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Metastable dynamical patterns and their stabilization in arrays of bidirectionally coupled
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Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the
system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady
solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result,
transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially
with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution.
However, these metastable dynamical patterns were easily stabilized in the presence of small variations in
coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of
coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of
a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling,
intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected
the metastable dynamical patterns.
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I. INTRODUCTION

In spatially extended or coupled symmetric bistable sys-
tems, there exist metastable dynamical patterns, the duration
(lifetimes) of which increases exponentially with system size
or the number of elements. These are transient patterns and
systems eventually reach asymptotically stable states, but the
asymptotic states are never realized within a practical time
when the systems are large. In other words, spatiotemporal
patterns that remain for a long time and have been regarded as
stable can collapse and disappear suddenly. These metastable
dynamical patterns have been found in a one-dimensional
bistable reaction-diffusion equation (the time-dependent
Ginzburg-Landau equation, also called the Allen-Cahn equa-
tion) for phase transition [1]. A kinematical equation for the
motion of kinks and antikinks has been derived, and it has
been shown that the strength of attractive interaction between
kinks and antikinks decreases exponentially with the distance
between them. Their motion is exponentially slow when the
distance is large, so it takes an extremely long time until they
collide and disappear. Such metastable dynamical patterns
have been shown in multidimensional domains and several
spatially extended systems [2]. Further, it has been shown that
metastable dynamics remains in a spatially discrete bistable
reaction-diffusion equation when the distance between a kink
and an antikink is large [3]. However, metastable dynamical
patterns are pinned so stable spatially nonuniform steady
solutions are generated due to discretization when a diffusion
coefficient is small [4].

Transient dynamics in nervous systems and neural net-
works have also attracted much attention [5]. Some neural
information processing is considered to be carried out by
transient spatiotemporal patterns, not asymptotically stable
states. This is because asymptotically stable states may not
be realized within a short response time in actual nervous
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systems. The responses of sensory systems to stimuli may
consist of transitions among multiple stable states of neuronal
assemblies. It has been shown that chaotic transitions between
attractors appear in the process of learning odors in the
olfactory bulb of rabbits; this discovery was crucial for
elucidating the role of chaos in neural information processing
[6]. Chaotic transitory dynamics in the brain has been dealt
with as chaotic itinerancy in relation to heteroclinic cycles and
blowout bifurcations [7]. Transient dynamical models for odor
representation in olfactory systems, referred to as winnerless
competition networks, have also been studied recently [8].
Their transient patterns are robust and sensitive to stimuli
and are based on heteroclinic sequences connecting multiple
steady states. Transients, the duration of which increase expo-
nentially with the number of neurons, have also been found
in several neural network models. With respect to chaotic
transients (supertransients), various groups have studied stable
chaos in diluted random networks of integrate-and-fire neurons
with excitatory [9] and inhibitory [10] coupling, the edge of
chaos in discrete time recurrent networks of spiking neurons
[11], self-sustained asynchronous irregular activity states in
networks of spiking neurons with conductance-based synapses
[12], and rotating waves in a ring of Bonhoeffer-van der
Pol models [13]. For other kinds of exponential transients,
transient states before reaching periodic orbits in asymmet-
ric Hopfield networks [14], iteration processes in neuronal
recurrence equations [15], and transient well-controlled se-
quences in continuous-time Hopfield networks [16] have been
studied.

Recently, the authors have shown metastable dynamical
transient rotating waves and oscillations in a ring of unidirec-
tionally coupled sigmoidal neurons [17,18]. The propagation
of their wave fronts is described with qualitatively the
same kinematical equation as the above-mentioned bistable
reaction-diffusion systems. It has been shown that the duration
of transient rotating waves increases exponentially with the
initial bump width, the duration of randomly generated rotating
waves obeys a power-law distribution, and spatiotemporal
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noise with intermediate strength can increase the duration of
transient rotating waves. Studies on networks of sigmoidal
neurons date back to the early 1970s [19]. Originally the
sigmoidal function was introduced as the activity of a pop-
ulation of neurons. It was then employed as a simple model
of a single neuron, which reflects its firing rate or frequency.
Much work has since been carried out on the dynamics of
the networks of sigmoidal neurons, e.g., associative memory
[20]. Pattern formation in one- and two-dimensional arrays of
sigmoidal neurons has been extensively studied; these arrays
are referred to as cellular neural networks [21]. Long-lasting
transient spatiotemporal patterns in two-dimensional cellular
neural networks have also been demonstrated with computer
simulation [22]. They consist of separated regions with slowly
moving boundaries, which are similar to those in the bistable
reaction-diffusion systems. However, they might not have
exponentially long duration, as discussed in Appendix A in
this paper, since a piecewise linear function is employed as an
output function of a neuron for mathematical analysis. Further,
various spatiotemporal patterns in rings of sigmoidal neurons
with delays have been studied [23]. It has also been shown
that rings of unidirectionally coupled sigmoidal neurons show
long-lasting transients in the presence of delays [24]. However,
their duration does not seem to be exponentially dependent on
the number of neurons.

More interestingly, metastable dynamical transient rotating
waves have been found in a ring of unidirectionally coupled
Bonhoeffer-van der Pol neuron models, i.e., spiking neurons,
in the form of propagating oscillations [25]. Neurons are
connected with slow inhibitory synapses, the time constant
of which is more than 10 times smaller than that of a recovery
variable. In the asymptotically stable states of the system,
neurons in firing states and resting states are located alternately
in the ring. In transient states, there are two inconsistencies
at which successive two neurons are in the same state, and
their locations propagate in the direction of coupling. Then
each neuron alternates between a firing state and resting state
until it settles down in one of the states eventually. The
propagation of the locations of the inconsistencies is described
by the same kinematics as that in a ring of sigmoidal neurons,
which derives the exponentially long duration of transient
propagating oscillations.

To the best of the author’s knowledge, metastable dynamical
transients having a duration that increases exponentially with
the number of neurons in a neural network model have
been shown only in the form of rotating waves in rings
of unidirectionally coupled neurons, as mentioned above
[17,18,25]. A ring with unidirectional coupling is a special
structure, and there are bidirectional and self-coupling between
neurons as well as between populations of neurons in general.
In the central nervous system, for instance, lateral inhibition
in the visual pathway, projections between the entorhinal
cortex and CA1 cells in the hippocampus, interactions between
Purkinje cells and basket cells in the cerebellum cortex
and interactions between populations of pyramidal cells are
well known [26]. Bidirectional interactions have been found
even between neurons and astrocytes [27]. Further, various
models have been studied for central pattern generators, which
generate periodic oscillations for rhythmic motion such as
walking, flying, and swimming, e.g., [28] for early work.

Most of them consist of closed loops of neurons including
bidirectional coupling.

In this paper, we consider transient dynamics and patterns
in a ring of bidirectionally coupled sigmoidal neurons. It is
expected that metastable dynamical transient patterns will
emerge because of the symmetric bistability of the system
being considered. Since the neuron model is simple, the
dynamics of the system can be analyzed in the same manner
as that of a ring of unidirectionally coupled sigmoidal
neurons, and changes in transient patterns will be described
kinematically. Obtained results will help to study effects
of bidirectional coupling on metastable dynamical firing
patterns in a ring of spiking neurons. Also, its analysis
will provide new insight into transient dynamics in artificial
neural networks. It is shown that a pair of stable spatially
uniform steady solutions is generated from the origin as the
gain of the sigmoidal output function of a neuron increases
and the system becomes bistable. Pairs of unstable spatially
nonuniform symmetric steady solutions are generated from the
origin through pitchfork bifurcations successively as the gain
increases further. The unstable spatially nonuniform solutions
with zero-state neurons are then stabilized. Pairs of stable and
unstable spatially nonuniform asymmetric steady solutions are
also generated through saddle-node bifurcations. When the
system is bistable, the instability of the spatially nonuniform
symmetric solutions decreases exponentially with the number
of neurons. That is, the largest eigenvalues of the Jacobian
matrices evaluated at the solutions decrease exponentially with
the number of neurons. This exponentially weak instability
of the symmetric solutions is responsible for the emergence
of metastable dynamical patterns. It is shown with computer
simulation that the duration of spatially nonuniform patterns
increases exponentially with the initial width of a smaller
bump and the duration of randomly generated patterns obeys
a power-law distribution. These simulation results are well
explained using a kinematical equation for changes in bump
width.

We also consider three effects on metastable dynamical
transient patterns. The first is small spatial variations in
coupling strength. It is shown with computer simulation
that small random variations in coupling strength easily
stabilize spatially nonuniform steady patterns. Changes in the
bifurcations of spatially nonuniform solutions that cause their
stabilization are then shown. The second effect is asymmetry
in the direction of coupling. Unstable traveling-wave solutions
instead of steady solutions are generated from the origin
through Hopf bifurcations when coupling is asymmetric.
They then change into steady solutions through pinning as
the gain of the output function of a neuron increases. It is
shown that the duration of transient waves rotating in a ring
also increases exponentially with initial bump width and the
growth rate depends on the asymmetry in coupling. The third
effect is asymmetry in the output function of a neuron. It
is shown that the largest eigenvalues of spatially nonuniform
symmetric solutions increase as the asymmetry becomes large.
The duration of spatially nonuniform patterns then increases
only linearly with the initial width of a smaller bump.

Further, transient patterns in a two-dimensional array of
symmetrically coupled neurons are considered. It is shown
that spatially nonuniform solutions with one-dimensional
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forms are dominant and a power-law distribution of randomly
generated patterns is described by the kinematical equation
in a one-dimensional ring of neurons. Although long-lasting
transient patterns have been reported in two-dimensional
cellular neural networks as mentioned above, metastable
dynamical transient patterns with these properties have not
been shown.

The rest of the paper is organized as follows. A model
equation of a ring of bidirectionally coupled sigmoidal neurons
and the bifurcations and properties of its solutions are
explained in Sec. II. In Sec. III, a kinematical equation for a
change in the width of bumps in spatially nonuniform patterns
is described. Metastable dynamics of spatially nonuniform
patterns are then demonstrated by computer simulation, and it
is found that the solutions to the kinematical equation agree
with the simulation results. In the following three sections,
Secs. IV–VI, the effects of variations in coupling strength,
asymmetry in the direction of coupling, and asymmetry in
the output function on metastable dynamical transient patterns
are examined. Transient patterns in a two-dimensional array
of symmetrically coupled neurons are considered in Sec. VII.
Application of the obtained results to networks of spiking
neurons and other systems is discussed in Sec. VIII. Finally,
a conclusion and consideration of future work are given
in Sec. IX. The duration of transient patterns in a cellular
neural network with a piecewise linear output function is also
shown in Appendix A. Remarks on bifurcations and metastable
dynamical patterns in open chains of neurons are provided in
Appendix B.

II. A RING OF BIDIRECTIONALLY COUPLED
SIGMOIDAL NEURONS AND ITS BIFURCATION

A. A model and the bifurcation of the origin

We consider the following model of a ring of bidirectionally
coupled sigmoidal neurons:

dxn/dt = −xn + cn,n−1f (gxn−1) + cn,n+1f (gxn+1)

f (x) = tanh(x) (1 � n� N, xn±N = xn, cn±N,n′±N = cn,n′ ),

(1)

where xn is the state of the nth neuron, f is the output function
of a neuron, g (�0) is an output gain, and cn,n′ is coupling
strength from the nth neuron to the n’th neuron. A periodic
boundary condition is imposed so a total of N neurons make
a closed loop with bidirectional nearest-neighbor coupling. In
this and the next sections, we consider the following symmetric
bidirectional coupling:

cn,n−1 = cn,n+1 = 1/2 (1 � n � N, cn±N,n′±N = cn,n′ ). (2)

Equation (1) has two kinds of symmetry with Eq. (2). One
is Z2 symmetry: Equation (1) is invariant to changes in the
signs of variables, xn → −xn (1 � n � N ), since f (x) is an
odd function [f (−x) = f (x)]. Hence, if xn (1 � n � N ) is a
solution to Eq. (1), then −xn (1 � n� N ) is always a solution to
Eq. (1). The other is the spatial symmetry of the dihedral group
Dn due to identical neurons and symmetric nearest-neighbor
coupling [29]. Hence, the solutions are invariant to shifts and
reflection in n: If xn (1 � n � N ) is a solution to Eq. (1), then

xn+n′ and x−n (1 � n � N , xn±N = xn) are also solutions to
Eq. (1).

The stability of a steady solution [xn(t) = xn (1 � n � N )]
of Eq. (1) is evaluated with the following Jacobian matrix A.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 c1,2f
′
2 c1,Nf ′

N

c2,1f
′
1 −1 c2,3f

′
3

cN,1f
′
1 cN,N−1f

′
N−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× (f ′
n = f ′(gxn) = gsech2(gxn)). (3)

The origin [xn = 0 (1 � n � N )] is always a steady solution
and the eigenvalues λk of A with Eq. (2) evaluated at the origin
are given by

λk = −1 + g cos(2kπ/N ) (0 � k < N ). (4)

The origin is then stable when 0 � g < 1 and is destabilized at
g = g0 = 1 (λ0 = −1 + g0 = 0) through a pitchfork bifurcation
due to the Z2 symmetry of Eq. (1). A pair of stable spatially
uniform states, xn = ± xs (1 � n � N ) with xs = tanh(gxs), is
then generated and they are always stable when g > 1, since f ′

n

→ 0 as g →∞. As g increases further, a pair of the eigenvalues
(λ1 and λN −1) becomes zero at g = g1 = 1/cos(2π/N ) when
N � 5. Two pairs of unstable spatially nonuniform solutions
with the wave number k = 1 are then generated at the same time
through a degenerate pitchfork bifurcation. A further increase
in g causes successive pitchfork bifurcations at the origin, and
pairs of spatially nonuniform solutions with the wave number
k are generated when pairs of the eigenvalues (λk and λN −k ,
2 � k < N/4) become zero. All these spatially nonuniform
solutions are unstable at their generation and their unstable
dimensions are 2k − 1 and 2k.

B. Bifurcations in rings with N = 6, 7, and 8

The bifurcations of solutions and the generation of stable
spatially nonuniform solutions in rings of small numbers of
neurons are shown. The properties of bifurcations in rings of
large numbers of neurons can be understood qualitatively from
these bifurcations and solutions. Bifurcations of Eq. (1) were
calculated with the software package AUTO [30] as well as
computer simulation of Eq. (1) with the Runge-Kutta method
and a time step of 0.01.

Figure 1(a) shows a bifurcation diagram of Eq. (1) with
N = 6, in which the state (xn) of one neuron against the
output gain g is plotted. The branches of stable (unstable)
solutions are plotted with thick (thin) lines. The numbers
(0, 1, 2) located along branches are the unstable dimensions
of solutions. The origin is destabilized at g = g0 = 1 and a
pair of stable spatially uniform steady solutions [ ± xs (1 �
n � N )] is generated. Two branches corresponding to λ1 and
λN −1 are then generated from the origin at g = g1 = 2.0. One
is referred to as type 2, in which x3 = x6 = 0, x1 = x2 > 0,
and x4 = x5 (= −x1) < 0 (plotted with a solid line), which is
one-dimensionally unstable at generation. The other is referred
to as type 0, in which xn > 0 (1 � n � 3) and xn < 0 (4 � n

� 6) (plotted with a dashed line), which is two-dimensionally
unstable. Note that type n indicates that the number of neurons
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FIG. 1. (a) Bifurcation diagram of Eqs. (1) and (2) with N = 6.
The state (xn) of one neuron vs the output gain g. Stable solutions
(thick lines), unstable solutions (thin lines), and the pitchfork
bifurcation point gPF (triangle). Numbers (0, 1, 2) are unstable
dimensions. (b) Examples of spatial patterns of solutions at g = 10.
Type 2 (solid circles with a thick solid line), type 0 (open squares with
a dashed line), and spatially asymmetric solutions pf1, pf2 (triangles
and crosses with solid lines).

with zero states in the solution is n. Figure 1(b) shows examples
of spatial patterns of these solutions at g = 10, in which the type
2 and type 0 solutions are plotted with solid circles connected
with a thick solid line and open squares connected with a
dashed line, respectively. They are located in the invariant
subspace, xn+N/2 = −xn (1 � n � N/2), because of the
Z2 and spatial Dn symmetry of Eqs. (1) and (2). The size
of the two (positive and negative) bumps in these solutions
is the same, and thus they are spatially symmetric. The type
2 solution is then stabilized at g = gPF = 3.72 through a
subcritical pitchfork bifurcation (plotted with an open triangle)
and a pair of spatially asymmetric solutions are generated. A
further increase in g causes a pitchfork bifurcation of a pair
of asymmetric solutions at g = 5.38, but it is supercritical and
stable solutions are not generated. Examples of spatial patterns
of generated unstable spatially asymmetric solutions are also
plotted with triangles and crosses connected with solid lines in
Fig. 1(b) (pf1, pf2). The type 0 solution is neither bifurcated
nor stabilized as g increases.

When the number N of neurons is odd, spatially nonuniform
solutions with different forms are generated from the origin.
Figure 2 shows a bifurcation diagram of Eq. (1) with N = 7

(a)
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FIG. 2. (a) Bifurcation diagram of Eqs. (1) and (2) with N = 7.
The state (xn) of one neuron vs the output gain g. Stable solutions
(thick lines), unstable solutions (thin lines), and the saddle-node
bifurcation point gSN (diamond). Numbers (0, 1, 2) are unstable
dimensions. (b) Examples of spatial patterns of solutions at g =
10. Type 1 (open circles with a solid line), type 0 (open squares with
a dashed line), and type 2 (solid circles with a thick solid line).

[Fig. 2(a)] and examples of spatial patterns of solutions at g =
10 [Fig. 2(b)]. Two pairs of spatially nonuniform solutions
are generated from the origin at g = g1 = 1.60 through a
degenerate pitchfork bifurcation. One is spatially symmetric
and of type 1 with one zero-state neuron and two symmetric
positive and negative bumps consisting of (N − 1)/2 neurons
and is plotted with open circles connected with a solid line in
[Fig. 2(b)]. The other is asymmetric and of type 0 with two
(positive and negative) bumps consisting of (N − 1)/2 and
(N + 1)/2 neurons and is plotted with open squares connected
with a dashed line in Fig. 2(b). Both solutions are not bifurcated
and remain unstable as g increases. Instead, a pair of stable
and unstable solutions is generated through a saddle-node
bifurcation at g = gSN = 3.88 (an open diamond). The stable
solution is of type 2 and has two (positive and negative)
bumps consisting of (N − 3)/2 and (N − 1)/2 neurons and
two zero-state neurons at their boundaries, while the unstable
solution is of type 1 and has two bumps consisting of (N −
3)/2 and (N + 1)/2 neurons and one zero-state neuron at one
boundary. The stable type 2 solution is plotted with closed
circles connected with a thick solid line in Fig. 2(b).

When N = 8, two pairs of unstable spatially symmetric
solutions (type 0, 2) are generated from the origin at g =
1.41 and the type 2 solution is stabilized through a pitchfork
bifurcation at g = 2.46 in the same manner as N = 6. In
addition, a stable spatially asymmetric solution is generated
through a saddle-node bifurcation at g = 3.88. This solution
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has two zero-state neurons and two (positive and negative)
bumps consisting of N/2 − 2 and N/2 neurons, i.e., it is
a type 2 solution. Two pairs of stable spatially nonuniform
solutions thus coexist with a pair of stable spatially uniform
solutions ( ± xs).

C. Stability of spatially nonuniform solutions

Pairs of the eigenvalues [λk and λN−k (2 � k < N/4)] of
the Jacobian matrix A evaluated at the origin become positive
as g increases when N � 9. Pairs of unstable spatially periodic
solutions with the wave number k � 2 are generated, in which
there are k pairs of positive and negative bumps. When N =
2(3 + m)k (m: nonnegative integer), i.e., N/k is even and six
or more, the generated solutions of type-2k are also stabilized
through pitchfork or transcritical bifurcations k times (k − 1
of them are degenerate) as g increases. They consist of k

pairs of positive and negative bumps with 2 + m neurons and
2k zero-state neurons at boundaries, and the states of the
neurons are (−1)k

′
xn+k′(3+m) (1 � n � 3 + m, 0 � k′ � 2k

− 1) with xk′(3+m) = 0 (1 � k′ � 2k). The value of g at the
kth time bifurcation (at the stabilization) depends only on m,
not on k, i.e., it depends on the width (2 + m) of bumps. In
addition, spatially asymmetric solutions, in which a smaller
bump consists of at least two neurons of nonzero states, are
generated through saddle-node bifurcations. Further, solutions
with more than one pair of positive and negative bumps with
various widths are generated through saddle-node bifurcations,
so many stable solutions coexist when N and g are large.
Stabilized spatially nonuniform solutions have one or more
pairs of positive and negative one-peak symmetric bumps
consisting of two or more nonzero state neurons, which are
separated by zero-state neurons, i.e., they are of type 2k (k �
1). In the limit of g → ∞, spatial patterns of the states xn

of neurons in stable spatially nonuniform solutions consist of
even numbers of bumps of arbitrary (including zero) length
of 1 or −1 and {±1/2,0, ∓ 1/2} at the boundaries between
bumps. That is, (−1/2, −1 × m, −1/2, 0, 1/2, 1 × m, 1/2,
0) × k, where × m and × k mean m and k successions of
the left elements, respectively.

The value of the output gain gPF at which the type 2 solution
is stabilized decreases to unity as the number N of neurons
increases as well as the value g1 [=1/cos(2π/N )] at which the
unstable solutions (types 0, 1, 2) with the wave number k =
1 are generated through the Hopf bifurcation from the origin.
The value gSN at which the stable spatially asymmetric type 2
solution with bumps of (N − 3)/2 and (N − 1)/2 neurons
is generated through a saddle-node bifurcation for odd N also
decreases to unity as N increases. Figure 3 shows a semilog
plot of g1 − 1, gPF − 1 (for even N ) and gSN − 1 (for odd
N ) against the number N of neurons with solid circles, open
circles, and open squares, respectively. The values of gSN − 1
for odd N (open squares) are only slightly larger than gPF − 1
for even N (open circles), and both decrease with N . When
g1 < g < gPF for even N and when g1 < g < gSN for odd N ,
the unstable spatially nonuniform solutions coexist with a pair
of stable spatially uniform solutions.

It can also be shown that the values gPF of the symmetric
type 2 solution and the values gSN of the asymmetric type 2
solutions with the same width of a smaller bump are almost
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FIG. 3. Semilog plot of g1 − 1 (solid circles), gPF − 1 for even N

(open circles), gSN − 1 for odd N (open squares), and g′
PF − 1 (open

triangles) vs the number N of neurons.

the same irrespective of N . That is, the stability of the type 2
solutions is almost the same irrespective of the width of a larger
bump. When a smaller bump consists of two positive neurons
with zero-state neurons on both sides, then, for example,
gPF = 3.72 (the symmetric type 2 solution) when N = 6 and
gSN = 3.88 (the asymmetric type 2 solutions) when N = 7, 8,
9, . . . . The stability of the type 2 solutions thus depends mainly
on the width of a smaller bump, and the values of gPF and gSN

decrease with the number of the neurons in a smaller bump.
For a fixed g, if the symmetric type 2 solution with the bump
width N/2 is generated (stabilized) in a ring of N neurons, the
asymmetric type 2 solutions with the same width of a smaller
bump are also generated (stabilized) in a ring of more than N

neurons.
Figure 4 then shows a semilog plot of the largest eigenvalue

μ of the Jacobian matrix A [Eq. (3)] evaluated at the unstable
type 2 and type 1 solutions against the number N of neurons
at g = 1.1 (circles), 1.2 (squares), 1.5 (triangles), and 2.0
(diamonds). The values for type 2 (N : even) and type 1 (N :
odd) are plotted with solid and open symbols, respectively.
The largest eigenvalue decreases exponentially as the number
N of neurons increases until the type 2 solution for even
N is stabilized. The eigenvalue of the type 1 solution (open
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FIG. 4. Semilog plot of the largest eigenvalue μ of the Jacobian
matrix A evaluated at the unstable type 2 (N : odd) and type 1 (N :
even) solutions to Eqs. (1) and (2) vs the number N of neurons at g =
1.1 (circles), 1.2 (squares), 1.5 (triangles), and 2.0 (diamonds). Type
2 (solid symbols) and type 1 (open symbols).
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symbols) for odd N remains at about the same value after the
stabilization of the type 2 solution, even though N increases
further, e.g., g = 1.2 at N = 45, 55 (an open square). (The
largest eigenvalue of the type 0 solution is the same as that
of the type 2 (type 1) solution for even (odd) N when the
type 2 solution is unstable.) These weakly unstable spatially
nonuniform solutions, which have exponentially small largest
eigenvalues, cause metastable dynamical transient patterns, the
duration of which increases exponentially with the number of
neurons.

III. METASTABLE DYNAMICAL TRANSIENT PATTERNS

In this section, we consider transient states of Eq. (1)
with Eq. (2) for small g (>1), in which Eq. (1) is bistable
and spatially nonuniform solutions are unstable. It is shown
that transient spatially nonuniform patterns show metastable
dynamics. Their duration increases exponentially with the
number of neurons and the duration of randomly generated
patterns is distributed in a power-law form.

A. Kinematical equations for a change in bump width

In analogy to kink-antikink interactions in a bistable
reaction-diffusion equation [1] and pulse propagation in a
ring of unidirectionally coupled sigmoidal neurons [17], we
derive an equation for a change in bump size in transient
patterns. We consider a range of the output gain: g1 < g <

gPF for even N and g1 < g < gSN for odd N , in which
Eq. (1) has a pair of stable spatially uniform solutions and
pairs of unstable spatially nonuniform solutions while it has
no stable spatially nonuniform solutions. Let a pair of positive
and negative bumps exist in a ring of N neurons and let the
locations of boundaries between them be l1 and l2 (0 < l1 <

l2 � N ). The widths of bumps is then l = l2 − l1 (mod N )
and N − l, which correspond to the numbers of neurons in
bumps. We consider a continuous limit in space and let l1, l2,
and l be real numbers. According to Ref. [1], the motion of
the boundaries can be described by the following kinematical
equation:

dln/dt = (−1)nβ/2{exp[−α(N − l)] − exp(−αl)}
(n ∈ {1,2}, α,β > 0, 0 < l1 < l2 � N, 0 < l < N). (5)

Although there is no analytical derivation of Eq. (5) for this
spatially discrete system, a qualitatively identical equation
has been derived in the case of unidirectional coupling
[17]. There is interaction between the boundaries, and its
strength decreases exponentially with the distance between
the boundaries, which arises from the difference in the bump
width. This interaction makes the boundaries move right (left)
when the width of a right (left) bump is smaller than the other.
As a result, the width of a smaller bump decreases and the
smaller bump disappears eventually so the state reaches one
of the stable spatially uniform solutions.

A change in the bump width is then described by

dl/dt = β{exp[−α(N − l)] − exp(−αl)} (0 < l < N).

(6)

Equation (6) has an unstable steady solution l(t) = N/2, which
corresponds to the spatially nonuniform symmetric solution to

0
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0 5 10 15 20 25 30 35
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0T

g = 1.1
g = 1.2
g = 1.5
g = 2.0
Eq. (12)

l

FIG. 5. Semilog plot of the duration T of transient patterns in
Eqs. (1) and (2) vs the initial width l0 of a smaller bump. Results of
computer simulation with g = 1.1 (solid circles), 1.2 (open circles),
1.5 (solid squares), 2.0 (open squares), and Eq. (12) (solid lines).

Eq. (1). In this sense, Eqs. (5) and (6) can be applied when the
spatially nonuniform solutions with the bump width l exist in
Eq. (1) and they are unstable, hence, g1 < g < gPF for even N

and g1 < g < gSN for odd N , as shown in Fig. 3. An equation
for the perturbation l′ = l − N/2 in Eq. (6) is

dl′/dt = βexp(−αN/2)[exp(αl′) − exp(−αl′)]
≈ 2αβexp(−αN/2)l′(l′ � 1). (7)

The coefficient of l′ in Eq. (7) can be approximated by the
largest eigenvalue μ of the Jacobian matrix A evaluated
at the spatially nonuniform solution to Eq. (1), i.e., μ =
2αβexp( − αN/2). The values of α and β in Eqs. (5) and
(6) are thus estimated by fitting the graph of μ vs N in Fig. 4
with this relation.

B. Exponential increases in the duration of transient patterns

The solution l(t) to the kinematical equation (6) under the
initial condition l(0) = l0 is obtained as [17]

exp(−α|l(t) − N/2|)
= tanh{−exp(−αN/2)αβt

+ arctanh[exp(−α|l0 − N/2|)]} (l(0) = l0). (8)

The duration T of transient patterns is obtained by letting
l(T ) = 0 under l0 < N/2 or l(T ) = N under l0 > N/2, i.e.,
|l(T ) − N/2| = N/2 in Eq. (8),

T = exp(αN/2)/(αβ){arctanh[exp(−α|l0 − N/2|)]
− arctanh[exp(−αN/2)]}. (9)

Simple forms of Eqs. (6), (8), and (9) are given by letting
N be infinity (N → ∞) in Eq. (6) as

dl/dt = −βexp(−αl), (10)

l(t) = 1/αlog[exp(αl0) − αβt] (l(0) = l0 < N/2), (11)

T = [exp(αl0) − 1]/(αβ) (l(T ) = 0), (12)

where l is the width of a smaller bump. The duration T of
transient patterns thus increases exponentially with the initial
width l0 of a smaller bump, i.e., the number of neurons in a
smaller bump.

Figure 5 shows a semilog plot of the duration T of transient
patterns against the initial width l0 of a smaller bump, which
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was obtained by computer simulation of Eq. (1) with g = 1.1
(solid circles), 1.2 (open circles), 1.5 (solid squares), and 2.0
(open squares). Equation (1) was numerically calculated with
the Runge-Kutta method and a time step of 0.01. The numbers
of neurons were N = 80 (g = 1.1), 60 (g = 1.2), and 40 (g =
1.5, 2.0). The initial condition was given by

xn = −1 (1 � n � l0),xn = 1(l0 + 1 � n � N ). (13)

The value of the duration T was obtained as a time at which
the signs of the states of all neurons became the same, after
which the state quickly converged to the spatially uniform
solution. Equation (12) is also plotted with solid lines in Fig. 5.
The values of α and β are estimated with the relation μ =
2αβexp( − αN/2) in Eq. (7) and the graph of the eigenvalue
μ in Fig. 4 as mentioned above. The exponential growth rates
are α = 0.64, 0.93, 1.42, and 2.38 for g = 1.1, 1.2, 1.5, and
2.0, respectively.

The duration T of spatially asymmetric patterns increases
exponentially with the initial bump width l0 in some ranges.
The range of l0 in which T increases exponentially depends
on the applicability of Eqs. (5) and (6) to Eq. (1), i.e., g1 < g

< gPF, gSN. The exponential increase in T thus appears in the
region in which the unstable solutions exist in Fig. 3, which
lies between the lines of the solid circles (g1) and open (gPF

gSN) circles and squares. For fixed l0, the solution with the
bump width l0 (=N/2) must exist (a lower bound) and be
unstable (an upper bound). For a fixed output gain g, the lower
(upper) bound of l0 is given by a half (=N/2) of the number
N of neurons at which a line of solid circles (open circles and
squares) crosses a horizontal line at g in Fig. 3. (Actually, the
upper bound of l0 in Fig. 5 is larger than the corresponding
N/2 by one or two since the initial condition [Eq. (13)] is not
the same as the type 2 solution to Eq. (1).) The range of l0 for
the exponential increase in T is large when the output gain is
small: 7 < l0 < over 30 for g = 1.1; 5 < l0 < 22 for g =
1.2. The duration of transient patterns then reaches T ∼
108. However, the range for the exponential increase becomes
narrow and the maximum duration becomes small (103 < T

< 105) as the output gain increases (g = 1.5, 2.0). The lines
of Eq. (12) derived from the kinematical equation (10) agree
with the simulation results in the range of l0 for the exponential
increase in T .

On the other hand, the exponential growth rate α increases
with the output gain g. Figure 6 shows the growth rate α of the
duration T against g. Plotted are estimates with the relation
μ = 2αβexp( − αN/2) in Eq. (7) and the graph of the
eigenvalue μ vs N (solid circles) and approximation by α =
2.5(g − 1)0.6 (a solid line). The growth rate increases in
proportion to the power of g − 1. The duration of spatially
asymmetric patterns can more rapidly increase with the initial
bump width as g becomes larger, unless they are stabilized.

The existence of an unstable spatially nonuniform sym-
metric solution is responsible for the occurrence of these
metastable dynamical patterns. The exponential increase in the
duration of transient patterns is attributed to the exponential
decrease in the largest eigenvalue of the Jacobian matrix A

evaluated at the unstable symmetric solution. In a cellular
neural network (CNN) with a piecewise linear output function,
spatially nonuniform solutions are always stable if they exist
and there are no unstable solutions [22]. Then the duration

0.0
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2.0

2.5
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1 1.2 1.4 1.6 1.8 2
g

FIG. 6. Growth rate α of the duration T of transient patterns vs
g. Estimates with the relation μ = 2αβexp( − αN/2) in Eq. (7) and
the graph of the eigenvalue μ vs N (solid circles) and approximation
by α = 2.5(g − 1)0.6 (a solid line).

of transient patterns does not increase exponentially with the
number of neurons but only polynomially with that number.
The results of computer simulation with CNN are shown in
Appendix A.

Although arrays with a ring structure (under a periodic
boundary condition) are considered here, metastable dynam-
ical patterns appear under other boundary conditions when
coupling is symmetric [Eq. (2)]. Bifurcations and transient
patterns in open chains of neurons under Dirichlet and
Neumann boundary conditions are shown in Appendix B.

C. Power-law distributions of the duration of randomly
generated patterns

Next, we consider the duration of transient patterns gen-
erated under a random initial condition. Figure 7 shows an
example of snapshots of spatial patterns of the states of neurons
in transient states. It was obtained with computer simulation
of Eq. (1) with g = 1.2 and N = 35 under a random Gaussian
initial condition with the mean zero and the variance 0.12: xn(0)
∼ N (0, 0.12) (1 � n � N ). A spatial pattern with positive and
negative bumps is quickly generated (t = 30) from an initial
random pattern (t = 0). Its bump width changes very slowly
(t : 30 ∼ 20 000) and it approaches the spatially uniform steady
solution rather suddenly (t : 23 000 ∼ 24 000). The width of
such quickly generated bumps is considered to be distributed
uniformly in (0, N ). The initial width l0 of a smaller bump in
the kinematical equation is then distributed uniformly in (0,
N/2). The probability density function h(T ) of the duration T

FIG. 7. Example of snapshots of spatial patterns of the states of
neurons in transient states in Eqs. (1) and (2) with g = 1.2 and N =
35 under a random Gaussian initial condition: xn(0) ∼ N (0, 0.12)
(1 � n � N ).
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FIG. 8. Log-log plot of a normalized histogram h(T ) of the
duration T obtained with 1000 runs of computer simulation of Eqs. (1)
and (2) with g = 1.2 and N = 35 under a random Gaussian initial
condition: xn(0) ∼ N (0, 0.12) (1 � n � N ) (solid circles). Equations
(15) (a solid line) and (16) (a dashed line) with α = 0.93 and
β = 16.1.

of randomly generated patterns is derived with Eq. (9) as∫ l0

0
U (0,N/2)dl′0 =

∫ T

0
h(T ′)dT

′
, (14)

h(T ) = 1

|dT (l0; N )/dl0|
2

N
=

∣∣∣∣dl0(T ; N )

dT

∣∣∣∣ 2

N

= 4βexp(−αN/2)cosech{2[exp(−αN/2)αβT

+ arctanh(exp(−αN/2))]}/N. (15)

A simpler form is also obtained with Eq. (12) as

h(T ) = β

αβT + 1

2

N
(0 < T < Tc = exp(αN/2)/(αβ)).

(16)

The duration of transient patterns is thus distributed in a power-
law form (h(T ) ∼ 1/T ) up to a cut-off Tc.

Figure 8 shows a log-log plot of a normalized histogram
of the duration T obtained with 1000 runs of the computer
simulation of Eq. (1) with g = 1.2 and N = 35 under a
random Gaussian initial condition: xn(0) ∼ N (0, 0.12) (1 �
n � N ) (solid circles). Equations (15) and (16) with α = 0.93
and β = 16.1 are also plotted with solid and dashed lines,
respectively, and they agree with each other up to the cut-off:
Tc = 7.8 × 105. Finally, it should be noted that the mean and
variance of the duration of randomly generated patterns also
increase exponentially with the number of neurons (data not
shown) [17].

IV. EFFECTS OF VARIATIONS IN COUPLING

In this section, we consider the effects of random variations
in the strength of coupling on transient patterns in Eq. (1).
It has been shown that propagating fronts are localized due
to random spatial variations in reaction-diffusion systems, i.e.,
pinning occurs [31]. It has also been shown that random biases
in the output functions of neurons degrade an exponential
increase in the duration of transient rotating waves in a ring
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FIG. 9. Examples of the duration T of spatially nonuniform
patterns in Eqs. (1) and (17) vs the initial width l0 of a smaller
bump. Results of computer simulation with N = 25, g = 1.2, and
σ = 0.01 under Eq. (13) [ex. 1 - 3 (open symbols)] and when
σ = 0.0 (crosses connected with a solid line). Plotted at T = 104

are stabilized patterns.

of unidirectionally coupled sigmoidal neurons [18]. In the
following it is shown that random variations in the coupling
strength tend to stabilize spatially nonuniform patterns or to
degrade the exponential increase in their duration in the same
manner as these systems.

Instead of the symmetric bidirectional coupling [Eq. (2)],
random variations are added to the strength of coupling
between adjacent neurons as follows:

cn,n±1 = 1/2 + σwn,n±1 (1 � n � N, cn±N,n′±N = cn,n′ ,

σ � 0)

E{wn,n′ } = 0, E{wn1,n
′
1
wn2,n

′
2
} = δn1,n2δn′

1,n
′
2
, (17)

where wn,n′ is Gaussian white noise (∼ N (0, 12) ) and σ 2 is the
variance of random variations in coupling strength. The origin
is still a steady solution to Eq. (1) with Eq. (17). The largest
eigenvalue λ0 of the Jacobian matrix A of Eq. (1) evaluated at
the origin is real and becomes positive at about g = 1.0, when σ

is not much larger than 1/2. A pair of stable nonzero (positive
and negative) solutions is then generated through a pitchfork
bifurcation due to the Z2 symmetry of Eq. (1), which is not
spatially uniform but has random variations in the states xn of
neurons. The other degenerate eigenvalues become separated
real eigenvalues or a pair of complex conjugate eigenvalues.
A limit cycle is then generated through the Hopf bifurcation
in the latter. Since bifurcations depend on individual patterns
of variations in coupling strength, it is here shown that very
small variations can stabilize spatially nonuniform solutions
that would otherwise be unstable.

Figure 9 shows examples of the duration T of spatially
nonuniform patterns against the initial width l0 of a smaller
bump, which were obtained by computer simulation of
Eqs. (1) and (17) with N = 25, g = 1.2, and σ = 0.01 under
the initial condition Eq. (13). The duration in the absence of
variations (σ = 0.0) is plotted with crosses connected with a
solid line. Plotted at T = 104 are the cases when the states did
not converge to one of stable positive and negative solutions
at that time, which were thus considered to be stabilized (ex.
1, 2). Spatially nonuniform patterns are often stabilized in the
presence of small variations (σ = 0.01) in coupling strength.
This occurs in the range of l0 for the exponential increase in
T at about l0 = T /2, in which spatially nonuniform solutions
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FIG. 10. Bifurcation diagram of Eqs. (1) and (18) in the g-b plane.
Loci of the pitchfork bifurcation points (g′

PF, b′
PF) of the symmetric

type 2 solutions for N = 10 (a solid line), 20 (a dashed line), 30 (a
dotted line), and 40 (a dash-dotted line), and the pitchfork bifurcation
points (gPF, 0.0) (triangles).

exist in the absence of variations. Further, an increase in
T tends to reach the ceiling if not stabilized (ex. 3). This
degradation of the exponential increase in the duration of
transient patterns is dealt with in Sec. VI. Random variations
in coupling strength thus severely affect metastable dynamical
transient patterns.

A simple example of changes in the bifurcations of Eq. (1)
causing the stabilization of spatially nonuniform patterns is
shown here. Consider the following bias in coupling strength
at two points when the number N of neurons is even.

cN,1 = cN/2,N/2+1 = 1/2 − b, cn,n±1 = 1/2 (otherwise).

(18)

As a bias b increases from zero to 1/2, the coupling strength
from the first neuron to the N th neuron and that from the
N/2 + 1st neuron to the N/2nd neuron are reduced to zero.
The eigenvalues of λk of the Jacobian matrix A evaluated at the
origin remain real but become simple. When b = 1/2, they are
obtained with N/2 ± 1 neurons under the Dirichlet boundary
condition (x0 = xN /2±1+1 = 0) as

λk = −1 + gcos[k±π/(N/2 ± 1 + 1)] (1 � k± � N/2 ± 1).

(19)

A pair of solutions generated from the origin through a
pitchfork bifurcation at the largest eigenvalue λ1+ = 0 has
the states of neurons with the same sign and that generated at
the second largest eigenvalue λ1− = 0 has the symmetric form
of type 2. Then the first pitchfork bifurcation of the symmetric
type 2 solution and its stabilization are still retained.

Figure 10 shows a bifurcation diagram in the g-b plane, in
which the loci of the pitchfork bifurcation points (g′

PF, b′
PF)

of the symmetric type 2 solutions, at which they are stabilized,
are plotted for N = 10 (a solid line), 20 (a dashed line),
30 (a dotted line), and 40 (a dash-dotted line). The pitchfork
bifurcation points (gPF, 0.0) in the absence of the bias are
also plotted with triangles. The values g′

PF at the pitchfork
bifurcation points are shifted to smaller g as the bias b increases
so the stabilization of the type 2 solutions occurs at smaller g.
Further, the loci tend to be tangential to the line of b = 0 for
large N and then the stability of the type 2 solutions is sensitive
to small biases. In Fig. 3, the values g′

PF at the pitchfork

bifurcation points of the symmetric type 2 solutions with
b = 0.01 are plotted with open triangles. The range of l0 in
which the duration of spatially nonuniform patterns increases
exponentially is restricted between the solid circles g1 (solid
circles) and g′

PF (open triangles), where l0 = N/2. When g =
1.1, for instance, the upper bound of l0 decreases to less than
15 (N = 30 in Fig. 3) and actually l0 = 14 so the maximum
duration becomes only about 103 (see Fig. 5). The type 2
solutions are easily stabilized and an exponential increase in
the duration of transient patterns is lost in the presence of such
small biases in coupling strength.

V. EFFECTS OF ASYMMETRY IN COUPLING

In this section, we consider effects of asymmetry in the
direction of coupling in Eq. (1), i.e., cn,n±1 is constant but
cn,n−1 
= cn,n+1. When the strengths of the forward (cn,n−1)
and backward (cn,n+1) couplings differ from each other, an
unstable traveling-wave solution rotating in a ring is generated
through the Hopf bifurcation from the origin. The traveling-
wave solution changes into an unstable steady solution, i.e.,
pinning occurs as the output gain increases, which is common
in spatially discrete coupled systems [32]. In the presence of
the unstable traveling wave, it is shown that the duration of
transient rotating waves also increases exponentially with the
number of neurons.

Let the coupling strength be

cn,n−1 = 1/2 + d, cn,n+1

= 1/2 − d (1 � n � N, cn±N,n′±N = cn,n′ ). (20)

Coupling becomes unidirectional (cn,n±1 = 1, cn,n∓1 = 0)
when d = ± 1/2, and we let d > 0 without loss of generality.
The eigenvalues λk of the Jacobian matrix A of Eq. (1) with
Eq. (20) evaluated at the origin become complex values except
for λ0 (= −1 + g).

λk = −1 + g[cos(2kπ/N ) + i2dsin(2kπ/N )] (0 � k < N ).

(21)

A pair of stable spatially uniform steady solutions is first
generated from the origin at g = g0 = 1 (k = 0) and Eq. (1)
becomes bistable. An unstable limit cycle is then generated
through the Hopf bifurcation when the real part of a pair
of complex conjugate eigenvalues, λ1 and λN −1, becomes
positive at g = g1 = 1/cos(2π/N ) when N � 5. This limit
cycle is a traveling wave propagating in the direction of the
ascending order of n (1 → N ) and its spatial pattern is similar
to that of a spatially nonuniform steady solution when d = 0.

The unstable traveling wave is then pinned as g increases
further when d is small (d ∼ 0.01), i.e., its speed becomes
zero (the period of the limit cycle diverges). It breaks up
into a saddle-node loop (a heteroclinic cycle) and N pairs
of unstable steady solutions are generated. They have the
same form by shifts in n, and one is a type 2 (N : even) or
type 1 (N : odd) solution while the other is a type 0 solution.
Their bifurcations with g are qualitatively the same as those
in symmetric coupling (d = 0). The type 2 solution for even
N is stabilized through a pitchfork bifurcation, while the other
solutions are not bifurcated.

Figure 11(a) shows a bifurcation diagram in the g-d plane,
in which the loci of the pinning points (gPIN, dPIN) (a solid line)

062902-9



YO HORIKAWA PHYSICAL REVIEW E 88, 062902 (2013)

0.000

0.005

0.010

0.015

0.020

0.025
(a)

(b)

001011 g

d

gPIN
gPF

-5

-4

-3

-2

1.0 1.5 2.0 2.5 3.0 3.5 4.0g

lo
g 1

0d

66 8812 12

FIG. 11. Bifurcation diagram of Eqs. (1) and (20) in the g-d plane.
(a) Loci of the pinning points (gPIN, dPIN) (a solid line) of the traveling
wave and the pitchfork bifurcation points (gPF, dPF) (a dotted line) of
the type 2 solution, and (g1, 0.0), (gPF, 0.0) (triangles) for N = 6.
(b) Magnification near d = 0. Loci of the pinning points (gPIN, dPIN)
(solid lines) and the pitchfork bifurcation points (gPF, dPF) (dotted
lines), and (g1, 0.0), (gPF, 0.0) (triangles) for N = 6, 8, 12.

of the traveling wave and the pitchfork bifurcation points (gPF,
dPF) (a dotted line) of the type 2 solution with N = 6 are plotted.
Note that the abscissa is scaled logarithmically. The locus of
pinning points (gPIN, dPIN) connects to the pitchfork bifurcation
point [g1 (=2.0), 0.0] of the type 2 solution from the origin at
d = 0.0, and the locus of the pitchfork bifurcation points (gPF,
dPF) connects to the corresponding one [gPF (=3.72), 0.0].
The two loci merge together as g increases (g > 5.0). It can be
shown that they hardly depend on the number N of neurons
when g is large (g > 5.0) and dPIN = 1/gPIN in the limit of
g → ∞, while they connect to the corresponding pitchfork
bifurcation points [(g1, 0.0), (gPF, 0.0)]. Figure 11(b) shows
the loci of the pinning points (solid lines) and the pitchfork
bifurcation points (dotted lines) in the g-d plane for N = 6,
8, and 12. The number of neurons is indicated along each
locus. As N increases, the separation of two loci is shifted
to smaller g and, hence, to smaller d. The unstable traveling
wave changes into a stable steady solution almost at the same
time of pinning when N is large, unless d is extremely small.

Stable spatially asymmetric steady solutions [type 2n (n �
1)] are also generated through saddle-node bifurcations in the
same manner as symmetric coupling. It can be shown that these
saddle-node bifurcation points change in the same manner in
the g-d plane as the pitchfork bifurcation point of the type 2
solution for even values of N in Fig. 11. Hence, the traveling
wave is pinned and then a stable type 2 solution is generated
through a saddle-node bifurcation as g increases when N is
odd.

(a)

(b)

FIG. 12. (a) Semilog plot of ln(ν)/τp of the traveling-wave
solution vs the number N of neurons in Eqs. (1) and (20) with d = 0.1
and g = 1.05 (solid circles), 1.1 (open circles), 1.2 (solid squares),
1.5 (open squares), 2.0 (solid triangles), 4.0 (open triangles), and
10 (crosses). ν: the largest eigenvalue of the Poincaré map; τp: the
period. (b) Estimated exponential growth rate α in Eq. (12) vs the
output gain g.

The traveling waves (not pinned) are always unstable, but
their instability decreases exponentially with the number N

of neurons in the same manner as the spatially nonuniform
steady solutions for d = 0. A change in the bump width l

in a transient state is described by the kinematical equations
(6) and (10) [17]. The duration T of spatially asymmetric
rotating waves with the initial width l0 of a smaller bump is then
given by Eqs. (9) and (12). The coefficient 2αβexp( − αN/2)
(=μ) of the perturbation l′ (=l − N/2) in Eq. (7) is
estimated with ln(ν)/τp, where ν is the largest eigenvalue
of the Poincaré map of the traveling-wave solution and
τp is its period. This estimate is derived as l′(τp)/l′(0) =
exp[2αβexp(−αN/2)τp] = ν. Figure 12(a) shows a semilog
plot of ln(ν)/τp of the traveling-wave solution against the
number N of neurons in Eqs. (1) and (20) with d = 0.1 and g =
1.05 (solid circles), 1.1 (open circles), 1.2 (solid squares), 1.5
(open squares), 2.0 (solid triangles), 4.0 (open triangles), and
10 (crosses). The value of ln(ν)/τp decreases exponentially
with N ; hence, the relaxation time of the unstable traveling
waves (∼τp/ln(ν)) increases exponentially with N .

Figure 12(b) shows the exponential growth rate α of the
duration of spatially asymmetric rotating waves in Eq. (12)
against the output gain g (solid circles). The values of α were
estimated with the slopes of the graphs of ln(ν)/τp vs N
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FIG. 13. Semilog plot of the duration T of spatially asymmetric
rotating waves in Eqs. (1) and (20) vs the initial width l0 of a smaller
bump. Results of computer simulation with N = 21 under Eq. (13):
g = 2.0 and d = 0.0 − 0.5 by 0.1 (circles, squares and triangles);
Eq. (12) for g = 2.0 and d = 0.1 (a solid line); g = 10.0 and d =
0.03 (crosses).

in Fig. 12(a) [ln(ν)/τp = 2αβexp(−αN/2)]. The growth rate
increases for small g (1 < g < 3) in a similar manner to that of
the steady-state solutions for d = 0.0 in Fig. 6, and it is slightly
smaller than that in Fig. 6. However, its increase is saturated
and it reaches its maximum (≈2.7) at g ≈ 3.5 and then begins
to decrease gradually. It has been shown that the growth rate
α of the duration of rotating waves hardly depends on g in a
ring of unidirectionally coupled sigmoidal neurons (d = 1/2)
for g � 1.1 [18]. This rate is approximated as α = ln2 (≈0.7),
which is derived in the limit of g → ∞. The growth rate thus
changes as d increases, since it depends on g as shown in
Fig. 12(b).

Figure 13 shows a semilog plot of the duration T of spatially
asymmetric rotating waves against the initial width l0 of a
smaller bump with d = 0.0 − 0.5 by 0.1. They were obtained
by computer simulation of Eqs. (1) and (20) with N = 21
and g = 2.0 under the initial condition Eq. (13). The duration
of the rotating waves increases exponentially with l0, and the
values for small d (=0.1) (open circles) are about the same
as those for d = 0.0 (solid circles). The growth rate α = 2.03
for d = 0.1 is slightly smaller than α = 2.38 for d = 0.0,
as shown in Figs. 12(b) and 6, respectively. Although steady
asymmetric patterns are stabilized for l0 � 7 when d = 0.0
(Fig. 5), the traveling waves are not stabilized and their
duration can increase to infinity with the initial bump width
l0. Equation (12) with α = 2.04 and β = 75.2 estimated with
the graph for g = 2.0 in Fig. 12(b) agrees with the simulation
results for d = 0.1 (a solid line). As d increases from 0.1
to 0.5, the growth rate α (the slope of the graph) decreases
from 2.03 to 0.8 and approaches the constant value (≈ln2) as
noted above. When g is large and d is close to dPIN (≈dPF), the
growth rate becomes more than five, e.g., α = 7.5 when g = 10
and d = 0.03 (>dPIN = 0.0214), which is plotted with crosses
in Fig. 13. The traveling waves then become practically stable
even though l0 is small.

VI. EFFECTS OF ASYMMETRY IN THE
OUTPUT FUNCTION

In this section, we consider the effects of asymmetry in the
output function f of a neuron on transient states. When the Z2
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FIG. 14. Bifurcation diagram of Eqs. (1) and (22) with e = 0.01.
(a) The states (xn, 1 � n � N ) of all neurons vs the output gain
g for N = 6. Stable solutions (thick lines), unstable solutions (thin
lines), saddle-node bifurcation points gSN (diamonds). (b) Loci of the
saddle-node bifurcation points (gSN, eSN) in the g-e plane for N = 6 (a
solid line), 8 (a dashed line), and 40 (a dotted line), and the pitchfork
bifurcation points (gPF, 0.0) (triangles).

symmetry of Eq. (1) is broken because of the asymmetry in f ,
the strength of the stability of a spatially uniform positive
solution differs from that of a negative one. In a bistable
reaction-diffusion equation, it is known that a stationary kink
changes into a traveling kink when a cubic function becomes
asymmetric. As a result, the duration of a pulse pattern (a pair
of kink and antikink) becomes linear with respect to the pulse
width. It has also been shown that asymmetry in the output
function degrades an exponential increase in the duration of
transient rotating waves in a ring of unidirectionally coupled
neurons [18]. In the following, it is shown that an exponential
decrease in the largest eigenvalue of the Jacobian matrix A of
Eq. (1) evaluated at the type 2 solution is lost so metastable
dynamical transient patterns disappear.

The following asymmetric function fe is used instead of
f (x) = tanh(x) in Eq. (1):

fe(x) = [1 − exp(−2x)]/[(1 + e) + (1 − e)exp(−2x)].

(22)

Note that fe(x) = tanh(x) when e = 0. The asymptotic values
at infinity of x are shifted from ± 1 as fe(x) → 1/(1 + e) (x
→ ∞), fe(x) → − 1/(1 − e) (x → −∞). Since we can let
fe(x) → − fe(−x) and x → − x when e → − e, we let e

> 0 without loss of generality. The asymptotic values fe(∞)
and fe( − ∞) then decrease from ± 1 by e/(1 + e) and e/

(1 − e), respectively. We here consider symmetric bidirec-
tional coupling and use Eq. (2). The origin is a steady solution
and the eigenvalues of the Jacobian matrix A evaluated at the
origin are the same as in Eq. (4), since fe

′(0) = f ′(0) = 1.
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FIG. 15. Log-log plot of the largest eigenvalue μ of the Jacobian
matrix A evaluated at the solution of Eqs. (1) and (22) corresponding
to the type 2 solution vs e when g = 1.2 and N = 12 (a solid line),
20 (a dashed line), 30 (a dotted line), and 40 (a dash-dotted line).

Figure 14(a) shows a bifurcation diagram of Eqs. (1) and
(22) with e = 0.01 and N = 6, in which the states (xn, 1 �
n � N ) of all neurons are plotted against the output gain g.
The branches of stable (unstable) solutions are plotted with
thick (thin) lines. The first bifurcation of the origin at g =
g0 (=1) becomes transcritical, although it is scarcely visible.
The branch of a generated stable spatially uniform solution
with neurons of positive states reaches g = 10, and that of
an unstable solution with neurons of negative states is quickly
stabilized through a saddle-node bifurcation (g = 0.99993)
and turns to reach g = 10 (thick solid lines). Two pairs of
unstable spatially nonuniform steady solutions [type 2 (thin
solid lines), type 0 (thin dashed lines)] are also generated
through a degenerate pitchfork bifurcation due to the Dn

symmetry from the origin at g = g1 (=2.0). The states of
neurons in these solutions are shifted to positive from those
for e = 0.0, e.g., the values of the zero-state neurons of the type
2 solution become positive. They correspond to the boundaries
of the basins of the stable spatially uniform solutions and they
are shifted to a positive solution with a weak stability and
a small basin. A stable spatially nonuniform solution (thick
dashed lines) is generated through a saddle-node bifurcation
at g = gSN = 4.40 (diamonds), even though the value of N is
even because of the breaking of the Z2 symmetry. The states
of neurons in the stable solution are shifted to negative from
the type 2 solution for e = 0.0.

Figure 14(b) shows a bifurcation diagram in the g-e plane,
in which the loci of the saddle-node bifurcation points (gSN,
eSN) of the stable spatially nonuniform steady solutions for
N = 6 (a solid line), 8 (a dashed line), and 40 (a dotted line)
are plotted. They connect to the pitchfork bifurcation points
(e.g., gPF = 3.72 for N = 6) of the symmetric type 2 solutions
at e = 0.0 (triangles). The loci for N � 8 are almost the same
except for e ≈ 0.0. The stable spatially nonuniform solutions
exist in the regions under the loci.

Figure 15 shows a log-log plot of the largest eigenvalue μ

of the Jacobian matrix A [Eq. (3)] evaluated at the solution
of Eqs. (1) and (22) generated from the origin corresponding
to the unstable symmetric type 2 solution against e when g =
1.2 and N = 12 (a solid line), 20 (a dashed line), 30 (a dotted
line), or 40 (a dash-dotted line). The largest eigenvalue μ

begins to increase when e reaches approximately the value of
μ at e = 0.0, and then the two terms take approximately the
same value (μ ≈ e). The eigenvalues smaller than the value

FIG. 16. Semilog plot of the duration T of spatially nonuniform
patterns in Eqs. (1) and (22) vs the initial width l0 of a smaller
bump. Results of computer simulation with g = 1.2 and N = 40
under Eq. (13) for e = 0.1 (solid circles), 0.01 (open circles), 0.001
(solid squares), 0.0001 (open squares), and 0.0 (crosses). Solutions
to Eq. (23) (e > 0) and Eq. (9) (e = 0) (solid lines).

of e thus disappear even for large N , and the maximum of the
duration of spatially nonuniform patterns decreases until it is
on the order of 1/e.

Figure 16 shows a semilog plot of the duration T of
spatially nonuniform patterns against the initial width l0 of a
smaller bump, which was obtained with computer simulation
of Eqs. (1) and (22) with g = 1.2 and N = 40 under the initial
condition Eq. (13). Plotted are the values for e = 0.1 (solid
circles), 0.01 (open circles), 0.001 (solid squares), 0.0001
(open squares), and 0.0 (crosses). The exponential increase
in the duration with l0 degrades and its increase is actually
linear with respect to l0.

This change in the duration of transient patterns due to the
asymmetry e is explained by adding a small constant γ to the
kinematical equations (6) and (10),

dl/dt = γ + β{exp[−α(N − l)] − exp(−αl)} (0 < l < N)

≈ γ − βexp(−αl) (0 < l < N/2). (23)

The constant γ corresponds to double the speed of a
traveling kink solution propagating in an infinite linear chain
of neurons. Equation (23) can be solved and the duration
T of spatially nonuniform patterns has the following form
[18,33]:

T ≈ [exp(αl0) − 1]/(αβ) (0 < l0 < lc)

≈ (N − l0)/γ (lc < l0 < N − lc)

≈ [exp(α(N − l0)) − 1]/(αβ) (N − lc < l0 < N )

(lc ≈ log(β/γ )/α). (24)

A change in T for lc < l0 < N − lc becomes linear to l0. An
exponential increase in T around N/2 then disappears and the
maximum of T is about (N − lc)/γ . The threshold width lc
decreases as γ increases, and the regions (0 < l0 < lc, N −
lc < l0 < N ) for the exponential increase in T become small.
The solutions to Eq. (23) (e > 0) and Eq. (9) (e = 0) are also
plotted with solid lines in Fig. 16. Since the value of γ cannot
be obtained analytically, we estimated it experimentally as
γ = 1.83e. These lines agree with the simulation results except
in the case of l0 ≈ 0 and l0 ≈ N .
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The graphs of duration T in Fig. 9 have similar forms unless
spatially nonuniform patterns are stabilized, in which case
random variations in coupling strength are added. Randomness
in coupling strength can cause biases equivalent to the
asymmetry in the output function, e.g., cn,n−1 < cn,n+1 for 1 �
n � N/2 and cn,n−1 > cn,n+1 for N/2 + 1 � n � N . Random
variations in coupling strength thus also tend to degrade an
exponential increase in the duration of transient patterns in
addition to causing the stabilization of spatially nonuniform
patterns. Since the intrinsic coupling strength in the framework
of Eq. (1) is cn,n′g, the stabilization of spatially nonuniform
patterns can be caused by adding the bias e randomly to the
output function of each neuron.

VII. TRANSIENT PATTERNS IN A
TWO-DIMENSIONAL ARRAY

In this section, we study the duration of transient patterns in
a two-dimensional array of sigmoidal neurons with symmetric
nearest-neighbor coupling. The model equation is

dxm,n/dt = −xm,n + [f (gxm−1,n) + f (gxm+1,n)

+f (gxm,n−1) + f (gxm,n+1)]/4

f (x) = tanh(x) (1 � m � M, 1 � n � N,

xm±M,n = xm,n±N = xm,n), (25)

where a periodic boundary condition is imposed. Equation (25)
has a pair of stable spatially uniform steady solutions: xm,n =
± xs (1 � m � M , 1 � n � N ) with xs = tanh(gxs) when
g > 1. It also has steady solutions with the one-dimensional
forms, in which the states of neurons depend only on n: xm,n

= xn (1 � m � M , 1 � n � N ). These solutions are obtained
by the following equation for a ring of bidirectionally coupled
neurons.

dxn/dt = −xn + [f (gxn−1) + f (gxn+1)]/4 + f (gxn)/2

f (x) = tanh(x)(1 � n � N, xn±N = xn). (26)

In contrast to the case of diffusive coupling, a term of
self-excitation [f (gxn)/2] through two adjacent neurons in the
direction of m is added. The eigenvalues λ′

k of the Jacobian
matrix evaluated at the origin of Eq. (26) are given by

λ′
k = −1 + g[1 + cos(2kπ/N )]/2 (0 � k < N ). (27)

Unstable spatially nonuniform steady solutions to Eq. (26)
are generated through pitchfork bifurcations from the origin
when the values of λ′

k (k � 1) become zero as g increases
when N � 3. The values of g′

k = 2/[1 + cos(2kπ/N )] (k �
1) at the pitchfork bifurcation points are smaller than those
[gk = 1/cos(2kπ/N )] of Eq. (1). These solutions are also
stabilized at smaller values of g than those of Eq. (1) when
N is even. Pairs of stable and unstable asymmetric steady
solutions are also generated through saddle-node bifurcations.
In contrast to Eq. (1), stable solutions are not type 2 but type
0, i.e., they have no zero-state neurons [xn 
= 0 (1 � n � N )],
which is due to self-excitation. Actually, it can be shown that
the stabilities of type 0 and type 2 solutions are interchanged
through successive pitchfork bifurcations as the strength of
self-excitation increases.

The largest eigenvalues of the spatially nonuniform solu-
tions generated from the origin also decrease exponentially
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FIG. 17. Semilog plot of the largest eigenvalue μ′ of the Jacobian
matrix evaluated at the unstable type 0 solution of Eq. (26) with g =
1.1 vs the number N of neurons.

with N when g is small enough that they are not stabilized
when N is even and that stable spatially nonuniform solutions
are not generated when N is odd. Figure 17 shows a semilog
plot of the largest eigenvalue μ′ of the Jacobian matrix of
Eq. (26) evaluated at the unstable type 0 solution against the
number N of neurons at g = 1.1. The solution is stabilized
at N = 38, which is smaller than that in Eq. (1) (N at the
stabilization is more than 60), but the slope of the graph in the
unstable region is larger than that of Eq. (1) in Fig. 4. As a
result, the values of the smallest eigenvalues are in the same
order (∼10−6). The kinematical equations (6) and (10) can also
be applied for spatially nonuniform patterns and the values of
the parameters α and β can be estimated from the graph of μ′
vs N in Fig. 17. The duration of spatially nonuniform patterns
in Eq. (26) also increases exponentially with the initial width
of a smaller bump.

In a two-dimensional array of neurons [Eq. (25)], these
solutions with the one-dimensional forms are first generated as
g increases before solutions with various shapes are generated.
In computer simulation, solutions with patterns other than
one-dimensional forms, e.g., bounded island patterns, are
generated through saddle-node bifurcations at large g, e.g.,
g > 6 when M = N = 20. Further, when the initial values of
xm,n are given randomly, the array is quickly separated into
domains consisting of neurons with positive and negative states
as a bistable reaction-diffusion equation in a two-dimensional
domain. It is known that the motion of the boundaries
of domains depends on their curvature [2,3]. If the same
kinematics is applicable to an array of neurons, patterns with
nonzero curvature disappear more quickly than patterns with
zero curvature when there are no stable solutions other than a
pair of spatially uniform solutions. It is thus expected that only
metastable dynamical patterns with the one-dimensional forms
remain for a long time and become dominant in transients, in
which the motion of the boundaries is exponentially slow.

Figure 18 shows a log-log plot of a normalized histogram of
the duration T obtained with 1000 runs of computer simulation
of Eq. (25) with g = 1.1 and M = N = 35 under a random
Gaussian initial condition: xm,n(0) ∼ N (0, 0.12) (1 � m,
n � N ) (solid circles). Equations (15) and (16) with N = 35,
α = 0.92, and β = 14.5 estimated from Fig. 17 are also plotted
with solid and dashed lines, respectively, where the cut-off
is Tc = 7.4 × 105. These results agree with the simulation
result, and thus the duration of transient patterns depends not
on the total number (M × N ) of neurons in an array but
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FIG. 18. Log-log plot of a normalized histogram of the duration
T obtained with 1000 runs of computer simulation of Eq. (25) with
g = 1.1 and M = N = 35 under a random Gaussian initial condition:
xm,n(0) ∼ N (0, 0.12) (1 � m, n � N ) (solid circles). Equations (15)
(a solid line) and (16) (a dashed line) with N = 35, α = 0.92, and
β = 14.5.

rather on the number [min(M , N )] of neurons within a single
row of an array. Metastable dynamical patterns emerging in a
two-dimensional array of neurons are intrinsically dominated
by one-dimensional dynamics.

VIII. DISCUSSION

We examined a ring network consisting of simple sig-
moidal neuron models to study its bifurcations and show
metastable dynamical transient patterns. As mentioned in
Sec. I, however, metastable dynamical transient rotating waves
in the form of propagating oscillations have been found
in a ring of unidirectionally coupled Bonhoeffer-van der
Pol neuron models with slow inhibitory synapses [25]. The
results obtained in this paper are applicable to such networks
consisting of biologically plausible spiking neurons with
inhibitory bidirectional coupling. Positive and negative output
of a sigmoidal neuron correspond to the firing and resting states
of a spiking neuron, respectively. Firing neurons and resting
neurons are alternately located in the steady states of a ring of
inhibitorily coupled spiking neurons. In transients, there are
two inconsistencies at which adjacent neurons are in the same
state (firing-firing or resting-resting) and their locations move
in the direction of coupling. Although we dealt with a ring
of neurons with excitatory coupling (cn,n′ > 0), the excitatory
ring can be changed into a ring with inhibitory coupling if the
number of neurons is even. That is, these two types of coupling
can be interchanged by changing the signs of neurons states to
even (or odd) indices [x2m → − x2m (1 � m � N/2)] when
the strength of coupling is constant (cn,n′ = c). Analysis of the
bifurcations and stability of propagating oscillations is difficult
because the waves are quasiperiodic and they take the form of
changes in the locations of the inconsistencies, not changes
in the states of individual neurons. Thus, the findings in this
paper are useful in examining conditions for the emergence of
metastable dynamical firing patterns of spiking neurons.

First, it was shown in Sec. II that spatially nonuniform
steady solutions are stabilized in a ring of a small number
of neurons when the output gain of the neuron is large (g »
1). Long-lasting transient patterns in a ring of a large number
of neurons existed only in the case of small output gains
(g ≈ 1). This result indicates that metastable dynamical
transient nonpropagating firing patterns emerge in rings of
bidirectionally coupled spiking neurons that show graded
responses. It is known that the firing activity of neurons can
be classified into two types according to their responses to a
constant current [34]. A class I neuron is capable of repetitive
firing over a wide range of frequencies, which varies smoothly
with the strength of the applied current. A class II neuron fires
in a limited range of frequencies, which is relatively insensitive
to changes in current strength. In a mathematical context,
the transitions between resting state and firing state occur in
response to homoclinic bifurcations in class I neurons and
subcritical Hopf bifurcations in class II neurons. Thus, a class
I neuron can fire with zero (arbitrarily low) frequency while
a class II neuron begins to fire with a characteristic nonzero
frequency when the strength of the current crosses a threshold.
It is thus more likely that metastable dynamical transient
patterns will appear in rings of bidirectionally coupled class
I neurons than in class II neurons. It is of interest to study
the metastable dynamical transient firing patterns in rings
of bidirectionally coupled class I neuron models, e.g., the
Morris-Lecar model [35] and the Hindmarsh-Rose model [36].
An integrate-and-fire model is also regarded as a simple and
more tractable model of a class I neuron [37]. It is hoped
that metastable dynamics will be able to be analytically
investigated through networks of coupled integrate-and-fire
neuron models.

Section V showed that traveling waves generated in the
presence of asymmetry in bidirectional coupling are unstable
even when they are nearly pinned. The nearly pinned rotating
waves showed metastable dynamics and the duration of the
transient rotating waves was extremely long even in rings with
small numbers of neurons (l0 = 5 in Fig. 13). Such long-lasting
propagating oscillations might be observed in rings of small
numbers of spiking neurons with asymmetric bidirectional
coupling.

In Sec. VI, asymmetry in the sigmoidal output function
of a neuron degraded an exponential increase in the duration
of the transient patterns. The two states (firing and resting)
of a spiking neuron qualitatively differ from each other and
thus the output of neurons is regarded as asymmetric. This is
probably the reason why metastable dynamical propagating
oscillations have been observed in a ring of spiking neurons
coupled through inhibition, not excitation. Bifurcation anal-
ysis and computer simulation can show that the metastable
dynamics of rotating waves remains in the presence of large
asymmetry in the sigmoidal output function when the coupling
is inhibitory. In Sec. IV, it was also shown that random
variations in the strength of coupling (also random biases
in the output functions of neurons) have considerable effects
on metastable dynamical patterns. The variations stabilized
spatially nonuniform patterns or degraded an exponential
increase in their duration. However, it has been shown that
the effects of variations and biases are suppressed to some
extent in circuit experiments with ICs on metastable dynamical
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propagating waves when coupling is inhibitory (negative)
[17,38]. These findings support the possibility that metastable
dynamical transient nonpropagating oscillations exist in rings
of inhibitorily coupled spiking neurons. They might also
emerge in open chains and two-dimensional arrays of spiking
neurons, as shown in Appendix B and Sec. VII, respectively.

Although it is believed that metastable dynamics commonly
emerges in systems with symmetric bistability, it is meaningful
to show that they are realized in coupled dynamical systems
consisting of elements showing complicated behaviors like
neurons. In addition, metastable dynamical rotating waves
have been found in bistable rings of coupled maps [39]. Since
a discrete time map is regarded as the Poincaré map in a
continuous time system, this finding indicates that metastable
dynamical transients exist in systems which have bistable
periodic solutions. In fact, it has been shown that the duration
of transient propagating phase waves in a ring of unidirec-
tionally coupled parametric oscillators increases exponentially
with the number of oscillators [40]. Such systems of coupled
parametric oscillators arise in microelectromechanical systems
(MEMS), which are widely used as sensors of various kinds
and many other devices. Hence, their analysis is of practical
importance in mechanical and electronic engineering. In
contrast to a neuron, a single parametric oscillator has a
couple of stable periodic oscillations with a phase difference
π , i.e., the oscillator is symmetrically bistable in itself without
coupling or input. Bidirectional coupling is then simply
diffusive, due to the mechanical or electric resistance intrinsic
to the materials. Thus, metastable dynamical nonpropagating
spatially nonuniform phase patterns might emerge under
natural physical conditions.

IX. CONCLUSION AND FUTURE WORK

In this paper, metastable dynamical patterns and their
stabilization in a ring of bidirectionally coupled sigmoidal
neurons were studied. First, the generation and bifurcations
of steady solutions to the system were shown. A pair of
stable spatially uniform solutions was generated from the
origin and pairs of unstable spatially nonuniform solutions
were generated successively as the output gain increased. A
further increase in the output gain caused the stabilization
of the spatially nonuniform solutions through a pitchfork
bifurcation when the number N of neurons was even and
caused the generation of a stable spatially nonuniform solution
through a saddle-node bifurcation when N was odd. When the
system was bistable, the largest eigenvalues of the unstable
spatially nonuniform solutions decreased exponentially with
the number of neurons. As a result, transient patterns showed
metastable dynamics: The duration of spatially nonuniform
patterns increased exponentially with the initial width of a
smaller bump, and the distribution of the duration of randomly
generated patterns obeyed a power-law distribution. The
expression derived with a kinematical equation for a change
in the bump width agreed with the simulation results.

Further, we showed the following: Small variations in
coupling strength tend to stabilize spatially nonuniform pat-
terns; asymmetry in the direction of coupling causes traveling
waves and their pinning; and asymmetry in the output function
degrades the exponential increase in the duration of transient

patterns. Finally, we considered a two-dimensional array of
symmetrically coupled sigmoidal neurons and showed the
solutions with the one-dimensional forms and a power-law
distribution of the duration of randomly generated patterns.

There are four future areas of interest. The first is the effect
of spatiotemporal noise. It is expected that spatiotemporal
noise of intermediate intensity will increase the duration of
spatially asymmetric patterns in the same manner as a ring of
unidirectionally coupled sigmoidal neurons [18] and a bistable
reaction-diffusion equation [33].

The second concerns the rotating waves in a ring of
asymmetrically coupled neurons. A kinematics of unstable
rotating waves in a ring of asymmetrically coupled neurons
with large output gains can be derived. An increase in the
growth rate of the duration of transient rotating waves near
a pinning point, which is mentioned in Sec. V, can then be
explained. Further, a power-law distribution of the duration of
randomly generated rotating waves may appear even in rings
of small numbers of neurons.

The third area of interest is inhibitory (negative) coupling.
When coupling is inhibitory (c < 0), the bifurcations and
stability of solutions differ when the output function of a
neuron is asymmetric and it is expected that metastable
dynamical transient patterns remain. Further, when coupling is
inhibitory and the number of neurons is odd, stable oscillations
accompanying the generation of stable traveling waves occur
(a ring oscillator). Pinning of these waves can occur in the
presence of asymmetry in coupling.

The fourth area involves the effects of the self-excitation and
self-inhibition of neurons. The growth rate of an exponential
increase in the duration of transient patterns depends on the
strength of self-excitation as shown in Sec. VII. It is expected
that self-inhibition makes spatially nonuniform solutions un-
stable for larger output gains, and then the maximum duration
of transient patterns increases.
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APPENDIX A: DURATION OF TRANSIENT
PATTERNS IN CNN

The results of computer simulation on the duration of
spatially nonuniform patterns in a one-dimensional cellular
neural network (CNN) with a piecewise linear output function
and symmetric coupling are shown. The model equation is

dxn/dt = −xn + sfL(xn−1) + pfL(gxn) + sfL(gxn+1)

fL(x) = (|x + 1| + |x − 1|)/2 (1 � n � N, xn±N = xn),

(A1)

where xn is the state of the nth cell, s (>0) is the strength
of coupling with nearest-neighbor cells, p is the strength of
self-coupling, and a periodic boundary condition is imposed.
The origin is a steady solution to Eq. (A1) and the eigenvalues
of the Jacobian matrix evaluated at the origin are given by

λk = p − 1 + 2s cos(2kπ/N ) (0 � k < N ). (A2)
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FIG. 19. Semilog plot of the duration T of spatially nonuniform
patterns in Eq. (A1) vs the initial width l0 of a smaller bump. Results
of computer simulation of Eq. (A1) with N = 100, p = 0 and s =
0.51 (solid circles), 0.505 (open circles), and 0.501 (solid squares)
under Eq. (13). Approximation: T = 0.6l0

2 (a solid line).

The origin is unstable when s > (1 − p)/2 (λ0 > 0) and
Eq. (A1) has a pair of spatially uniform steady solutions:
xn = ± (p + 2s) (1 � n � N ). It has been shown that
Eq. (A1) has a stable spatially nonuniform steady solution
when s > (1 − p)/[2cos(π/(B + 2)], where N � 2(B + 2)
and B is a nonnegative integer (B � 0) [22]. The solution
consists of a succession of at least two positively saturated cells
[fL(xn) = 1], a succession of at least two negatively saturated
cells [fL(xn) = − 1] and two successions of B unsaturated
cells [|fL(xn)| < 1] connecting them. Conversely speaking,
Eq. (A1) has no spatially nonuniform solution when N <

2(B + 2) with B < π/arccos[(1 − p)/(2s)] − 2. Spatially
nonuniform solutions are thus stable if they exist. There are
no unstable spatially nonuniform solutions, the instability of
which decreases exponentially with the number of cells as in
those of Eq. (1). Consequently an exponential increase in the
duration of transient patterns until convergence to one of the
stable spatially uniform solutions does not emerge.

Figure 19 shows a semilog plot of the duration T of
spatially nonuniform patterns against the initial width l0 of a
smaller bump, which was obtained with computer simulation
of Eq. (A1) with N = 100, p = 0, and s = 0.51 (solid
circles), 0.505 (open circles), and 0.501 (solid squares) under
the initial condition given in Eq. (13). The value of the
duration T was obtained as a time at which the signs of
the states of all cells became the same. The initial patterns
converged stable spatially nonuniform solutions when l0 > 15
(s = 0.51), l0 > 22 (s = 0.505), and l0 > 49 (s = 0.501).
Approximation by a quadratic function, T = 0.6l0

2, is also
plotted with a solid line. The approximation agrees with the
simulation results except when the values of l0 are close to
the stabilization points, and thus the duration increases in
proportion to the square of the initial width l0. This quadratic
relation reflects the strength of the stability of the origin with
N = l0 − 1 under the Dirichlet boundary condition (x0 =
xl0 = 0), in which the largest eigenvalue of the Jacobian
matrix evaluated at the origin is λl0 = p − 1 + 2scos(π/l0) ≈
−s(π/l0)2 (p − 1 + 2s ≈ 0). That is, the states of cells first
approach the origin and then approach one of the stable steady
states ± (p + 2s). The duration of transient patterns obtained

with computer simulation thus corresponds to the convergence
time (∼1/λl0) to the origin.

APPENDIX B: BIFURCATIONS AND METASTABLE
DYNAMICAL PATTERNS IN OPEN CHAINS OF NEURONS

Bifurcations and transient patterns in open chains of
bidirectionally coupled sigmoidal neurons under Dirichlet and
Neumann boundary conditions are considered. Solutions gen-
erated from the origin are restricted compared with those in a
ring of neurons (a chain under a periodic boundary condition).
Metastable dynamical spatially asymmetric patterns still exist
when coupling is symmetric but disappear when coupling is
asymmetric.

When a Dirichlet (absorbing) boundary condition (x0 =
xN +1 = 0) is imposed, the eigenvalues of the Jacobian matrix
evaluated at the origin in Eqs. (1) and (2) are given by λk =
−1 + gcos[kπ/(N + 1)] (1 � k � N ). All eigenvalues are
then simple and the corresponding pitchfork bifurcations at the
origin are nondegenerate. Spatially nonuniform solutions with
1 � k � N/2 are generated as g increases through pitchfork
bifurcations from the origin in a chain of N neurons. They
are the same as the states xn (1 � n � N ) of N neurons in
the solutions with 1 � k � N/2 having at least two zero-state
neurons (xN +1 = x2(N+1) = 0) generated from the origin in a
ring of 2(N + 1) neurons, in which xn = (−1)kxN+n (1 � n

� N ). A pair of stable spatially uniform solutions generated
at g = g0 (=1.0) in a ring of neurons is replaced by a pair
of stable spatially nonuniform solutions generated at g = g1

with one bump patterns, i.e., one positive or negative bump
in the spatially nonuniform solution with k = 1 in a ring of
2(N + 1) neurons. When N = (3 + m)k − 1 (m: nonnegative
integer), i.e., (N + 1)/k is an integer with a value of 3 or
more, the solution with the wave number k can be stabilized
through pitchfork or transcritical bifurcations k − 1 times as
g increases. They have k − 1 zero-state neurons and k bumps
consisting of the same number (2 + m) of neurons, and the
states of neurons are (−1)k

′
xn+k′(3+m) (1 � n � 2 + m, 0 �

k′ � k − 1) with xk ′(3+m) = 0 (1 � k′ � k − 1) . The
values of g at the bifurcations are also the same as those of
the type 2k solutions in a ring of 2(N + 1) neurons, and the
stabilization occurs for smaller g at the bifurcation earlier by
one step. In the limit of g → ∞, the states of neurons are
{(−1/2, −1 × m,−1/2), [0, (−1)k(1/2, 1 × m, 1/2)] ×
(k − 1)}, where × m and × (k − 1) mean m and k − 1
successions of the left elements, respectively. Stable spatially
asymmetric solutions with a smaller bump consisting of at
least two nonzero state neurons are also generated through
saddle-node bifurcations with unstable ones when N � 6.
The values of g at the saddle-node bifurcations depend almost
entirely on the width of a smaller bump and are about the same
as those in a ring of neurons, e.g., gSN = 3.63 when the bump
width is two.

When a Neumann (reflecting) boundary condition (x0 = x1,
xN +1 = xN ) is imposed, the eigenvalues of the Jacobian matrix
at the origin are given by λk = −1 + gcos(kπ/N ) (0 � k �
N − 1), which are also simple. Spatially nonuniform solutions
with 0 � k � (N − 1)/2 are generated through pitchfork
bifurcations from the origin in a chain of N neurons. They are
the same as the states xn (1 � n � N ) of half of the neurons
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in the solutions with 0 � k � (N − 1)/2 generated from the
origin in a ring of 2N neurons, in which the states of neurons
are symmetric with respect to reflection at n = N + 1/2: xN +n

= xN −n+1 (1 � n � N ) and two bumps with the centers at n

= 1/2 and N + 1/2 (x0 = xN ) consist of an even number of
nonzero state neurons. When N = (3 + 2m)k (m: nonnegative
integer), i.e., N/k is odd and three or more, the kth solution
can be stabilized through pitchfork or transcritical bifurcations
k times as g increases. The states of neurons in the stabilized
solutions and the values of g at the bifurcations are the same
as the type 2k solutions with the wave number k in a ring of
2N neurons. They consist of k reflections of 3 + 2m neurons
with a zero-state neuron at the center [x2+m = 0, x2+m+n′ =
−x2+m−n′ (1 � n′ � m + 1)]. They have k zero-state neurons
with k − 1 and two halves of bumps consisting of the same
number 2(1 + m) of neurons. In the limit of g → ∞, the states
of neurons are [(−1)k(1 × m, 1/2, 0, − 1/2, −1 × m)] ×
k, where × m and × k mean m and k successions of the left
elements, respectively. Stable spatially asymmetric solutions
with xn < 0 (1 � n < n0), xn0 = 0 (2 � n0 � N − 1,
n0 
= N/2), and xn > 0 (n0 < n � N ) are also generated
through saddle-node bifurcations when N � 4. The values of
g at the saddle-node bifurcations depend on the number of
negative neurons (n0 − 1) for n0 < N/2 and are the same

as those with the width 2(n0 − 1) of a smaller bump in a
ring of neurons, e.g., gSN = 3.88 when the bump width is two
(n0 = 2).

When coupling is symmetric [Eq. (2)], metastable
dynamical transient patterns exist in the same manner as a
ring of neurons. The duration of spatially asymmetric patterns
with the initial width l0 (<N/2) of a smaller bump in a chain
of N neurons under the initial condition given in Eq. (13) and
a Dirichlet (Neumann) boundary condition is almost (exactly)
the same as that of spatially asymmetric patterns with the
initial width l0 + 1 (2l0) in a ring of 2(N + 1) (2N ) neurons.
When coupling is asymmetric [d 
= 0 in Eq. (20)], no traveling
wave solutions exist under both boundary conditions when N

is finite and then metastable dynamical transient propagating
waves disappear. Spatially nonuniform steady solutions
generated from the origin through pitchfork bifurcations
are never stabilized as g increases. The branches of the
pitchfork bifurcation for d = 0 break up into a branch without
bifurcations and a pair of saddle-node bifurcation branches
when d 
= 0. The stable spatially nonuniform solution is
generated through the saddle-node bifurcation. There are no
symmetric solutions in which the eigenvalues of the Jacobian
matrix exponentially decrease with N , and thus metastable
dynamical transient patterns do not emerge.

[1] K. Kawasaki and T. Ohta, Physica A 116, 573 (1982); J. Carr
and R. L. Pego, Commun. Pure Appl. Math. 42, 523 (1989);
G. Fusco and J. K. Hale, J. Dynam. Differ. Equ. 1, 75 (1989);
L. Bronsard and R. V. Kohn, Commun. Pure Appl. Math. 43,
983 (1990); S.-I. Ei and T. Ohta, Phys. Rev. E 50, 4672 (1994).

[2] M. J. Ward, SIAM J. Appl. Math. 56, 1247 (1996); Boundaries,
Interfaces, and Transitions, CRM Proceedings and Lecture
Notes, edited by M. C. Delfour (American Mathematical
Society, Providence, 1998), Vol. 13, p. 237; in Multiple Time-
Scale Dynamical Systems, IMA Volumes in Mathematics and
its Applications, edited by C. K. R. T. Jones and A. I. Khibnik
(Springer, New York, 2001), Vol. 122, p. 233, references therein.

[3] D. Estep, Nonlinearity 7, 1445 (1994); C. P. Grant and E. S. Van
Vleck, ibid. 8, 861 (1995); S.-N. Chow, J. Mallet-Paret, and E. S.
Van Vleck, in Discretely-Coupled Dynamical Systems, edited by
V. Perez-Munuzuri, L. O. Chua, V. Perez-Villar, and M. Markus
(World Scientific, Singapore, 1997), p. 17.

[4] C. M. Elliott and A. M. Stuart, SIAM J. Numer. Anal. 30, 1622
(1993); J. K. Hale, in Chaotic Numerics, edited by P. E. Kloeden
and K. J. Palmer (American Mathematical Society, Providence,
RI, 1994), Vol. 172, p. 1; L. Nizhnik, L. Nizhnik, and M. Hasler,
Int. J. Bifurcation Chaos 12, 261 (2002).

[5] J. A. S. Kelso, Dynamic Patterns: The Self-Organization of
Brain and Behavior (MIT Press, Cambridge, MA, 1995); K.
J. Friston, Neuroimage 5, 164 (1997); Neuroscientist 7, 406
(2001); A. A. Fingelkurts and A. A. Fingelkurts, Int. J. Neurosci.
114, 843 (2004); M. I. Rabinovich, P. Varona, A. I. Selverston,
and H. D. I. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006);
G. Werner, Bio Systems 90, 496 (2007); M. Rabinovich,
R. Huerta, and G. Laurent, Science 321, 48 (2008).

[6] W. J. Freeman, Biol. Cybern. 56, 139 (1987); C. A. Skarda and
W. J. Freeman, Behav. Brain Sci. 10, 161 (1987).

[7] I. Tsuda, World Futures 32, 167 (1991); Behav. Brain Sci. 24,
793 (2001); Chaos 19, 015113 (2009).

[8] M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. D. I.
Abarbanel, and G. Laurent, Phys. Rev. Lett. 87, 068102 (2001);
V. I. Nekorkin, D. V. Kasatkin, and A. S. Dmitrichev, Radiophys.
Quantum Electron. 53, 45 (2010); M. A. Komarov, G. V. Osipov,
and J. A. K. Suykens, Europhys. Lett. 91, 20006 (2010).

[9] A. Zumdieck, M. Timme, T. Geisel, and F. Wolf, Phys. Rev. Lett.
93, 244103 (2004).

[10] R. Zillmer, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 74,
036203 (2006); Neurocomputing 70, 1960 (2007); S. Jahnke,
R. M. Memmesheimer, and M. Timme, Phys. Rev. Lett. 100,
048102 (2008); R. Zillmer, N. Brunel, and D. Hansel, Phys.
Rev. E 79, 031909 (2009).

[11] B. Cessac, J. Math. Biol. 56, 311 (2008); B. Cessac and
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