaction functions, is
applicable to complex nonsinusoidal systems. Although we
only consider unidirectional rings, it is interesting to note
that the experimental apparatus allows large flexibility in the
applied coupling topology.
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