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We introduce one- and two-dimensional (1D and 2D) models of parity-time (PT )-symmetric couplers with
the mutually balanced linear gain and loss applied to the two cores and cubic-quintic (CQ) nonlinearity acting
in each one. The 2D and 1D models may be realized in dual-core optical wave guides in the spatiotemporal
and spatial domains, respectively. Stationary solutions for PT -symmetric solitons in these systems reduce to
their counterparts in the usual coupler. The most essential problem is the stability of the solitons, which become
unstable against symmetry breaking with the increase of the energy (norm) and retrieve the stability at still larger
energies. The boundary value of the intercore-coupling constant, above which the solitons are completely stable,
is found by means of an analytical approximation, based on the cw (zero-dimensional) counterpart of the system.
The approximation demonstrates good agreement with numerical findings for the 1D and 2D solitons. Numerical
results for the stability limits of the 2D solitons are obtained by means of the computation of eigenvalues for small
perturbations, and verified in direct simulations. Although large parts of the soliton families are unstable, the
instability is quite weak. Collisions between 2D solitons in the PT -symmetric coupler are studied by means of
simulations. Outcomes of the collisions are inelastic but not destructive, as they do not break the PT symmetry.
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I. INTRODUCTION AND THE SETTING

Wave-propagation models of physical media are naturally
separated into two generic classes, conservative and dissipa-
tive. Recently, it was recognized that a more particular species
of PT (parity-time)-symmetric systems may be identified at
the boundary between these generic types [1–3]. They are
represented by dissipative quantum-mechanical models and
by classical waveguides subject to the condition of spatial
antisymmetry between separated gain and loss. While in the
quantum theory the PT -symmetric models are subjects of
theoretical studies, the similarity of the quantum-mechanical
Schrödinger equation to the paraxial propagation equation
in optics makes it possible to implement this concept in
real physical settings, as proposed theoretically [4] and
demonstrated experimentally [5] in a number of works. These
possibilities have drawn a great deal of interest to the wave
propagation in PT -symmetric systems [2], especially in the
presence of spatially periodic complex potentials, with even
real and imaginary odd parts, as required by the PT symmetry
[3,6].

The ubiquitous occurrence of the Kerr nonlinearity in
photonic media is an incentive for studies of nonlinear
realizations of the PT symmetry in optics, including PT -
symmetric solitons [7] and their stability [8]. Dark solitons in
PT -symmetric systems were studied too, in the case of the
self-defocusing sign of the Kerr nonlinearity [9], as well as
bright solitons supported by the quadratic nonlinearity [10]
and discrete solitons in chains of coupled PT -symmetric
elements [11–13].

In contrast with the usual nonlinear systems including loss
the gain terms, where dissipative solitons exist as isolated at-
tractors [14,15],PT -symmetric solitons emerge in continuous
families, similar to their counterparts in conservative media.
However, existence and stability domains for PT -symmetric
solitons shrink with the increase of the gain-loss coefficient

(γ ) in the PT -symmetric system, and they completely vanish
at critical points, γ = γmax and γ = γC, as concerns the
existence and stability, respectively. As shown below, γC may
be considerably smaller than γmax.

Following the addition of nonlinear terms to the conserva-
tive part of the PT -symmetric system, its gain-and-loss part
may also be made nonlinear, by introducing balanced terms
accounting for the cubic gain and loss [16]. Conditions for
the existence and stability of optical solitons under effects
of combined linear and nonlinear PT terms were addressed
too [17].

A model which is especially convenient for the studies of
PT -symmetric solitons is based on the coupler (dual-core
system) with the symmetric intrinsic Kerr nonlinearity and
the gain and loss applied antisymmetrically to the two cores.
This model was independently introduced in Refs. [18] and
[19], and extended, in various directions, in works [20] and
[21]. In the general form, the model, which describes the
spatiotemporal propagation of light in the dual-core planar
optical wave guide, is based on a system of two-dimensional
(2D) nonlinear Schrödinger (NLS) equations for amplitudes
of the electromagnetic field in two cores, � and �, coupled
by the linear terms, which account for the tunneling of light
between the cores,

i
∂�

∂z
+ ∇2� + N (|�|2)� + λ� = iγ�, (1)

i
∂�

∂z
+ ∇2� + N (|�|2)� + λ� = −iγ�, (2)

where z is the propagation distance, ∇2 ≡ ∂2/∂x2 + ∂2/∂y2

accounts for the combination of the paraxial diffraction and
anomalous group-velocity dispersion acting on the transverse
coordinate x and temporal variable y in each core [22] (y is
absent in the 1D version of the model, which describes the
operation of the dual-core waveguide in the spatial domain), N
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represents the intrinsic nonlinearity, λ > 0 is the coupling
constant, and γ is the above-mentioned balanced gain-loss
coefficient.

As shown in Ref. [18], stationary PT -symmetric solutions
(including solitons) with propagation constant k can be found
in a generic form,

�(z,x,y) = eikz−iδ/2U (x,y),
(3)

�(z,x,y) = eikz+iδ/2U (x,y),

where the constant phase shift between the components is

δ = arcsin(γ /λ), (4)

and real function U satisfies the usual stationary NLS equation,
with a shifted value of the propagation constant:

−(k − λPT )U + ∇2U + N (U 2)U = 0, (5)

λPT ≡
√

λ2 − γ 2. (6)

Obviously, these solutions exist under condition

γ � γmax ≡ λ, (7)

which determines the above-mentioned largest value of the
gain-loss coefficient for the PT -symmetric coupler. Localized
solutions to Eq. (5), i.e., solitons, are possible for k > λPT .

Because the actual transverse width of the waveguide, X,
is finite, solitons are meaningful solutions if their size in the x

direction is essentially smaller than X. Length Z of the waveg-
uide in the longitudinal direction is finite too, which implies
that the soliton solutions are relevant ones if their diffraction
and dispersion lengths are much smaller than Z. These
conditions definitely hold in the analysis presented below.

While the shift of the effective coupling constant, given
by Eq. (6), is an obvious result, a crucial issue is the
stability of the PT -symmetric solitons in the couplers against
symmetry-breaking perturbations. In the usual conservative
models, symmetric solitons in couplers with the Kerr [23,24]
or quadratic [25] intrinsic nonlinearity become unstable at a
critical value of the total energy, alias norm,

E =
∫∫

[|�(x,y)|2 + |�(x,y)|2]dxdy

≡ E� + E�, (8)

E = E
(coupler)
C (λ), and at E > E

(coupler)
C (λ) unstable symmetric

solitons are replaced with stable asymmetric ones, which is a
typical manifestation of the spontaneous symmetry breaking
[26].

As shown in Ref. [18], the stability boundary for symmetric
solitons in PT -symmetric couplers can be obtained by
replacing the coupling constant, λ, by its effective value (6),

E
(PT )
C (λ,γ ) = E

(coupler)
C (

√
λ2 − γ 2). (9)

In particular, for the 1D PT -symmetric coupler with the cubic
nonlinearity, the stability boundary was found in Refs. [18]
and [19] in an exact form, making use of the fact that
E

(coupler)
C (λ) is available in an exact form in the model of the

usual coupler with the Kerr nonlinearity [23]; see more details
below. However, a drastic difference of the PT -symmetric
coupler from its conservative counterpart is that, beyond the
symmetry-breaking boundary, unstable symmetric solitons

are not replaced by asymmetric modes, but rather blow up.
Indeed, an obvious corollary of Eqs. (1), (2), and (8) is the
energy-balance equation,

dE

dz
= 2γ (Eψ − E�); (10)

hence, only symmetric solitons, with Eψ = E�, may represent
stationary modes. A rigorous proof of the nonexistence of
asymmetric solitons in PT -symmetric systems was recently
presented in Ref. [27].

The main objective of the present work is to find stability
limits for fundamental solitons in two-dimensional (2D) PT -
symmetric couplers, which, as mentioned above, may be
realized as planar dual-core optical wave guides operating in
the spatiotemporal domain [22], with the gain and loss applied
to the two cores. To avoid the collapse in the 2D setting, driven
by the cubic self-focusing nonlinearity [28], it is necessary to
include self-defocusing quintic terms acting in each core [29].
The combined cubic-quintic (CQ) nonlinearity of this type
occurs in various optical media [30]. The competition of the
cubic and quintic nonlinearities makes the spontaneous sym-
metry breaking of solitons in the respective usual (non-PT )
coupler drastically different from the situation in the case of
the cubic self-focusing: The symmetric solitons are unstable,
and asymmetric solitons exist, in finite intervals of energies, as
shown by means of numerical methods in the 1D [31,32] and
2D [22] versions of the system (recently, a similar result was
demonstrated for the 1D coupler with competing quadratic and
cubic nonlinearities [33]). The width of the intervals depends
in the intercore-coupling constant, λ [see Eqs. (11) and (12)
below], shrinking to nil and vanishing at some value λmax.
An analytical estimate for λmax, including its modification for
the PT -symmetric coupler, is obtained below in Sec. II; see
Eqs. (26) and (28) (previously, λmax was found in a numerical
form only, even in the absence of the gain and loss terms).
Numerical results for the stability of the 2D solitons, which
are the most essential findings reported in the present work,
are presented in Sec. III. In the same section, we report results
of systematic simulations of collisions between 2D solitons,
which is an obviously relevant problem too. It is found that
collisions spontaneously break the symmetry between collid-
ing identical solitons, but do not break the PT symmetry and
do not destroy the solitons. The paper is concluded by Sec. IV.

II. ANALYTICAL CONSIDERATIONS

The system of Eqs. (1) and (2) with the normalized
CQ nonlinearity, N (|�|2) = |�|2 − |�|4, is written in the
following scaled form:

i
∂�

∂z
+

(
∂2

∂x2
+ ∂2

∂y2

)
� + |�|2� − |�|4� + λ� = iγ�,

(11)

i
∂�

∂z
+

(
∂2

∂x2
+ ∂2

∂y2

)
� + |�|2� − |�|4� + λ� = −iγ�.

(12)

The first objective is to construct families of fundamental
solitons, i.e., localized ground-state modes, in the form
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of Eq. (3), with axisymmetric function U (r ≡
√

x2 + y2)
satisfying the ordinary differential equation,

−(k − λPT )U + d2U

dr2
+ D − 1

r

dU

dr
+ U 3 − U 5 = 0, (13)

where D = 2 or 1 is the transverse dimension (in the 1D
case, r is replaced with x); recall that λPT is defined as per
Eq. (6). The fundamental-soliton solutions to Eq. (13) satisfy
the corresponding boundary conditions, dU/dr(r = 0) = 0,
U (r) ∼ exp(−√

k − λPT r) at r → ∞.
On the other hand, in the usual coupler model, with

γ = 0, which admits not only symmetric but also asymmetric
soliton modes, the stationary solutions are looked for as
{�(r,z),�(r,z)} = eikz{U (r),V (r)}, with real functions U and
V satisfying coupled equations

kU = d2U

dr2
+ D − 1

r

dU

dr
+ U 3 − U 5 + λV, (14)

kV = d2V

dr2
+ D − 1

r

dV

dr
+ V 3 − V 5 + λU. (15)

The breaking and restoration of the symmetry of solitons is
signaled by the existence of a zero mode of infinitesimal an-
tisymmetricperturbations, {U (x),V (x)} = {Usol(x) ± δU (x)},
which satisfies the linear Schrödinger equation obtained by
the subtraction of the linearized version of Eq. (15) from its
counterpart corresponding to Eq. (14),

−(k + λ)δU = −
(

d2

dr2
+ D − 1

r

d

dr

)
δU + W (eff)(x)δU,

(16)

where −(k + λ) plays the role of the energy eigenvalue in the
linear Schrödinger equation, with effective potential

W (eff)(x) = −3U 2
sol(x) + 5U 4

sol(x). (17)

In the 1D model with the cubic nonlinearity, Eq. (16) admits an
exact solution, which makes it possible to find the respective
exact symmetry-breaking point [23]. The exact solution was
extended for the 1D PT -symmetric coupler with the cubic
nonlinearity in Refs. [18,19].

The well-known exact soliton solution to the 1D version of
the CQ equation (13) is [34]

U 2
sol(x) = q

1 + √
1 − (4/3)q cosh(

√
qx)

,

(18)
q ≡ 4(k − λPT ),

which exists for 0 < q < 3/4. The norm of this soliton, defined
as per the 1D version of Eq. (8), is

Esol(q) =
√

3 ln

(√
3 + 2

√
q√

3 − 2
√

q

)
. (19)

The 2D counterpart of soliton (18) can be found in a
numerical form [35,36]. Unlike the energy of the 1D solitons,
which starts from E = 0 at q = 0, i.e., at k = λPT [see
Eqs. (19) and (18)], the energy of the family of the 2D solitons
takes values above the threshold value: Esol � ETownes ≈
11. 69, the threshold being the commonly known energy of
the (unstable) Townes solitons in the 2D NLS equation with
the cubic nonlinearity [28]. In the limit of q = 3/4, both the

1D and the 2D solitons degenerate into the constant (cw,
continuous-wave) solution, with

U 2 = U 2
max ≡ 3/4 (20)

and E = ∞ [cw solutions, U 2
cw = (1/2)(1 ± √

1 − q), exist
also at 3/4 < q � 1].

As mentioned above, in the model with the CQ nonlinearity
1D and 2D asymmetric solitons exist in a finite interval
of energies, Emin(λ) < E < Emax(λ), which shrinks to nil
[Emax(λ) − Emin(λ) → 0] at

λ =
{

λ(1D)
max ≈ 0.11,

λ(2D)
max ≈ 0.096,

(21)

as found by means of numerical calculations in Refs. [22,31]
for the 1D and 2D systems, respectively. An analytical estimate
for λmax can be obtained replacing Eqs. (14) and (15) with
algebraic equations for the cw, i.e., zero-dimensional, states,
neglecting the derivatives in these equations. The accordingly
simplified Eq. (16) for the zero symmetry-breaking mode of
infinitesimal perturbations reduces to relation

−(k + λ) = −3U 2 + 5U 5. (22)

At the symmetry-breaking and restoration points, Eq. (22)
must hold simultaneously with the cw version of Eqs. (14)
and (15) for the symmetric cw states, U = V , i.e.,

(k − λ) = U 2 − U 4. (23)

It then immediately follows from Eqs. (22) and (23) that
the symmetry breaking (−) and restoration (+) of the cw
states take place at the following values of the amplitude and
propagation constant:

U 2
0 = 1

4 (1 ± √
1 − 8λ), (24)

k0 = 1
8 (1 + 12λ ± √

1 − 8λ). (25)

These results predict the largest value of the coupling
constant up to which the symmetry breaking occurs for the
cw states in the coupler’s model,

λ(cw)
max = 1/8, (26)

which is reasonably close to the numerical values (21)
previously found for the 1D and 2D solitons. The fact that
λmax is somewhat smaller for solitons than for the cw states
can be understood too, because, while the central portion of
the soliton fields may get into the interval of

1
4 (1 − √

1 − 8λ) < U 2 < 1
4 (1 + √

1 − 8λ), (27)

where the symmetric states are unstable, see Eq. (24), their
decaying tails fall into the range where no symmetry breaking
occurs, thus pulling the symmetric solitons closer to the
stability range. Note that, for very broad 1D and 2D solitons,
the squared amplitude U 2 = 3/4 of the quasiflat segment [see
Eq. (20)] does not fall into the instability interval (27); i.e.,
such limit-form solitons exist only in the symmetric form and
are stable.

Last, it follows from Eq. (6) that, in the PT -symmetric
system with the gain-loss coefficient, 0 < γ < λ, the region
of the absolute stability of the symmetric solitons, which is
λ > λ(1D,2D)

max in the usual coupler and is approximated in the
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FIG. 1. (Color online) A set of radial profiles of the 2D PT -
symmetric solitons, found in the numerical form at a fixed propagation
constant, k = 0.12, and coupling constant λ = 0.08, for various
values of the gain-loss parameter, γ = 0,0.001, . . . ,0.08.

analytical form by Eq. (26), is shifted to larger values of the
coupling constant:

λ2 > λ2
PT ≡ (

λ(1D,2D)
max

)2 + γ 2. (28)

III. NUMERICAL RESULTS FOR 2D SOLITONS

A. Stationary solitons

General relations (3) reduce the construction of stationary
2DPT -symmetric solitons to a numerical solution of Eq. (13).
For this reason, the family of the fundamental solitons depends
on the single combination of parameters,

keff ≡ k −
√

λ2 − γ 2; (29)

see Eq. (6). A set of radial shapes of the 2D solitons (which are,
in principle, known from Ref. [35]) is displayed in Fig. 1 for
fixed values k = 0.12 and λ = 0.08 [the latter one makes sense,
as it is smaller than λ(2D)

max defined in Eq. (21)] and γ varying
from 0 up to the maximum value, γmax = λ, beyond which
the PT -symmetric solitons do not exist [see Eq. (7)]. The
numerical method used to generate these stationary solutions
is based on the Newton-Raphson iterations, implemented in
the Cartesian coordinates [37]. The solutions were obtained
with relative accuracy 10−8.

Figure 1 shows that the soliton’s amplitude, U (r = 0),
increases with the growth of γ , in accordance with the fact
that combination (29) increases with γ . The dependence of
the amplitude on γ and k, for the same coupling constant as in
Fig. 1, λ = 0.08, is presented in Fig. 2 [strictly speaking, the
amplitude also depends on the single combination keff—see
Eq. (29)—but it makes sense to display the dependence of the
amplitude on γ for various constant values of k).

B. Stability limits for the solitons

As mentioned above, Eq. (3) essentially reduces the shape
of the 2D fundamental PT -symmetric solitons to that which
was found, in another context, in Ref. [35]. A new issue in the
context of the PT symmetry is the stability of the solitons,
beneath boundary (28) [recall that the solitons are completely
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0.4

0.5

0.6

0.7

0.8

0.9

1

γ

U
0(γ
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k=0.14
k=0.15

k=0.15

k=0.10

λ=0.08

FIG. 2. (Color online) The soliton’s amplitude, U (r = 0) ≡
U0(γ ), as a function of γ for a fixed coupling constant, λ = 0.08,
and different propagation constants k.

stable above it, with λ(2D)
max found in the numerical form as indi-

cated in Ref. (21) or approximated analytically as per Eq. (26)].
We studied the stability of the 2D PT -symmetric solitons

through the calculation of eigenvalues, σ , for modes of small
perturbations governed by the linearization of Eqs. (1) and (2)
around the stationary solitons, using methods elaborated
in Ref. [38]. The main results are summarized in Figs. 3
and 4, which show the dependence of the largest instability
growth rate, S = max{Re(σ )} > 0, on γ (in fact, the unstable
eigenvalues are complex ones), for two different values of the
coupling constant, λ = 0.08 and 0.06, and a set of fixed values
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C

=0.008

λ=0.08
k=0.15

−10
0

10
−10
0

10

FIG. 3. (Color online) The largest instability growth rate for
eigenmodes of small perturbations around the PT -symmetric 2D
solitons, S(γ ) = max{Re(σ )} � 0 [σ is a complex eigenvalue of the
linear-stability spectrum], for the fixed coupling constant, λ = 0.08,
and several values of the propagation constant, k = 0.12, 0.13, 0.14,
0.15, versus the gain-loss coefficient, γ . Inset (a) shows the profile of
a typical stable soliton found at k = 0.12 and γ = 0.002. Inset (b) is
a magnification of a vicinity of the destabilization transition. For all
these values of k, the destabilization occurs around the critical value,
γC ≈ 0.008. The solitons are stable in the region of S(γ ) = 0.
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FIG. 4. (Color online) The same as in Fig. 3, but for λ = 0.06
and propagation constants k = 0.09, 0.11, 0.12, 0.13, 0.14. The inset
is a magnification of a vicinity of the destabilization transition.

of the propagation constant from the ranges of 0.12 � k �
0.15 and 0.09 � k � 0.14, respectively.

The ground-state PT -symmetric solitons are stable in the
region where S(γ ) = 0, i.e., at γ < γC ≈ 0.008 and γ < γC ≈
0.006 in the former and latter cases, respectively. These critical
values are essentially smaller (roughly, by a factor of 10)
than the respective maximum possible values of the gain-loss
coefficient, γmax = λ [see Eq. (7)], because the 2D solitons
were taken at points which are close to the symmetry-breaking
instability threshold in the usual coupler model, with γ = 0;
cf. Ref. [22]. A typical example of a stable soliton is displayed
in inset (a) of Fig. 3.

The critical value, γC, depends on k, as shown in detail in
inset (b) of Fig. 3 and in the inset of Fig. 4. Naturally, γC

increases with the decrease of k, as smaller k corresponds to
a smaller energy of the soliton, pushing it farther from the
symmetry-breaking threshold. However, the computation for
k essentially smaller than those presented in Figs. 3 and 4 is
difficult, as the soliton becomes too broad and cannot fit to the
domain employed for the numerical solution.

The predictions of the stability and instability, produced by
the computation of the eigenvalues for perturbation modes,
were verified by direct simulations of Eqs. (11) and (12),
which were carried out by means of the split-step method [37].
The numerical algorithm was set in the (x,y) domain of size
30 × 30 [in the same notation in which Eqs. (11) and (12) are
written] with periodic boundary conditions. The domain was
covered by a discretization mesh of 256 × 256 points. Because
the instability of the soliton, if any, is caused by the breakup
of the symmetry between the � and � components, which
are subject to the action of the gain and loss, respectively [see
Eqs. (11) and (12)], the initial perturbation in the simulations
was introduced by multiplying the two components, severally,
by the following factors:

�0(x,y) → 1.03 × �0(x,y),
(30)

�0(x,y) → 0.97 × �0(x,y).

A typical example of the perturbed evolution of a stable
soliton is displayed in Fig. 5 [it is the same soliton whose

FIG. 5. (Color online) An example of the long-distance evolution
of a stable PT -symmetric soliton, produced by direct simulations of
Eqs. (11) and (12) with perturbed initial conditions [see Eq. (30)],
starting from z = 0. Panels (a) and (b) show the shape of the �

component at z = 120 and z = 500, respectively. The evolution of
the � component is similar. The parameters are k = 0.12, λ = 0.08,
γ = 0.002.

stationary shape is displayed in inset (a) of Fig. 3]. The
simulations demonstrate the stability of the soliton in the
course of the evolution over the propagation distance which
corresponds, roughly, to 20 diffraction lengths of the soliton
(in fact, the simulations confirm the stability over much longer
distances).

An example of the unstable evolution, observed at γ =
0.078 > γC, is displayed in Fig. 6. The initial perturbation was
again introduced as per Eq. (30); without the perturbation, the
soliton may seem stable in the course of a long simulation,
as the instability is quite weak. As seen in in Fig. 6, the
transmission over distance z 	 150, which is estimated as ∼6

FIG. 6. (Color online) The evolution of � and � components
of the unstable soliton (initiated at z = 0) in the case of k = 0.12,
λ = 0.08, and γ = 0.078 > γC. The panels display the shapes of the
two components at indicated values of the propagation distance.
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diffraction lengths, leads to destruction of the soliton. In fact,
this propagation distance is long, which once again stresses
that we are here dealing with weak instability. Moreover, it
is relevant to note that the value of γ = 0.078, selected for
this simulation, is very close to γmax = λ = 0.08; see Eq. (7).
For smaller values of γ , Fig. 3 suggests that the propagation
distance necessary for the development of the instability,
zinstab ∼ S−1, may be an order of magnitude larger than in
Fig. 6. This conclusion suggests that, in terms of physical
applications (such as collisions between solitons, see below),
unstable solitons may actually be robust objects.

Getting back to the analysis of the instability development,
Fig. 6 demonstrates that, as may be expected, the � component
of the unstable soliton decays into a vanishingly small pattern
under the action of the linear loss. On the other hand, the
pump of energy by the gain into the � component does
not cause an indefinite growth of its amplitude, but rather
makes this component progressively “fatter” (broader). The
latter result is easily explained by the character of the 2D
fundamental-soliton solutions of the single NLS equation with
the CQ nonlinearity: In the limit of large energy, the amplitude
of the soliton is bounded by the largest value given by Eq. (20),
Umax = √

3/2 ≈ 0.87, which is consistent with Figs. 6(c)
and 6(e), while the effective radius of the “fat” soliton, R,
is related to its total energy as E ≈ πR2U 2

max = (3/4)πR2.
In the combination with the energy-balance equation (10),
this argument predicts that the radius of the unstable soliton
eventually grows exponentially, R(z) ≈ R0 exp(γ z).

C. Collisions between solitons

Because the underlying equations, (11) and (12), maintain
the Galilean invariance, in spite of the presence of the gain and
loss terms in them, the application of the kick to the soliton,

{�,�} → exp(iq · r){�,�}, (31)

will set it in motion with velocity V = 2q [in fact, it is a
tilt in the (x,y,z) space]. Then, comparison with the work
previously done for fundamental solitons in the single-core CQ
model [35,39] suggests to consider collisions between moving
(tilted) 2D solitons in the present model. A straightforward
consideration of physical parameters relevant for the optical
wave guides demonstrates that q ∼ 1 in the present notation
corresponds to the tilt of the propagation direction ∼0.1o.

Strictly speaking, the collisions should be considered only
between fully stable solitons. However, it was shown above
that those solitons which are unstable may be subject to a
very weak instability. The propagation distance needed for
simulating collisions between solitons is actually much smaller
than the above-mentioned instability distance. Therefore, the
consideration of collisions between weakly unstable solitons
is meaningful too.

To simulate the collisions, two well-separated replicas of
a stationary soliton, with phase shift φ between them, were
created and kicked in opposite directions as per Eq. (31),
i.e., with factors exp(±iq · r), so as to initiate the head-on
collision between them. An example of the simulated collision
between two identical in-phase (φ = 0) solitons with the same
parameters as in Fig. 6 is displayed in Fig. 7 for kicks q = 0.4.
It is seen that the collision is inelastic but not destructive.

FIG. 7. (Color online) Collision between two identical solitons
with zero phase shift, kicked as per Eq. (31) in the opposite directions
by q = 0.4. The panels display the shapes of the � components at
indicated values of the propagation distance. The evolution of the
� component is the same, as the collision does not break the PT
symmetry. The parameters are k = 0.12, λ = 0.08, γ = 0,078.

It gives rise to a spontaneous symmetry breaking between
the solitons, making one of them taller than the other. The
effect of the symmetry breaking between colliding solitons is
known in other models; see, e.g., Ref. [40]. After the collision,
the two asymmetric solitons separate. The PT symmetry is
kept intact in the course of the collision (therefore, only the
� component is displayed in Fig. 6), in spite of the fact
that the colliding solitons are classified, strictly speaking, as
unstable ones. The robustness of the setting against breaking
of the PT symmetry is explained by the fact that the collision
happens over propagation distance z 	 15, which is ten times
smaller than the distance necessary for the manifestation of
the instability; cf. Fig. 6.

The collision induced by a larger kick, q = 1, gives rise to
a still stronger effect of the spontaneously symmetry breaking
between the two solitons, as shown in Fig. 8: One of the
solitons temporarily splits into two peaks of different heights
and later recombines back into a single one. Nevertheless, in
this case too, the collision does not break the PT symmetry,
which demonstrates the dynamical robustness of this property.

We have also performed systematic simulations of colli-
sions between fully stable solitons, with γ < γC, and also
between formally unstable or fully stable ones with the
phase shift of φ = π . The results (not shown here in detail)
demonstrate that truly stable solitons collide in exactly the
same fashion as their formally unstable counterparts, i.e., like
in Fig. 7 or Fig. 8 at smaller and larger values of the kick,
respectively. The introduction of the phase shift φ = π does
not change the results conspicuously either (one may expect
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FIG. 8. (Color online) The same as in Fig. 7, except that the initial
kick is larger, q = 1.

that the phase shift will be important in the case of very small
collision velocities [40]).

IV. CONCLUSION

We have considered 1D solitons (in a brief form) and their
2D counterparts (systematically) in the model of the PT -
symmetric coupler, which is characterized by the mutually
balanced linear gain and loss applied to its cores, in the
combination with the CQ (cubic-quintic) intrinsic nonlinearity

acting in both cores. The self-defocusing quintic term is
necessary to protect the solitons against the usual 2D collapse.
The model can be realized in terms of the spatiotemporal trans-
mission in dual-core optical waveguides. The PT -symmetric
solitons lose their stability with the increase of the energy and
restore the stability at still larger energies. The boundary value
of the linear-coupling strength, above which the symmetric
solitons are completely stable, was found by means of an
analytical approximation (using the exact solution for the cw
version of the system), which is rather close to its numerically
found counterparts for the 1D and 2D solitons. Stability
limits of the 2D solitons and evolution of the unstable ones
were investigated in the numerical form, by means of the
computation of stability eigenvalues and direct simulations.
Although large parts of the soliton families are unstable, the
instability is quite weak, making it possible to use formally
unstable solitons in physical applications. Head-on collisions
between solitons were studied in a systematic form too,
demonstrating that the collisions break the symmetry between
identical solitons, but do not break the PT symmetry.

It may be interesting to extend the 2D analysis of the
same model to vortex solitons. Starting from pioneering works
[41,42], the stability of 2D vortex solitons in the single-core
system with the CQ nonlinearity was a subject of many studies
[43]. For the dual-core CQ system, the analysis of the vortex-
soliton stability was reported in Ref. [22]. The PT -symmetric
generalization of such settings may be the next natural
step.
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