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Preferred frequency responses to oscillatory inputs in an electrochemical cell model:
Linear amplitude and phase resonance
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We investigate the dynamic mechanisms of generation of amplitude and phase resonance in a phenomenological
electrochemical cell model in response to sinusoidal inputs. We describe how the attributes of the impedance and
phase profiles change as the participating physicochemical parameters vary within a range corresponding to the
existence of stable nodes and foci in the corresponding autonomous system, thus extending previous work that
considered systems close to limit cycle regimes. The method we use permits us to understand how changes in
these parameters generate amplifications of the cell’s response at the resonant frequency band and captures some
important nonlinear effects.
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I. INTRODUCTION

Oscillatory patterns are frequently observed in nonlinear,
far from equilibrium, electrochemical (EC) systems under both
potentiostatic and galvanostatic conditions [1–5]. While EC
oscillations may result from the effects of external controlling
mechanisms, recent work has shown that they may also emerge
intrinsically due to negative feedback effects in the interfacial
electrode kinetics [1]. Specifically, activators, such as electrode
potentials or currents, stimulate both their own production, via
autocatalytic effects (positive feedback), and the production of
inhibitors, such as surface concentrations. The latter repress the
production of the activator, thus generating a negative feedback
effect.

The effects of external oscillatory forcing on EC cells
have been studied in a number of systems [1,6–13]. Typi-
cal experimental protocols using electrochemical impedance
spectroscopy (ECIS) [2,6–8,14] consist of driving an EC
system with a sinusoidal voltage and measuring both the
amplitude and phase shift of the resulting oscillatory current
response. Together, these two quantities as a function of the
input frequency determine the impedance profile of the system,
which is a complex function. Following previous work [15]
we use the terms impedance (Z) and phase (φ) to refer to the
impedance amplitude and phase-shift respectively.

Resonance refers to the ability of a dynamical system to
exhibit a peak in the impedance profile at a preferred (resonant)
frequency [Fig. 1(a1)]. Resonance occurs in RLC circuits but
not in RC circuits, which are low-pass filters [Fig. 1(a2)]. In
addition, for RC circuits the phase is always an increasing
function of the input frequency [Fig. 1(b2)], capturing a
delayed response. In contrast, RLC circuits may exhibit phaso-
nance (phase-resonance), a zero-phase response at a nonzero
(phasonant) frequency [Fig. 1(b1)]. The phasonant frequency
corresponds to the input frequency at which both input and
output are synchronized in phase. For input frequencies below
(above) the phasonant frequency the response is advanced
(delayed). The resonant and phasonant frequencies coincide
for RLC circuits in series but not for RLC circuits in parallel, as
EC cells typically are [15]. Linear three-dimensional systems
may exhibits an additional impedance extremum (minimum)
and zero-crossing phase [16]. These systems are beyond the
scope of this paper and will not be discussed further.

In this paper we investigate the resonant properties of
a two-dimensional phenomenological model introduced in
Ref. [17] to describe the dynamics of an EC cell under
potentiostatic conditions. The model consists of two dependent
variables, the electrode potential and the surface concentration.
Although it is a phenomenological model, it captures the
oscillatory behavior typically observed in realistic systems
[18], in particular it displays limit cycle oscillations created in
a Hopf bifurcation.

It has been proposed that resonance consists of the am-
plification of an intrinsic oscillatory behavior present in the
underlying autonomous system [9–11], which has a nonzero
eigenfrequency, also referred to as the intrinsic or natural
frequency. One implication of this idea is that the resonant and
intrinsic frequencies are equal or not too far apart [11]. While
this is the case in some restricted parameter regimes as it occurs
in the so-called λ-ω systems (see Appendix A 3), in general,
even for two-dimensional systems, resonance and intrinsic
oscillations may occur in the absence of each other [15,16].
Moreover, the intrinsic, resonant, and phasonant frequencies
do not necessarily coincide.

The impedance and phase profiles can be characterized by
a set of attributes (described in detail in Sec. II) including the
resonant and phasonant frequencies, the maximum impedance,
and the resonance amplitude. The study of the properties
of a system’s response to oscillatory inputs can be greatly
simplified if one evaluates how changes in parameter values
affect the set of attributes rather than the full impedance and
phase profiles.

Following this approach, in Ref. [15] we have identified the
basic mechanisms of generation of resonance and phasonance
in two-dimensional linear systems and we have carried a
thorough analysis of the effects of the model parameters in
shaping the impedance and phase profiles. This dependence
is complex and involves changes in the response attributes in
ways that are not always intuitive. For instance, an increase
in the resonant frequency may be accompanied by a decrease
in the natural frequency, changes in both the resonant and
natural frequencies may be accompanied by constancy of
the phasonant frequency, and an increase in the time-scale
separation between the participating variables leads not only
to a decrease in the resonant and phasonant frequencies but also
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FIG. 1. (Color online) Schematic diagrams of the impedance (a) and phase (b) profiles (impedance and phase as a function of the
input frequency f ). (a1) Band-pass filter (resonance). (a2) Low-pass filter (no resonance). (b1) Zero-frequency crossing (phasonance).
(b2) Monotonically increasing and positive phase (no phasonance). (a) The resonant frequency fres is the input frequency f at which the
impedance Z(f ) reaches its maximum Zmax. The resonance amplitude QZ = Zmax − Z(0) measures the resonance power. The half-width
frequency band �1/2 is the length of the frequency interval in between fres and the input frequency value at which Z(f ) = Zmax/2. It measures
the system’s selectivity to incoming frequencies close to fres. (b) The phasonant frequency fphas is the zero-crossing phase frequency. The
minimum phase φmin measures the magnitude of the negative phase.

to an amplification of the response (increase of the maximal
impedance and resonant amplitude).

In this paper, we use a method developed in Ref. [15] to
investigate the linear mechanisms of generation of resonance
and phasonance in the EC cell model as the result of increases
in the double layer capacitance and the baseline (constant)
applied potential and to track the changes in the attributes of
the impedance and phase profiles as these parameters vary.
We focus on parameter regimes for which the underlying
linearized system has either a stable node or a stable focus
and away from the existence of limit cycles for the unforced
system.

EC cells as well as other excitable systems such as
chemical reactions far from equilibrium share many dynamic
properties with neuronal systems. They can signal either as
the result of brief perturbation pulses or display sustained
oscillations [1,2,9,19,20]. Oscillatory behavior is ubiquitous
in the nervous system and has been implicated in cognition
and motor behavior [21–24] in both health and disease [25].
It has been proposed that the electrochemical interface my
serve as a simplified model for the understanding of neural
network dynamics [11]. Since many neuron types exhibit

resonance [26], which is believed to play a significant role in
the generation of neuronal oscillations, it is key to understand
both the resonant properties of EC cells and their similarities
and differences with the resonant properties of neurons as a
way to understanding the computational properties of EC cells
and, potentially, networks consisting of EC cells.

We note that the concept of resonance we use in this study
[26] differs from studies on stochastic resonance [18], where
the signals are amplified by optimal noise levels rather than
oscillatory input frequencies.

II. METHODS

A. Phenomenological EC-cell model

We consider the following phenomenological model intro-
duced in Ref. [17]. The conservation of charge equation is
given by

εv̇ = q − v

R
− wp(v) + Iin(t), (1)

where v is the electric potential, w the surface concentration,
ε is the double layer capacitance, R is the ohmic resistance, q
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is the (baseline) applied potential, Iin(t) is the external applied
current, and

p(v) = a1v + a2v
2 + a3v

3. (2)

The left-hand side in Eq. (1) represents the current flowing
through the double layer capacitance, the first and second terms
in the right hand side of Eq. (1) represent the total current
flowing through the system and the faradaic current due to the
electrochemical reaction, respectively. We use the same values
of a1, a2, and a3 as in Refs. [17,18]. The surface concentration
obeys the following mass balance equation:

ẇ = −q − v

R
+ 1 − w + αwp(v). (3)

The first and second terms term in the right-hand side
represent diffusion and migration due to potential gradients,
respectively.

For external sinusoidal inputs we use the following nota-
tion:

Iin(t) = Ainsin(�t) with � = 2πf

T
, (4)

where T = 1000 ms and [f ] = Hz. While for EC cells under
potentiostatic control the observable is the anodic current
(q − v)/R, in this work we consider the effects of an input
current and we present our results in terms of the voltage
response v. We note that the addition of a current rather than
a potential input does not describe either a potentiostatically
or galvanostatically controlled system, thus not allowing for a
direct comparison with experiments. However, the simplified
approach we use in this paper provides an insight into the
resonance phenomenon in electrochemical systems that can
be then adapted to more realistic situations.

We rescale time by defining

t = t̂

ε
. (5)

Substitution into (1)–(3) yields

v′ = q − v

R
− wp(v) + Iin(t) (6)

and

w′ = ε

[
−q − v

R
+ 1 − w + αwp(v)

]
, (7)

where the “prime” sign denotes derivative with respect to the
new time t̂ and we have dropped the “hat” sign from both t̂

and

Îin(t̂) = Iin(t̂/ε).

B. Linearized model

We linearize the autonomous part of Eqs. (1)–(3) around a
fixed point (v̄,w̄) by defining

x = v − v̄, y = w − w̄. (8)

The linearized equations are

x ′ = −ax − by (9)

and

y ′ = cx − dy, (10)

where

a = 1

R
+ w̄p′(v̄), b = p(v̄),

c = ε

(
1

R
+ αw̄p′(v̄)

)
, d = ε(1 − αp(v̄)). (11)

The number of parameters in system (9) and (10) can be
reduced by an additional rescaling,

x = v − v̄, y = (w − w̄)
d

c
, t̄ = dt. (12)

The reduced linearized equations are given by

x ′ = −γ1x − γ2y (13)

and

y ′ = x − y, (14)

where

γ1 = a

d
= 1 + Rw̄p′(v̄)

εR(1 − αp(v̄))
,

(15)

γ2 = bc

d2
= p(v̄)

1 + Rαw̄p′(v̄)

εR(1 − αp(v̄))2 .

C. Impedance and impedance-like functions

The response (after transients have disappeared) of a linear
system such as (13) and (14) receiving sinusoidal current
inputs of the form (4) in the first equation is given by

xout(t ; f ) = Aout(f ) sin (�t + φ(f )) (16)

where φ(f ) is the phase shift (or phase) defined as the
difference between the peaks of the input Iin(t ; f ) and the
output xout(t ; f ) and � is given by (4).

Linear systems exhibit resonance if there is a peak in the
amplitude of the impedance function Z(f ) given by

|Z(f )| = Aout(f )

Ain
(17)

at some positive (resonant) frequency, fres. As mentioned
above, in what follows we will refer to impedance amplitude
simply as the impedance Z(f ). In Fig. 1(a) we show represen-
tative graphs of the impedance function Z(f ) for a model that
does [Fig. (a1)] and does not [Fig. 1(a2)] exhibit resonance.
We characterize the impedance profiles using four parame-
ters: (i) fres, (ii) the maximum impedance Zmax = Z(fres),
(iii) the resonance amplitude QZ = Zmax − Z(0), and (iv)
the half-width frequency band �1/2 defined as the frequency
interval in between fres and the input frequency value at which
Z(f ) = Zmax/2 that measures the frequency selectivity. Linear
systems have a higher selectivity to inputs with frequencies
around fres the narrower the graph of Z(f ). In Fig. 1(b)
we show two representative graphs of the phase φ(f ) where
φ vanishes at a nonzero value of f [Fig. 1(b1)] and φ is
always positive [Fig. 1(b2)]. We refer to the ability of the
system to exhibit a zero-phase frequency response at a nonzero
frequency as phasonance and to the corresponding frequency
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as the phasonant frequency fphas. In Fig. 1(b1), fphas > 0. The
voltage response is “advanced” and “delayed” with respect to
the peak of the input current for lower and higher frequency
inputs respectively. Although phase-advance and phase-delay
are ambiguous concepts to describe phase differences between
inputs and outputs in oscillatory systems, we use them since
typical phase differences lie in the range (−π/2,π/2). In
Fig. 1(b2), fphas = 0, that is, the voltage response is delayed
for all values of f . We characterize the phase profiles using
two attributes: (i) fphas and (ii) the minimum phase φmin.

III. RESULTS

A. Stability and resonant properties of two-dimensional
linear systems revisited

In Ref. [15], we have conducted a through analysis of the
stability and resonant properties of two-dimensional linear
systems of the form (13) and (14), and we have identified
three primary mechanisms of generation of resonance. Here
we briefly review some of these results for future use. We refer
the reader to Ref. [15] for more details.

Figure 2 shows the superimposed stability and resonance
diagrams in γ1-γ2 parameter space. The blue curves separate
between regions having different stability properties. In the
stable foci region, the natural frequency fnat increases across
level sets parallel to the curve separating stable foci from stable
nodes [Fig. 3(a)]. The red curve separates between regions
in parameter space for which the system does (above) and
does not (below) exhibit resonance. Figure 2 demonstrates that
resonance and intrinsic (damped) oscillations may occur in the
absence of each other. In particular, for large enough values
of γ1, the system may exhibit resonance without intrinsic
(damped) oscillations.

We focus on regions in parameter space for which the
fixed point (focus or node) is stable. Within this region, the
resonant frequency fres increases across level sets parallel to
the resonance curve [Fig. 3(b)]. The qualitatively different
ways in which fres and fnat change in γ1-γ2 parameter
space demonstrates that intrinsic oscillations and resonance
are different phenomena governed by different mechanisms.

Specifically, as γ2 increases for fixed values of γ1, both fres

and fnat are either zero or monotonically increasing. However,
as γ1 increases for fixed values of γ2, fres is always increasing,
while fnat first increases and then decreases. In contrast to fres

and fnat that change with both γ1 and γ2, fphas increases with
γ2 but is independent on γ1 [Fig. 3(c)].

For a low-pass filter, Zmax = Z(0) [Fig. 1(a2)]. Resonance
requires that the resonance amplitude QZ = Zmax − Z(0) > 0.
The two quantities Zmax and Z(0) follow different patterns
as the change in γ1-γ2 parameter space, as reflected in the
nonconstant values of QZ in Fig. 3(d). The values of Zmax and
Z(0) are larger for the lower values of γ1 [15]. In particular,
Zmax is significantly larger for negative than for positive values
of γ1. Both quantities decrease as γ1 and γ2 increase [15].

Changes in γ1 and γ2 span trajectories in parameter
space. Resonance is generated as these trajectories cross the
resonance curve in Fig. 2. For the linear system (13) and (14),
there are two possible types of trajectories as each one of γ1 and
γ2 change, spanning horizontal and vertical lines respectively.
This gives rise to two of the primary linear mechanisms of
generation of resonance described below. The third linear
mechanism of generation of resonance involves changes in the
time scale separation (ε) between the variables v and w and
is not apparent from the form of the reduced (rescaled) linear
system (13) and (14) but requires a closer inspection of the
definitions of these parameters. From (15), changes in ε span
oblique lines in γ1-γ2 parameter space, which approach zero as
ε → ∞. Additional, nonlinear trajectories in parameter space
can be generated as the EC cell model parameters change.

Linear trajectories (vertical, horizontal, and oblique) in
γ1-γ2 parameter space are spanned by generic linear systems,
while nonlinear trajectories require an a priori knowledge
of the physical system under consideration. The resonant
properties for generic linear systems are discussed below in
this section. The resonant properties of the EC model along
nonlinear trajectories will be discussed in Sec. III C.

The first two primary linear mechanisms of generation
of resonance involve unbalanced changes in Zmax and Z(0),
leading to changes in QZ [Fig. 3(d)]. In the first case, both
decrease as γ2 increases, but Z(0) decreases faster than Zmax,
thus increasing QZ above zero. In the second case, both
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FIG. 2. (Color online) Superimposed stability and resonance diagrams for the reduced two-dimensional linear system (13) and (14) in γ1-γ2

parameter space. The blue curves separate between regions with different stability properties. The red curve separate between regions where
the system does (above) and does not (below) exhibit resonance. Intrinsic oscillations and resonance may occur in the absence of the other. The
right panel is a magnification of the left one.
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FIG. 3. (Color online) Representative attributes of the impedance and phase profiles in γ1-γ2 parameter space for the linear
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selectivity increases as �1/2 decreases.

quantities increase as γ1 decreases, but Zmax increases faster
than Z(0), thus increasing QZ .

The third mechanism of generation of resonance involves
changes along the oblique lines parametrized by ε. As ε

decreases, these ε lines cross the resonance (red) curve in
Fig. 2. From (A8) (in Appendix), Z(0) is independent of ε, so
this mechanisms involves only changes in Zmax. The direction
of motion of the ε lines determines the level of amplification of
the EC cell’s response, which is more pronounced for negative
slopes than for positive ones.

The fidelity of the EC cell’s response to oscillatory inputs
depends not only on Zmax and QZ but also on the half-
bandwidth �1/2 [Fig. 3(e)], which increases with γ1, making
the cell more selective, and is almost constant in the γ2

direction.
The qualitatively different ways in which the impedance

attributes (fres, fphas, Zmax, QZ , and �1/2) change with both
γ1 and γ2 demonstrates the complexity of the resonance
phenomenon [15] and suggest that an optimal response over
all attributes is difficult to achieve except in some restricted
parameter regimes.

B. Dynamics of the autonomous EC cell model

Here we use numerical simulations and phase-plane analy-
sis to investigate the dynamics of the autonomous EC cell.
Our goal is to establish the parameter sets for which the

model exhibits stable nodes and foci and to examine the
types of nonlinearities present in the model and how their
variation depends on the model parameters. We first consider
the effects of changes in q for fixed values of α, ε, and R. We
focus on two parameter sets that have qualitatively different
phase-plane diagrams. One of these has been previously used
in Refs. [17,18] in a different context. Finally, for future use,
we investigate the effects of changes in α and R for fixed
values of the remaining parameters.

1. Effects of changes in q

Figure 4 shows the phase plane and voltage traces for
representative values of q and α = 0.1, ε = 0.03, and R = 10.
Changes in q affect the shape of both the v and w nullclines
[red and green curves in the (a) panels] in qualitatively different
ways. As q increases the v nullcline develops cubic-type
nonlinearities that are more pronounced for the larger values
of q. The w nullcline, instead, remains quasilinear as q

increases, but it is translated in almost parallel directions
towards larger values of v. For low-enough values of q,
the system has a stable node [Fig. 4(a1)] and the dynamics
is quasilinear. As q increases, the fixed-point transitions
to a stable focus [Fig. 4(a2)]. As q increases further, the
system undergoes a supercritical Hopf bifurcation. The fixed
point becomes unstable and a stable limit cycle is created
[Fig. 4(a3)]. Its amplitude increases with q as the cubic
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FIG. 4. (Color online) Dynamics of the EC cell model (6) and (7) for representative values of q and ε = 0.03, R = 10, and α = 0.1.
(a) Phase-plane diagrams for representative values of q: (a1) q = 10, (a2) q = 27.5, (a3) q = 28.5, (a4) q = 29.2, and (a5) q = 29.3. Fixed
points are located in the intersection of the v and w nullclines. Each panel shows a representative trajectory initially at the gray dot, either
converging to the stable fixed point [panels (a1), (a2), and (a5)] or displaying limit-cycle oscillations [panels (a3) and (a4)]. As q increases, the
limit cycle is created in a supercritical Hopf bifurcation and it disappears in a saddle node in an invariant circle (SNIC) bifurcation. (b) Voltage
traces for representative values of q in the limit cycle regime: (b1) q = 28.1, (b2) q = 28.5, and (b3) q = 29.2.

nonlinearity becomes more pronounced [Fig. 4(a4)]. The
limit cycle oscillations are terminated at a saddle node in
an invariant circle (SNIC) bifurcation as the two nullclines
intersect [Fig. 4(a5)]. Figure 4(b) illustrates the representative
voltage traces for the limit cycle oscillations. As q increases
the amplitude increases and the frequency decreases.

In Fig. 5, α = 0.5, ε = 0.03, and R = 10. The differences
in the values of α between this figure and Fig. 4, are correlated
with qualitative differences in the properties of the w nullcline:
(i) it has a negative slope for α = 0.5 [Fig. 5(a1)], while it has
a positive slope for α = 0.1 [Fig. 4(a1)], and (ii) for α = 0.5, a
second branch of the w nullcline emerges for large enough val-
ues of q [Fig. 5(a3)] and it shifts down as q increases, in addi-
tion to the translation as discussed above for α = 0.1. The limit

cycle oscillations are terminated when the v nullcline intersects
this additional branch and the system undergoes a SNIC
bifurcation [Fig. 5(a5)]. While the sequence of voltage patterns
is similar, the qualitative differences between the two cases is
expected to affect the responses of cells to oscillatory inputs.

2. Effects of changes in α

Comparison between the voltage traces for α = 0.1
[Fig. 5(b1)] and α = 0.5 (Fig. 4(b1)] demonstrates that as α

increases, the amplitude of the limit cycle oscillations increases
and the frequency slightly increases.

In Fig. 6 we present the phase-plane diagrams for various
representative values of α and fixed values of ε = 0.3, R =
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FIG. 5. (Color online) Dynamics of the EC cell model (6) and (7) for representative values of q and ε = 0.03, R = 10, and α = 0.5.
(a) Phase-plane diagrams for representative values of q: (a1) q = 18, (a2) q = 26, (a3) q = 28.5, (a4) q = 29.2, and (a5) q = 29.3. Fixed
points are located in the intersection of the v and w nullclines. Each panel shows a representative trajectory initially at the gray dot, either
converging to the stable fixed point [panels (a1), (a2), and (a5)] or displaying limit-cycle oscillations [panels (a3) and (a4)]. As q increases, the
limit cycle is created in a supercritical Hopf bifurcation and it disappears in a saddle node in an invariant circle (SNIC) bifurcation. (b) Voltage
traces for representative values of q in the limit cycle regime: (b1) q = 28.1, (b2) q = 28.5, and (b3) q = 29.2.

10, and q = 28.5. For these parameter values, the EC system
displays limit cycle oscillations for both α = 0.1 [Fig. 4(a3)]
and α = 0.5 [Fig. 5(a3)]. Changes in α affect only the shape
of the w nullcline. We note that a negative value of α, as
in Fig. 6(e), may have no physical meaning. However, we
include this example in our study to provide a more general
picture of the EC dynamics and to illustrate the presence of
a transition from a stable limit cycle [Fig. 6(d)] to a stable
focus [Fig. 6(e)] as the value of α decreases. Similar phase
planes may exist for positive values of α. As α increases,
the limit cycle oscillations are both created and terminated in
supercritical Hopf bifurcations. Note that the change in sign

for the slope of the w nullcline discussed above occurs in
between Figs. 6(c) and 6(d).

3. Effects of changes in R

Figure 7 shows the phase planes and voltage traces for
representative values of R and α = 0.1, ε = 0.03, and q =
28.5. Changes in R affect the shapes of both the v and w

nullclines. For large values of R, the dynamics is quasilinear
and the fixed points are stable nodes [Fig. 7(a1)]. As R

decreases the cubic nonlinearity in the v nullcline becomes
more pronounced and the fixed-point transitions from a stable
node to a stable focus. As R decreases further, a stable
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FIG. 6. (Color online) Phase plane for system (6) and (7) for representative values of α and ε = 0.03, R = 10, and q = 28.5. Fixed points
are located in the intersection of the v and w nullclines. Each panel shows a representative trajectory initially at the gray dot, either converging
to the stable fixed point [panels (a), (b), and (e)] or displaying limit-cycle oscillations [panels (c) and (d)]. As q increases, the limit cycle is
both created and terminated in a supercritical Hopf bifurcation. (a) α = 0.75, (b) α = 0.65, (c) α = 0.6, (d) α = 0.05, and (e) α = −0.2.

limit cycle is created in a supercritical Hopf bifurcation, and
terminated in an additional Hopf bifurcation for an even lower
values of R. As expected, the amplitude of the limit cycles
is larger for intermediate values of R away from the Hopf
bifurcation points [Fig. 7(b)].

C. Resonance and phasonance in the linearized EC-cell model

We now investigate the linear resonant properties of the
EC cell model (6) and (7). The linearized EC cell model is
given by Eqs. (13) and (14) with γ1 and γ2 given by (15). We
focus on the linear mechanisms of generation of resonance and
phasonance and the effects of the physicochemical parameters
(q, ε, R, and α) on the attributes of the impedance and phase
profiles. We limit our discussion to parameter values yielding
stable fixed points (foci and node) and leave out the parameter
regimes corresponding to limit cycle oscillations, which are
beyond the scope of this paper.

Our discussion in Sec. III A (see also Ref. [15]) provides
an insight into the mechanisms of generation of resonance and
phasonance in generic linear systems of the form (13) and (14)
but not into the mechanisms of generation of these phenomena
in the linearized EC cell model. As is clear from the null-
cline nonlinearities in the phase-plane diagrams presented in
Sec. III B and from Eqs. (15), changes in the physicochemical
parameters generate nonlinear trajectories in γ1-γ2 parameter
space rather than horizontal and vertical trajectories generated
by changes in the linearized coefficients (γ1 and γ2). We

emphasize that the contribution of the the physicochemical
parameters to the linearized coefficients in Eqs. (15) is not
only explicit but also implicit through the values of the fixed
point (v̄,w̄), a fact that is sometimes overlooked.

We use a technique developed in Ref. [15], which consists
on plotting the trajectories parametrized by q (or any other
parameter under consideration) superimposed on the stabil-
ity/resonant diagrams in the γ1-γ2 parameter space presented in
Fig. 1. These diagrams can be used in conjunction with Fig. 3 to
learn how the various impedance and phase attributes change
with the EC cell model parameters. The resulting diagrams
together with representative examples of the impedance and
phase profiles are presented in Figs. 8–13.

1. Effect of changes in q and ε

In Fig. 8 we present representative trajectories in γ1-γ2

parameter space parametrized by q for three representative
values of ε. The right panel in Fig. 8 is an expansion of
the left one to capture a larger region in parameter space.
Trajectories are initially located in a close vicinity of the
resonant (red) curve and terminate either at a supercritical
Hopf bifurcation (ε = 0.03), as they cross the vertical line
γ1 = −1 (separating between stable and unstable foci) or
at a saddle-node bifurcation (ε = 0.1 and ε = 0.2). For a
significant range of values of q, the EC cell exhibits resonance
in the absence of damped or sustained oscillations. These range
of values of q is larger the smaller ε.
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FIG. 7. (Color online) Dynamics of the EC cell model (6) and (7) for representative values of R and ε = 0.03, q = 28.5, and α = 0.1.
(a) Phase-plane diagrams for representative values of q: (a1) R = 30, (a2) R = 15, (a3) R = 10, (a4) R = 7, and (a5) R = 5. Fixed points are
located in the intersection of the v and w nullclines. Each panel shows a representative trajectory initially at the gray dot, either converging
to the stable fixed point [panels (a1), (a2), and (a5)] or displaying limit-cycle oscillations [panels (a3) and (a4)]. As R increases, the limit
cycle is created and terminated in supercritical Hopf bifurcations. (b) Voltage traces for representative values of R in the limit cycle regime:
(b1) R = 11, (b2) R = 9.5, and (b3) R = 8.

Comparison between Figs. 8 and 3 shows that the attributes
of the impedance and phase profile behave differently as q

changes during the ascending (I) and descending (II) portions
of the trajectories. We present representative examples for
ε = 0.03 in Fig. 9. Figures 9(a) and 9(b) correspond to
the ascending and descending portions of the trajectory,
respectively. The values of q in Fig. 9 are marked with a
black dot in the corresponding trajectory (ε = 0.03) in Fig. 8.

As q increases along the ascending portion of the trajectory,
fres increases and the response becomes more amplified due
to the increase in both Zmax and QZ [Fig. 9(a)]. In addition,
the response becomes more selective (�1/2 decreases). The
amplification of the response when q increases along the

descending (II) portion of the trajectory is more pronounced
than on the ascending portion (I) [Fig. 9(c)]. However, on
the former fres decreases with increasing values of ε rather
than increase. These effects are present, but they are less
pronounced for large values of ε (not shown).

The dependence of fphas with q follows a similar pattern
as fres [Figs. 9(c) and 9(d)]: fphas increases with q on the
ascending portion of the trajectory (I) and decreases with q on
its descending portion (II). Note that φmin is almost insensitive
to changes in q on the descending portion [Fig. 9(d)].

This analysis demonstrates that although the EC cell
response is more amplified for parameter values close to
the supercritical Hopf bifurcation, or corresponding to stable
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FIG. 8. (Color online) The effect of q on the EC cell linear resonance properties for representative values of ε. Trajectories parametrized
by q superimposed on the stability/resonant diagrams in γ1-γ2 parameter space (arrows indicate increasing values of q). The right panel is an
extension of the left one to capture a larger region in parameter space. The stability (blue) and resonant (red) curves are as in Fig. 2(c). All
trajectories (gray curves) start at q = 0.1 (marked by a black dot on top of the red curve). Different trajectories correspond to different values
of ε. The trajectories are computed until the fixed point (v̄,w̄) ceases to be stable either because it becomes a saddle (ε = 0.1 and ε = 0.2) or
because it becomes an unstable focus and a limit cycle is created (supercritical Hopf bifurcation). We used the following parameters values:
α = 0.1, R = 10.

foci, both resonance and phasonance are present, and are
non-negligible, for parameter values corresponding to a stable
node for which the EC cell cannot displays intrinsic (damped)
oscillations.

2. Effects of changes in q and α

In Fig. 10 we analyze the effects of changes in q for
representative values of α. These trajectories are initially
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FIG. 9. (Color online) The effect of q on the resonance and phasonant properties for the linearized EC model (13) and (14) with ε = 0.03,
α = 0.1, and R = 10. (a) Impedance profiles on the ascending portion (I) of the trajectories in Fig. 8. (b) Phase profiles on the ascending
portion (I) of the trajectories in Fig. 8. (c) Impedance profiles on the descending (II) portion of the trajectories in Fig. 8. (d) Phase profiles on
the descending (II) portion of the trajectories in Fig. 8. The values of q correspond to the black dots on the curve for ε = 0.03 in Fig. 8. The
gray curves in panels (a) and (c) join the maxima of the impedance profiles.
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FIG. 10. (Color online) The effect of q on the EC cell linear
resonance properties for representative values of α. Trajectories
parametrized by q superimposed on the stability/resonant diagrams
in γ1-γ2 parameter space (arrows indicate increasing values of q).
The stability (blue) and resonant (red) curves are as in Fig. 2(c).
All trajectories (gray curves) start at q = 0.1 (marked by the
rightmost black dot on the red curve at γ2 ∼ 40). Different trajectories
correspond to different values of α. The trajectories are computed
until the fixed point (v̄,w̄) ceases to be stable when undergoes a
supercritical Hopf bifurcation and a limit cycle is created. We used
the following parameter values: ε = 0.03, R = 10.

located in a vicinity of the resonance (red) curve and terminate
at supercritical Hopf bifurcations as they cross the γ1 = −1
line (separating between stable and unstable foci).

Similarly to the case discussed above, the system ex-
hibits resonance for parameter values for which no intrinsic
(damped) oscillations are possible. In contrast to the previous
case, trajectories for larger values of α have three characteristic
portions: an almost horizontal one (denoted by I), an ascending
one (denoted by II), and a descending one (denoted by III).
During the ascending phase the trajectory slightly reverses the
direction of motion: The values of γ1 on the trajectory first
decrease (I), then increase (II), and finally decrease again (III).

The qualitative change in the trajectories’ shape and the
development of a third portion for large enough values of
α is correlated with the changes observed in the phase
planes where similar bifurcations occur through qualitatively
different geometric mechanisms (compare Figs. 4 and 5).

The impedance and phase profiles corresponding to α =
0.17 are presented in Fig. 11. Figures 11(a) and 11(b)
correspond to the almost horizontal portion of the trajectory
(I), Figs. 11(c) and 11(d) correspond to the ascending portion
of the trajectory (II), and Figs. 11(e) and 11(f) correspond to
the descending portion of the trajectory (III). The values of q

in Fig. 11 are marked with a black dot in the trajectory for
α = 0.17 in Fig. 10.

As q increases along the almost horizontal portion of
the trajectory (I), fres increases, the response becomes more
amplified (both Zmax and QZ increase) and more selective
[Fig. 11(a)], and fphas increases [Fig. 11(b)]. As q increases
along the ascending portion of the trajectory (II), the trajectory
becomes more amplified but both fres and fphas remain almost

unchanged [Figs. 11(c) and 11(d)]. As q increases along
the descending portion of the trajectory (III), the response
becomes more amplified, and the amplifications is more
pronounced that in the previous portions, but both fres and
fphas decrease.

In summary, although in all portions of the trajectory in
parameter space the linear response of the EC cell becomes
amplified and more selective as q increases, fres and fphas have
different monotonic properties in different portions.

3. Effects of changes in R and q

In Fig. 12 we analyze the effects of changes in R for
two representative values of q, ε = 0.03 and α = 0.1. The
trajectories are initially located on the vertical line γ1 = 20, in
the stable node region, where the system exhibits resonance
but not intrinsic (damped) oscillations and terminate in the
same region after an excursion through the foci region. For
an intermediate range of values of R, the trajectories evolve
in the stable foci region. The trajectory for q = 28.5 crosses
the vertical lines γ1 = −1 to the unstable foci region, while
for q = 27 the trajectory never crosses to that region and stays
within the stable foci one. As discussed above, the values
of R for which the trajectory is in the unstable foci region
correspond to the existence of a stable limit cycle, whose
study is outside the scope of this paper. The trajectories’
characteristic shapes reflect the dynamics of the autonomous
system as R changes (discussed in the context of Fig. 7) where
stable nodes exist for both large and small values of R.

In Fig. 13 we present the impedance and phase profiles for
q = 28.5. Figures 13(a) and 13(b) correspond to the portion
marked with I, Figs. 13(c) and 13(d) correspond to the portion
marked with II, and Figs. 13(e) and 13(f) correspond to the
portion marked with III. As we mentioned above, we purposely
leave out the parameter range corresponding to the existence
of stable limit cycles.

As R increases along the portion I, there is an amplification
of the response and both fres and fphas decrease. Consistently,
with Fig. 3(e), the selectivity increases (�1/2 decreases). In
contrast, as R increases along the portion II, both fres and
fphas increase, there is an attenuation of the response, and the
selectivity decreases. The properties of the impedance and
phase profiles as R increases in portion III bear similarities
and differences with the two previous portions. As in portion I,
fres and fphas decrease with increasing values of R (the change
of fres is very small). As in portion II, there is an attenuation
of the response with increasing values of R and the selectivity
decreases

IV. DISCUSSION

The response of electrochemical system to oscillatory
inputs has been studied in a number of works [9–12,27–32].
In this paper we have investigated the linear mechanisms of
the generation of preferred frequency responses to sinusoidal
inputs in a phenomenological model of an EC cell. This model
was introduced in Ref. [17] to investigate the dynamics of dif-
fusively coupled EC oscillators and used in Ref. [18] to capture
the stochastic resonant properties of EC systems. Stochastic
resonance differs from the type of amplitude resonance we
studied here. The former refers to the amplification of a signal
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FIG. 11. (Color online) The effect of q on the resonance and phasonance properties for the linearized EC model (13) and (14) with ε = 0.03,
α = 0.17, and R = 10. (a) Impedance profiles on the almost horizontal portion (I) of the trajectories in Fig. 10. (b) Phase profiles on the almost
horizontal portion (I) of the trajectories in Fig. 10. (c) Impedance profiles on the ascending portion (II) of the trajectories in Fig. 10. (d) Phase
profiles on the ascending portion (II) of the trajectories in Fig. 10. (e) Impedance profiles on the descending (III) portion of the trajectories in
Fig. 10. (f) Phase profiles on the descending (III) portion of the trajectories in Fig. 10. The values of q correspond to the black dots on the curve
for α = 0.17 in Fig. 10. The gray curves in panels (a), (c), and (e) join the maxima of the impedance profiles.

by optimal noise levels, while the latter refers to the amplifi-
cation of the response by an optimal input frequency (fres).

The study of resonance presented in this paper extends the
scope of previous work [9–11]. First, we include parameter
regimes where the EC cells have stable nodes in addition
to stable foci close to the onset of sustained oscillations.
The ability of linear systems having stable nodes to exhibit
resonance was demonstrated in Refs. [15,16] and the properties
of the corresponding impedance and phase profiles was
characterized in Ref. [15]. By relaxing the condition of
existence of a stable focus to include stable nodes, our concept
of resonance is less restrictive than in previous studies [9–12].
Second, we incorporate the study of the phasonant properties

of the EC cell in addition to the standard resonant properties
based on the amplitude response. Finally, we incorporate
the investigation of the linear mechanisms of generation of
both resonance and phasonance in EC cells. These linear
mechanisms differ from the mechanisms of generation of
resonance/phasonance in linear models. In the former the
parameters of the linearized systems contain information about
the electrochemical parameters of the original EC cell model,
and changes in these parameters generate nonlinear trajectories
in the γ1-γ2 parameter space. Overall, the theoretical results
of this paper predict that resonance and phasonance can be
experimentally measured under rather general conditions than
previously thought [9,11,12].
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FIG. 12. (Color online) The effect of R on the EC cell linear
resonance properties for representative values of q. Trajectories
parametrized by R superimposed on the stability/resonant diagrams
in γ1-γ2 parameter space (arrows indicate increasing values of R).
The stability (blue) and resonant (red) curves are as in Fig. 2(c).
All trajectories (gray curves) start at R = 0.1 outside the range of
values of γ1 (γ1 > 20). The points on the trajectories corresponding to
γ1 = 20 are marked with a black dot. Different trajectories correspond
to different values of q. The trajectory for q = 28.5 crosses the line
γ1 = −1 (solid vertical line) and enters the unstable node region
(corresponding to limit cycle oscillations) for same range of values
of R. We used the following parameters: ε = 0.03, α = 0.1.

The study of the mechanisms of generation of resonance
involves not only the calculation of the resonant and phasonant
frequencies and other attributes of the impedance and phase
profiles but also the examination of how these attributes
change with changes in parameter values. The mapping
between the EC cell model parameters and the parameters in
the linearized model is complex and not trivial as shown by
the nonlinear trajectories in parameter space. In Ref. [15] we
have identified three primary mechanisms of generation of
resonance that we have briefly reviewed in Sec. III A. These
mechanisms are generic for two-dimensional linear systems
and describe the generation of resonance and phasonance as
the parameters of the linear system change along horizontal
(γ1), vertical (γ2), and oblique (time-scale separation) lines
in γ1-γ2 parameter space. However, linear changes in γ1-γ2

parameter space do not necessarily reflect the effects of
changes in the values of the physicochemical parameters (q,
ε, R, and α), as shown by Eqs. (15).

In fact, the phase-plane diagrams presented in Sec. III B
demonstrate that the fixed points and the corresponding linear
properties of the EC cell model (expressed by the linearized
parameters γ1 and γ2) vary significantly with changes in
the physicochemical parameters. The method we used to
investigate the linear mechanisms of generation of resonance
tracks these changes by generating nonlinear trajectories in
γ1-γ2 parameter space. By plotting these trajectories on the
resonant/stability diagrams (Fig. 2) discussed in Sec. III A and
computing the attributes of the impedance and phase profiles
along these trajectories (Fig. 3), we uncovered the different

ways in which the physicochemical parameters contribute to
the generation of resonance and phasonance and to shape the
impedance and phase attributes mentioned above. Our analysis
highlights the complex dependence of these attributes with the
physicochemical parameters.

Although most of our investigation focused on the dynamics
of the linearized EC model, linear and nonlinear effects coexist
in our analysis. Specifically, the nonlinear trajectories in
γ1-γ2 parameter space capture the nonlinearities present in
the autonomous EC model (discussed in Sec. III B). These
nonlinearities govern the generation of resonance to the linear
level in the sense that the path to resonance in the linearized
EC model is nonlinear in γ1-γ2 parameter space, although for
each set of parameter values the model is (obviously) linear.

The model we investigated in this paper is a reduced,
caricature model of an EC cell. Although it is based on
drastic simplifying assumptions [17] and does not describe
the dynamics of an actual EC cell, it captures the relevant
physicochemical processes that give rise to the oscillatory
behavior observed in realistic EC cells. In addition, the lower
dimensionality makes this EC model amenable for analysis
using dynamical systems tools. The results obtained and
predictions made using reduced models can be then tested in
more realistic, higher-dimensional models and in experimental
systems.

Reduced and caricature two-dimensional models have
been widely used in the literature to investigate nonlinear
oscillations in a number of fields, including chemistry, physics,
neuroscience, and biology [33]. Prototypical examples include
the van der Pol model [34], the FitzHugh-Nagumo model [33,
35–37], the Morris-Lecar model [38], the reduced Oregonator
[39], and modified Oregonator [40]. All these models share
some geometric and dynamic properties such as the cubiclike
shape of the activator nullcline and the time-scale separation
between the activator and the inhibitor. The EC model we used
here possesses these properties, but the inhibitor (w) nullcline
features more complex type of nonlinearities as compared to
the reduced models mentioned above.

This study opens various avenues of inquiry about the
role of the nonlinearities in shaping the response of EC cells
to oscillatory inputs. This include not only parameter sets
yielding stable nodes and foci but also stable limit cycles.
More research is needed to address these questions and to
develop mathematical tools to analyze these issues.
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APPENDIX: TWO-DIMENSIONAL LINEAR SYSTEMS:
EIGENVALUES, NATURAL FREQUENCY, IMPEDANCE,

AND PHASE

We consider the following two-dimensional linear system:

X′ = aX + bY + Aine
i�t ,

(A1)
Y ′ = cX + dY,

where a, b, c, and d are constant, � > 0, and Ain � 0.
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FIG. 13. (Color online) The effect of R on resonance and phasonance properties for the linearized model3 (11) and (12) with ε = 0.03,
α = 0.1, and q = 28.5. (a) Impedance profiles on the portion I of the trajectories in Fig. 12. (b) Phase profiles on portion I of the trajectories
in Fig. 12. (c) Impedance profiles on portion II of the trajectories in Fig. 12. (d) Phase profiles on portion II of the trajectories in Fig. 12.
(e) Impedance profiles on portion III of the trajectories in Fig. 12. (f) Phase profiles on portion III of the trajectories in Fig. 12. The values
of R correspond to the black dots on the trajectory for α = 0.1 in Fig. 12. The gray curves in panels (a), (c), and (e) join the maxima of the
impedance profiles.

1. Intrinsic oscillations and natural frequency

The Jacobian of the corresponding homogeneous system
(Ain = 0) is given by

J =
(

a b

c d

)
. (A2)

The roots of the characteristic polynomial are given by

r1,2 = (a + d) ±
√

(a − d)2 + 4bc

2
. (A3)

From Eq. (A3), the homogeneous system displays oscilla-
tory solutions for values of the parameters satisfying

4bc + (a − d)2 > 0 and ad − bc > 0. (A4)

2. Voltage response to sinusoidal inputs:
Impedance amplitude and phase

The particular solutions to system (A1) have the form

Xp(t) = Aoute
i�t and Yp(t) = Boute

i�t . (A5)
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Substituting into system (A1) and rearranging terms we
obtain (

(i� − a) −b

−c (i� − d)

) (
Aout

Bout

)
=

(
Ain

0

)
. (A6)

By solving the algebraic system (A6) we obtain the
impedance function

Z(�) = Aout

Ain
= −d + i�

(ad − bc − �2) − i�(a + d)
, (A7)

the impedance amplitude

|Z(�)|2 := A2
out

A2
in

= d2 + �2

[ad − bc − �2]2 + (a + d)2�2
, (A8)

and the phase

φ(�) = tan−1 (ad − bc − �2) � − (a + d)�d

(ad − bc − �2)d + (a + d) �2
. (A9)

3. Dynamics of λ-ω systems

The so-called λ-ω systems [41] have the form
dx

dt
= −λx − ωy, (A10)

dy

dt
= ωx − λy, (A11)

with λ > 0 and ω > 0. The alternative formulation in terms of
a second-order differential equations reads

d2x

dt2
+ 2λ

dx

dt
+ (λ2 + ω2)x = 0. (A12)

The eigenvalues and natural frequency are given by

r1,2 = −λ ±
√

−ω2 and �nat = ω. (A13)

The resonant and phase-resonant frequencies upon pertur-
bation of Eq. (A10) with a sinusoidal input are given by

�res =
√

−λ2 + ω
√

4λ2 + ω2 and �phas =
√

ω2 − λ2.

(A14)

For λ = 0,

�nat = �res = �phas. (A15)

System (A10)–(A11) can be transformed into a system of
the form (11) and (12) by defining

v = ωx, w = λy, t̂ = λt, (A16)

and

γ1 = 1, γ2 = ω2

λ2
, (A17)

4. Oscillatory inputs: Auxiliary calculations

For a sinusoidal input of the form F (t) = Ain sin (�t), the
system’s output will be a function,

X(t) = Aout sin(�t − φ). (A18)

Equation (A18) can be rewritten as follows:

X(t) = Aout cos φ sin (�t) − Aout sin φ cos (�t) (A19)

or

X(t) = Aout,1 sin (�t) + Aout,2 cos (�t) (A20)

with

Aout,1 = Aout cos φ, Aout,2 = −Aout sin φ. (A21)

Solving for Aout and φ we obtain

A2
out = A2

out,1 + A2
out,2 (A22)

and

φ = − tan−1

(
Aout,2

Aout,1

)
. (A23)

From (A22)

Z2(�) = A2
out,1 + A2

out,2

A2
in

. (A24)
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