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Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework
and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically,
percolation of a single network shows that the damage in the network due to a failure is a continuous function
of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading
failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt
collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi
(ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular
network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is
taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network
(no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual
component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m

and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition
of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the
case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition
and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition.
In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling
strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our
insight on the resilience of coupled networks might help in designing robust interdependent systems.
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I. INTRODUCTION

Network science has attracted much attention in recent
years due to its interdisciplinary applications [1–21]. Many
network results have been obtained by analyzing isolated
networks, but most real-world networks do in fact interact
with and depend on other networks [3–5,18,19]. Thus, in
analogy to the ideal gas laws that are valid only in the
limiting case that molecules do not interact, the extensive
results for the case of noninteracting networks hold only when
it is justified to neglect the interactions between networks.
Recently, several studies have addressed the resilience as
well as other properties of interacting networks [22–43]. A
framework based on percolation theory has been developed
to analyze the cascading failures caused by interdependencies
between two networks [22,23]. In interdependent networks,
when nodes in one network fail they usually cause the
failure of dependent nodes in other networks, and this in
turn can cause further damage to the first network and result
in cascading failures, which could lead to abrupt collapse
of the system. Later on, two important generalizations of
the basic model [22,23] have been developed. Because in
real-world scenarios the initial failure of important nodes
(“hubs”) may not be random but targeted, a mathematical
framework for understanding the robustness of interdependent
networks under an initial targeted attack on a specific degree
of nodes has been studied by Huang et al. [24] and later
extended by Dong et al. [25]. Also, in real-world scenarios,
the assumption that each node in network A depends on one
and only one node in network B and vice versa may not be

valid. To release this assumption, a theoretical framework for
understanding the robustness of interdependent networks with
a random number of support and dependency relationships
has been developed and studied by Shao et al. [26]. More
recently, Gao et al. developed an analytical framework to study
percolation of a treelike network formed by n interdependent
networks [27–29]. Gao et al. found that while for n = 1
the percolation transition is a second order, for any n > 1
cascading failures occur and the network collapses as in a
first order transition. Indeed, cascading failures have caused
blackouts in interdependent communication and power grid
systems spanning several countries [3,44]. To be able to design
resilient infrastructures or improve existing infrastructures,
we need to understand how venerability is affected by such
interdependencies [3–5,30,38].

Here, we generalize the theory of interdependent networks
[27–29] to regular and random regular (RR) networks of
n interdependent networks that include loops. Figures 1(a)
and 1(b) illustrate such a network of networks (NetONet),
in which each network depends on the same number m of
other networks. We develop an exact analytical approach for
percolation of a regular and a random regular NetONet system
composed of n partially interdependent networks. We show
that for a RR network with degree m of n interdependent
networks where each network has the same degree distribution,
same average degree 〈k〉, and the fraction of dependence nodes
between a pair of interdependent networks q is the same for
all pairs, the number of networks is irrelevant. We obtain
analytically the fraction of giant component in each network
after cascading failures, P∞, as a function of p (1 − p is the
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FIG. 1. (Color online) Illustration of regular and random regular
(RR) NetONet of interdependent random networks. (a) An example
of a regular network, a lattice with periodic boundary condition
composed of nine interdependent networks represented by nine
circles. The degree of the NetONet is m = 4, i.e., each network
depends on four networks. (b) A RR network composed of six
interdependent networks represented by six circles. The degree of
the NetONet is m = 3, i.e., each network depends on three networks.
The analytical results for the NetONet [Eqs. (15) and (17)] are exact
and the same for both cases (a) and (b). (c) Schematic representation
of the dependencies of the networks. Circles represent networks in
the NetONet, and the arrows represent the partially interdependent
pairs. For example, a fraction of q3i of nodes in network i depends
on nodes in network 3. Pairs of networks which are not connected
by dependency links do not have nodes that directly depend on each
other.

fraction of nodes randomly removed from each network), m,
and 〈k〉.

II. CASCADING FAILURES IN A NETWORK
OF NETWORKS

A. Model

In our model, each node in the NetONet is itself a network
and each link represents a fully or partially dependent pair
of networks (see Fig. 1). We assume that each network i (i =
1,2, . . . ,n) of the NetONet consists of Ni nodes linked together
by connectivity links. Two networks i and j form a partially
dependent pair if a certain fraction qji > 0 of nodes in network
i directly depend on nodes in network j , i.e., nodes in network i

can not function if the corresponding nodes in network j do not
function. A node in network i will not function if it is removed
or if it does not belong to the largest connected cluster (giant
component) in network i. Dependent pairs may be connected
by unidirectional dependency links pointing from network j to
network i [see Fig. 1(c)]. This convention indicates that nodes
in network i may get a crucial support from nodes in network
j , e.g., electric power if network j is a power grid.

We assume that after an attack or failure, only a fraction
of nodes pi in each network i remains. We also assume that

only nodes that belong to a giant component in each network
i will remain functional. When a cascade of failures occurs,
nodes in network i that do not belong to the giant component
in network i fail and cause nodes in other networks that depend
on them to also fail. When those nodes fail, dependent nodes
and isolated nodes in the other networks also fail, and the
cascade can cause further failures back in network i. In order
to determine the fraction of nodes P∞,i in each network that
remains functional (i.e., the fraction of nodes that constitutes
the giant component) after the cascade of failures as a function
of pi and qij , we need to analyze the dynamics of the cascading
failures.

B. Dynamic processes

We assume that all Ni nodes in network i are randomly
assigned a degree k from a probability distribution Pi(k), they
are randomly connected, and the only constraint is that a node
with degree k has exactly k links [45]. We define the generating
function of the degree distribution

Gi(z) ≡
∞∑

k=0

Pi(k)zk, (1)

where z is an arbitrary complex variable. The generating
function of this branching process is defined as Hi(z) ≡
G′

i(z)/G′
i(1). Once a fraction 1 − x of nodes is randomly

removed from a network, the probability that a randomly
chosen node belongs to a giant component is given by
[22,23,46–49]

gi(x) = 1 − Gi[xfi(x) + 1 − x], (2)

where fi(x) satisfies

fi(x) = Hi[xfi(x) + 1 − x]. (3)

We assume that (i) each node a in network i depends with
a probability qji on only one node b in network j , and that
(ii) if node a in network i depends on node b in network j

and node b in network j depends on node c in network i,
then node a coincides with node c, i.e., we have a no-feedback
situation [29]. In Sec. IV, we study the case of the feedback
condition, i.e., node a can be different from c in network
i. In the absence of no-feedback condition a NetONet with
a loop can collapse even if each network is a fully connected
graph [26]. Next, we develop the dynamic process of cascading
failures step by step.

At t = 1, in network i of the NetONet we randomly remove
a fraction 1 − pi of nodes. After the initial removal of nodes,
the remaining fraction of nodes in network i is ψ ′

i,1 ≡ p. The
remaining functional part of network i therefore constituents
a fraction ψi,1 = ψ ′

i,1gA(ψ ′
i,1) of the network nodes, where

gi(ψ ′
i,1) is defined by Eqs. (2) and (3). Furthermore, we denote

by yji,t the fraction of nodes in network j that survive after the
damage from all the networks connected to network j except
network i is taken into account at time step t . Thus, because
at the first time step, network j receives only the damage of
initial failure 1 − pj but no damage from other networks, so
if qij �= 0, yji,1 = pj .

When t � 2, all the networks receive the damages
from their neighboring networks one by one. Without loss
of generality, we assume that network 1 is the first, network
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FIG. 2. (a) Simulation results compared with theory of the giant component of network 1, P1,t , after t cascading failures for the lattice
NetONet composed of nine ER networks shown in Fig. 1(a). For each network in the NetONet, N = 105, m = 4, and k̄ = 8, and q = 0.4 > qc

.=
0.382 [predicted by Eq. (30)]. The chosen value of p is p = 0.945, and the predicted threshold is pI

c = 0.952 [from Eq. (27)]. (b) Simulations
compared to theory of the giant component P1,t for the random regular NetONet composed of six ER networks shown in Fig. 1(b) with the
no-feedback condition. For each network in the NetONet, N = 105, m = 3, k̄ = 8, q = 0.49 > qc

.= 0.4313 [predicted by Eq. (30)], and for
p = 0.866 < pI

c

.= 0.8696 [from Eq. (27)]. (c) Simulations compared to theory of the giant component P1,t for the random regular NetONet
composed of six ER networks shown in Fig. 1(b) with the feedback condition. For each network in the NetONet, N = 105, m = 3, k̄ = 8,
q = 0.4 < qmax = 0.5 [predicted by Eq. (50)], and for p = 0.9 > pc

.= 0.5787 [from Eq. (48)]. The results are averaged over 20 simulated
realizations of the giant component left after t stages of the cascading failures and are compared with the theoretical prediction of Eq. (9).

2 second, . . . , and network n is last. In Fig. 1(a), for example,
a fraction q21, q31, q41, and q71 of nodes of network 1 depend
on nodes of networks 2, 3, 4, and 7, respectively. Thus,
failed nodes in networks 2, 3, 4, and 7 cause the dependent
nodes in network 1 to fail, and correlated damage means that
failed nodes in at least two networks cause the failure of
the same node in network 1. To calculate the independent
damage from the neighboring networks of network 1, we must
exclude the correlated damage. The independent damage that
network 2 spreads to network 1 is 1 − y21,t−1g2(ψ ′

2,t−1) and
only a fraction q21 of nodes of network 1 depends on nodes
from network 2, the damage to network 1 from network 2
is q21[1 − y21,t−1g2(ψ ′

2,t−1)]. Thus, qj1[1 − yj1,t−1gj (ψ ′
j,t−1)]

represents the independent damage from the neighbor j

of network 1. Thus, the remaining fraction of network
1 nodes is

ψ ′
1,t =

∏
j=2,3,4,7

[qj1yj1,t−1gj (ψ ′
j,t−1) − qj1 + 1], (4)

and according to the definition, y1j,t (j = 2,3,4,7) satisfies

y1j,t = ψ ′
1,t

qj1yj1,t−1gj (ψ ′
j,t−1) − qj1 + 1

. (5)

The remaining functional part of network 1 therefore contains
a fraction ψ1,t = ψ ′

1,t g1(ψ ′
1,t ) of the network nodes.

At time step t , we calculate the remaining fraction of nodes
in network i (i = 1,2,3, . . . ,n) one by one. When we start to
calculate the remaining fraction of nodes in network i, we have
already calculated the remaining fraction of nodes in network
j (j < i), and have not calculated the remaining fraction of
nodes in the other network s (s > i). Thus, we use yji,t , ψ ′

j,t

with time step t , and ysi,t−1, ψ ′
s,t−1 with time step t − 1 to

obtain the state of network i at time step t . Thus, we obtain
the remaining fraction of network i nodes

ψ ′
i,t =

∏
j<i

[qjiyji,t gj (ψ ′
j,t ) − qji + 1]

×
∏
s>i

[qsiysi,t−1gs(ψ
′
s,t−1) − qsi + 1], (6)
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where yij,t is

yij,t = ψ ′
i,t

qjiyji,t−1gj (ψ ′
j,t ) − qji + 1

, (7)

and yis,t is

yis,t = ψ ′
i,t

qsiysi,t−1gs(ψ ′
s,t−1) − qsi + 1

. (8)

Following this approach, we can construct the sequence ψ ′
i,t

of the remaining fraction of nodes at each stage of the cascade
of failures. The general form is given by

ψ ′
i,1 ≡ pi,

yij,1 ≡ pi, qij �= 0

ψ ′
i,t = pi

∏
j<i

[qjiyji,t gj (ψ ′
j,t ) − qji + 1]

×
∏
s>i

[qsiysi,t−1gs(ψ
′
s,t−1) − qsi + 1], (9)

yij,t = ψ ′
i,t

qjiyji,t gj (ψ ′
j,t ) − qjs + 1

,

yis,t = ψ ′
i,t

qsiysi,t−1gs(ψ ′
s,t−1) − qsi + 1

.

We compare in Figs. 2(a) and 2(b) the theoretical formulas of
the dynamics [Eqs. (9)] and simulation results of the giant
component of network 1, P1,t . As seen, the theory of the
dynamics [Eqs. (9)] agrees well with simulations.

C. Stationary state

To determine the state of the system at the end of the cascade
process, we look at ψ ′

i,τ at the limit of τ → ∞. This limit must
satisfy the equations ψ ′

i,τ = ψ ′
i,τ+1 since eventually the clusters

stop fragmenting and the fractions of randomly removed nodes
at step τ and τ + 1 are equal. Denoting ψ ′

i,τ = xi , we arrive
for the n networks, at the stationary state, to a system of n

equations with n unknowns,

xi = pi

K∏
j=1

[qjiyjigj (xj ) − qji + 1], (10)

where the product is taken over K networks interlinked with
network i by partial (or fully) dependency links (see Fig. 1)
and

yij = xi

qjiyjigj (xj ) − qji + 1
. (11)

The damage from network i itself is excluded due to the no-
feedback condition. Equation (10) is valid for any type of
interdependent NetONet, while Eq. (11) represents the no-
feedback condition. For two coupled networks, Eqs. (10) and
(11) are equivalent to Eq. (13) of Ref. [26] for the specific case
of single dependency links. In Ref. [26], each node i in one
network is supported by k̂i nodes in the other network, where
k̂i follows a given distribution.

Our general framework for percolation of interdependent
network of networks [Eqs. (10) and (11)] generalizes [29]
the earlier results for a treelike network of networks [28].

The treelike results are obtained from Eqs. (10) and (11)
when we assume the tree topology and substitute nonzero
qij by 1. Note also that Eqs. (10) and (11) can be generalized
in two directions: (i) the case of absence of “no-feedback”
condition which includes feedback failures. and (ii) coupling
with multiple support.

(i) In the existence of feedback condition, yi,j is simply xi

and Eqs. (10) and (11) become a single equation

xi = pi

K∏
j=1

[qjixjgj (xj ) − qji + 1]. (12)

The feedback condition leads to an extreme vulnerability of the
network of interdependent networks. As we know for two fully
interdependent networks with no-feedback condition [22],
if the average degree is large enough both networks exist,
i.e., there exist giant components in each network after the
cascading failures. However, for two fully interdependent
networks with feedback condition, no matter how large the
average degree is, both networks collapse even after a single
node is removed. The analytical results of percolation with the
feedback condition are given in Sec. IV.

(ii) Equation (12) can be generalized to the case of multiple
dependency links studied for a pair of coupled networks in [26]
by

xi = pi

K∏
j=1

{1 − qjiG
ji[1 − xjgj (xj )]}, (13)

where Gji represents the generating function of the degree
distribution of multiple support links that network i depends
on network j .

On one hand, the term gi reflects the topology of network i,
which can be an ER network, a RR network, a scale free (SF)
network, or even a small world (SW) network. On the other
hand, Q = [qij ]n×n (n is the number of networks) reflects
the interactions between the networks, i.e., the topology of
the NetONet, which can also be any type of network. Our
theoretical results (10) and (11) are therefore general for any
type of network of networks. By solving Eqs. (10) and (11),
or Eqs. (12) or (13), we obtain xi of each network for coupled
networks with no-feedback condition, feedback condition, and
multiple-support condition, respectively. Thus, we obtain the
giant component in each network i as

P∞,i ≡ xigi(xi). (14)

III. NO-FEEDBACK CONDITION

A. General case of a RR NetONet formed of random networks

In order to study the various forms the stationary state of
the system can reach after a cascading failure, we first assume,
without loss of generality, that each network depends on m

other random networks, i.e., that we have a RR network formed
of n random networks. We understand the RR category to also
include regular nonrandom networks in which each network
has the same number of neighboring interdependent networks
with a structure, e.g., of a lattice of ER networks [Fig. 1(a)]. We
assume, for simplicity, that the initial attack on each network
is by removing randomly a fraction 1 − p of nodes, the partial
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FIG. 3. (Color online) The giant component for a RR network of ER networks P∞ as a function of p, for ER networks with average degree
k̄ = 10, (a) for two different values of m and q = 0.5, (b) for two different values of q and m = 3. The curves in (a) and (b) are obtained using
Eq. (23) and are in excellent agreement with simulations. The points symbols are obtained from simulations by averaging over 20 realizations
for N = 2 × 105. In (a), simulation results are shown as circles (n = 6) for m = 2 and as diamonds (n = 12) for m = 3. These simulation
results support our theoretical result [Eq. (23)], which is indeed independent of the number of networks n.

interdependency fraction is q, and the average degree of each
random network is the same k̄ for all networks. Because of the
symmetries involved, the nm + m equations in Eqs. (10) and
(11) can be reduced to two equations

x = p[qyg(x) − q + 1]m,
(15)

y = p[qyg(x) − q + 1]m−1.

By substituting z = xf (x) + 1 − x, Eqs. (2), (3), and (14)
into (15), and eliminating f , x, and y, we obtain

P∞(z) = [1 − G(z)](1 − z)

1 − H (z)
(16)

where z satisfies,
(

1 − z

1 − H (z)

) 1
m
(

1

p

) 2
m

+ (q − 1)

(
1

p

) 1
m

−qP∞(z)

(
1 − H (z)

1 − z

) 1
m

= 0. (17)

Equation (17) can help us to understand the percolation
of a RR network of any interdependent random networks
where all networks have the same average degree and degree
distribution.

To solve Eq. (17), we introduce an analytical function R(z)
for z ∈ [0,1] as

1

p
= H (z) − 1

z − 1

(
1 − q +

√
(1 − q)2 + 4qP∞(z)

2

)m

≡ R(z). (18)

R(z) as a function of z has a quite complex behavior for various
degree distributions. We present two examples to demonstrate
our general results on (i) RR network of ER networks and (ii)
RR network of SF networks.

(i) For the case of a RR network of ER networks, we find a
critical qc such that when q < qc, the system shows a second
order phase transition and the critical threshold pc depends
on q and average degree k̄. When qc < q < qmax, the system

shows a first order phase transition, and when q > qmax, there
is no phase transition because all the networks collapse even
for a single node failure. We will show the detailed formalism
in Sec. III B.

(ii) For the case of a RR network of SF networks, the phase
diagram is different from the ER case because there is no
simple first order or second order phase transition. However,
there is an interval in q, i.e., qc < q < qmax, in which there is a
first order phase transition at pI

c , followed by the second order
phase transition at pII

c < pI
c . When q < qc, the system shows

only a second order phase transition and the critical threshold
is pc = 0 for an infinite number of nodes in each network,
i.e., the maximum degree goes to ∞. For q > qmax, there is
no phase transition because all the networks collapse even for
a single node failure. We will show the detailed formalism in
Sec. III C.

B. RR network formed by interdependent ER networks

For ER networks [50–52], the generating function g(x)
satisfies [46–49]

g(x) = 1 − exp[k̄x(f − 1)],
(19)

f = exp[k̄x(f − 1)].

Substituting Eqs. (19) into (15), we get

f = exp {k̄p[qy(1 − f ) − q + 1]m(f − 1)},
y = p[qy(1 − f ) − q + 1]m−1, (20)

P∞ = −(ln f )/k̄.

Eliminating y from Eq. (20), we obtain an equation for f ,

[
ln f

k̄p(f − 1)

] 2
m

+ (q − 1)

[
ln f

k̄p(f − 1)

] 1
m

+ q

k̄
ln f = 0.

(21)

Considering [ln f/k̄p(f − 1)]1/m to be a variable, Eq. (21)
becomes a quadratic equation that can be solved analytically
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having only one valid solution

2m ln f = k̄p(f − 1)

[
1 − q +

√
(1 − q)2 − 4q

k̄
ln f

]m

. (22)

From Eq. (22) and the last equation in (20), we determine the
mutual percolation giant component for a RR network of ER
networks:

P∞ = p

2m
(1 − e−k̄P∞ )[1 − q +

√
(1 − q)2 + 4qP∞]m. (23)

Figures 3(a) and 3(b) show numerical solutions of Eq. (23)
for several q and m values compared with simulations.

These solutions imply that P∞ as a function of p exhibits
a second (continuous) or a first order (abrupt) phase transition
depending on the values of q and m for a given k̄. Note when
q = 0 or m = 0, Eq. (23) is reduced to the known equation
P∞ = p(1 − e−k̄P∞ ) for single ER networks [50–52].

From Eqs. (18) and (23), we obtain

R(z) = 1

p
= (1 − ek̄(z − 1))[1 − q +

√
(1 − q)2 + 4q(1 − z)]m

2m(1 − z)
(24)

and

F (z) ≡ dR(z)

dz
= ek̄(1−z) − k̄(1 − z)

p(1 − z)(ek̄(1−z) − 1)
− 2mq

p[1 − q +
√

(1 − q)2 + 4q(1 − z)]
√

(1 − q)2 + 4q(1 − z)
. (25)

The behavior of Eq. (24) is demonstrated in Fig. 4. For
given k̄ and m, when q is small, R(z) is a monotonically
increasing function of z (for example, see the curve for
q = 0.42). Thus, the maximum of R(z) is obtained when
z → 1, which corresponds to a second order phase transition
threshold pII

c = 1/ max{R(z)} ≡ 1/R(zc), where P∞(pII
c ) =

1 − zc = 0. When q increases, R(z) as a function of z shows
a maxima at z < 1 and max{R(z)} > 1, for example, for
q = 0.50 in Fig. 4. Thus, the maximum of R(z) is obtained
when z = zc ∈ (0,1) at the peak, which corresponds to the
first order phase transition threshold pI

c = 1/ max{R(z)} =
1/R(zc), where P∞(pI

c ) = 1 − zc > 0. The q value in which
for the first time a maxima of R(z) appears at z < 1 is qc,
the critical dependency which separates between the first and
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q=0.42
q=0.50
q=0.58 1
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c

1
pII

c

z
c

FIG. 4. Plot of R(z) as a function of z for a RR network of
ER networks, for different values of q when m = 3 and k̄ = 8. All
the lines are produced using Eq. (24). The symbols, filled circle
and filled square, show the critical thresholds pII

c when q = 0.42 <

qc = 0.4313 and pI
c when q = 0.5 < qmax = 0.5462. These critical

thresholds coincide with the results in Fig. 3(a). The dashed dotted
line shows that when q = 0.58 > qmax Eq. (24) has no solution for
p = 1, which corresponds to the case of complete collapse of the
NetONet.

second order transitions. When q continually further increases,
max{R(z)} < 1, which corresponds to a complete collapse of
the NetONet. The value of q for which max{R(z)} = 1 is
qmax, above which the network is not stable and collapses
instantaneously.

Three different behaviors of a RR network of ER networks
in the different regimes of q can be seen: (i) For q < qc, the
percolation is a continuous second order which is characterized
by a critical threshold pII

c . (ii) The range of qc < q < qmax is
characterized by an abrupt first order phase transition with a
critical threshold pI

c . (iii) For q > qmax, no transition exists
due to the instant collapse of the system.

We next analyze in detail the parameters characterizing the
three regimes.

(i) For a given m and k̄, when q is sufficiently small, there
exists a critical pII

c such that, when p increases above pII
c , P∞

continuously increases from zero to nonzero values. Here, P∞
as a function of p exhibits a second order phase transition. In
order to get pII

c , we analyze Eq. (25). When q is sufficiently
small dR(z)

dz
> 0, the maximum value of R(z) is obtained when

z → 1. Thus, we obtain the critical threshold for the second
order phase transition pII

c by substituting z → 1 into Eq. (24):

pII
c = 1

k̄(1 − q)m
. (26)

(ii) We will now obtain pI
c . According to Eq. (25), when q

increases, R(z) as a function z becomes nonmonotonic and a
maxima appears, which corresponds to the condition for first
order phase transition, i.e., when dR(z)

dz
= 0. Furthermore, for

a given p, the smallest of these roots gives the physically
meaningful solution from which the giant component 0 <

P∞(pc) < 1 can be found from Eq. (23).
By solving zc from F (zc) = 0 of Eq. (25), we obtain the

critical threshold for first order phase transition pI
c as

pI
c = 2m(1 − zc)

(1 − ek̄(zc−1))[1 − q +
√

(1 − q)2 + 4q(1 − zc)]m
.

(27)
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FIG. 5. (Color online) The giant component for a RR NetONet formed of ER networks at pc, P∞(pc), as a function of q. The curves are (a)
for m = 3 and two different values of k̄, and (b) for k̄ = 8 and two different values of m. The curves are obtained using Eqs. (23) and (26) and
are in excellent agreement with simulations (symbols). Panels (a) and (b) show the location of qmax and qc for two values of m. Between qc and
qmax the transition is first order represented since P∞(pc) > 0. For q < qc, the transition is second order since P∞(pc) = 0, and for q > qmax,
the NetONet collapses [P∞(pc) = 0] and there is no phase transition (pc = 1).

Next, we study the critical coupling strength qc, i.e, the
critical coupling that distinguishes between first and second
order transitions. We find that P∞ undergoes a second order
transition as a function of p when q < qc, a first order
transition when qc < q < qmax, and no phase transition (the
system is unstable for any p) when q > qmax. By definition,
when a system changes from second order to first order at the
critical point, q, m, and k̄ satisfy pI

c = pII
c , i.e., both conditions

for the first order and second order phase transitions should
satisfy

lim
z→1

dR(z)

dz
= 0. (28)

From Eqs. (25) and (28), we obtain

2qm − k̄(1 − q)2 = 0. (29)

Solving Eq. (29), we find that the physically meaningful qc is

qc = k̄ + m − (m2 + 2k̄m)1/2

k̄
. (30)

(iii) Here, we calculate the critical point qmax, above which
(q > qmax) the system is unstable for any p. qmax is the solution
of the system R(z,q) = 1 [Eq. (24)] and F (z,q) = 0 [Eq. (25)].
Thus, from Eqs. (24) and (25), we obtain qmax as

qmax = (a1/m − 1)2

2(1 − 2zc − a1/m)
, (31)

where a satisfies

a = 1 − ek̄(zc−1)

2m(1 − zc)
, (32)
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FIG. 6. The phase diagram for a RR network of ER networks (a) for m = 3 and k̄ = 8, (b) for m = 2 and k̄ = 10. The solid curves show the
second order phase transition [predicted by Eq. (26), the left-hand side axis], the dotted curves show the first order phase transition [predicted
by Eq. (27), the left-hand side axis], and the dashed-dotted curves show the first order phase phase transition, yielding nonzero P∞(pc) at qc

[predicted by Eq. (30) from zero (at qc) to nonzero values (the right-hand side axis)]. As m decreases and k̄ increases, the region for P∞ > 0
increases, showing a better robustness. The circles show the tricritical point qc, below which second order transition occurs and above which a
first order transition occurs. The squares show the critical point qmax, above which the NetONet completely collapses even when p = 1. Note
that the case m = 2 can be realized only if the network of network is a loop like network formed by n interdependent networks or includes
several loop like network of networks and the total number of networks is n.
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FIG. 7. For a RR NetONet formed of SF networks R(z) as
a function of z for different values of q when m = 3, λ = 2.3,
s = 2, and M = 1000. (i) When q is small (q = 0.4 < qc), R(z)
is a monotonically increasing function of z, and the system shows a
second order phase transition. (ii) When q is larger (qc < q = 0.45 <

qmax), R(z) as a function of z shows a peak at zc (see inset) which
corresponds to a first order phase transition, followed by a second
order phase transition which happened because R(z) increases with z

monotonically when z is large enough. The square symbol represents
the critical point of the sharp jump (zc). (iii) When q is large enough
(q = 0.55 > qmax), R(z) decreases with z first, and then increases
with z, which corresponds to the system collapse.

and zc can be solved by substituting Eq. (31) into (25) and set
p = 1, and F (zc) = 0, which is one equation with only one
unknown zc.

In Fig. 5, we present numerical solutions of P∞(pc) as a
function q for an RR of ER NetONet system. It is seen that
for fixed m and k̄, there exist two critical values of coupling
strength qc and qmax: when q < qc, P∞(pc) = 0 which repre-
sents a second order phase transition, and when qc < q < qmax,
P∞(pc) > 0 representing a first order phase transition. When
q > qmax, P∞(pc) = 0 representing the NetONet collapse and
that there is no phase transition (pc = 1). Figure 6 shows the
phase diagram of a RR network of ER networks for different
values of m and k̄. As m decreases and k increases, the region
for P∞ > 0 increases, which shows a better robustness.

C. Case of RR NetONet formed of interdependent
scale-free (SF) networks

We analyze here NetONets composed of SF networks
with a power law degree distribution P (k) ∼ k−λ [2,6]. The
corresponding generating function is

G(z) =
∑M

s [(k + 1)1−λ − k1−λ]zk

(M + 1)1−λ − s1−λ
, (33)

where s (s = 2 in this paper) is the minimal degree cutoff and
M is the maximal degree cutoff.

SF networks approximate real networks such as the Internet,
airline flight patterns, and patterns of scientific collaboration
[6,53–55]. When SF networks are fully interdependent [22],
pc > 0, even in the case λ � 3 in contrast to a single network
for which pc = 0 [7]. We study the percolation of a RR network
composed of interdependent SF networks by substituting their
degree distribution into Eq. (1) and obtaining their generating

functions. We assume, for simplicity, that all the networks in
the NetONet have the same λ, s, and M , and use Eq. (17) to
analyze the percolation of a RR NetONet of SF networks.

The generating function of the branching process is defined
as H (z) = G′(z)/G′(1). Substituting H (z) and Eq. (33) into
(18), we obtain the function R(z) for a RR of SF networks. As
shown in Fig. 7, we find three regimes of coupling strength q:

(i) When q is small (q < qc), R(z) is a monotonically
increasing function of z, the system shows a second order
phase transition, and the critical threshold pII

c is obtained when
z → 1 which corresponds to R(1) = max{R} = ∞ = 1/pII

c ,
i.e., pII

c = 0.
(ii) When q is larger (qc < q < qmax), R(z) as a function of

z shows a peak which corresponds to a sharp jump to a lower
value of P∞ at zI

c showing a first order phase transition. As z

increases, R(z) first decreases then increases with z and reaches
the maximal value of R at zII

c → 1 showing a second order
phase transition. The threshold of first order phase transition is
pI

c = 1/R(zI
c ), while for p below this sharp jump the system

undergoes a smooth second order phase transition and the
critical threshold is zero, similar to (i).

(iii) When q is above qmax, R(z) decreases with z first,
and then increases with z, which corresponds to the system
collapse.

Next, we analyze the three regimes more rigorously.
(i) When q is small (q < qc), R(z) is a monotonically

increasing function of z, the maximum of R(zc) is obtained
when zc → 1, which corresponds to P∞ = 0,

max{R} = lim
z→1

H (z) − 1

z − 1
(1 − q)m

.= H ′(1). (34)

Thus, for λ < 3, the second order transition happens at
pII

c (M) → 0, when M → ∞, while for λ > 3, it remains finite
for M → ∞.

(ii) As q increases (q � qc), R(z) as a function of z shows
a peak corresponding to R(z) = R(zc) for small values of z,
dR/dz = 0 (smaller root has the physical meaning), where
R = Rc = 1/pI

c > 1 which corresponds to the first order
critical threshold, where P∞ as a function of p shows an abrupt
jump. Furthermore, we define

P −
∞ = lim

p→pI
c ,p<pI

c

P∞(p) (35)

and

P +
∞ = lim

p→pI
c ,p>pI

c

P∞(p). (36)

The phase transition here is different from a normal first order
phase transition where P −

∞ = 0. In our interdependent SF
networks system, P −

∞ > 0. After the sharp drop for p < pI
c ,

P∞ decreases smoothly to 0 and undergoes a second order
phase transition. The critical threshold of the second order
phase transition is described in (i). The specific case of two
partially interdependent SF networks is studied also in Zhou
et al. [56].

(iii) As q increases further (q > qmax), dR(z)
dz

at z = 0
becomes negative, thus the NetONet will collapse even when
a single node is initially removed. So, the maximum values of
q are obtained when

dR(z)

dz
|z→0 = 0. (37)
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FIG. 8. Results for a RR NetONet formed of SF networks. (a) The giant component P∞ as a function of p for different values of m and q

for λ = 2.5. (b) The critical threshold pI
c and (c) the corresponding giant component at the threshold P∞(pI

c ) as a function of coupling strength
q for m = 2 and 3. The symbols in (a) represent simulation results, obtained by averaging over 20 realizations for N = 2 × 105 and number of
networks n = 6 (squares) and n = 4 (circles). The lines are the theoretical results obtained using Eqs. (17) and (1)–(3). We can see in (a) that
the system shows a hybrid phase transition for m = 2 and qc < q = 0.62 < qmax = 1/(m − 1). When q < qc, the system shows a second order
phase transition and the critical threshold is pII

c = 0. However, in the simulation when p is small (but not zero), P∞ = 0. This happens because
pII

c = 0 is valid only when the network size approaches N = ∞ and M = ∞, but in simulations we have finite systems. Note that, when
qc < q < qmax the system shows a hybrid transition shown in (a) and (c), and when q > qmax, all the networks collapse even if one node fails.
We call this hybrid transition because P −

∞ > 0, which is different from the case of ER networks with first order phase transition where P −
∞ = 0.

Using Eqs. (16), (18), and (37), we obtain

dR(z)

dz
= −G′(z)R(z)

1 − G(z)
− R(z)P ′

∞(z)

P∞(z)

+ 2mR(z)

1 − q +
√

(1 − q)2 + 4qP∞(z)

qP ′
∞(z)√

(1 − q)2 + 4qP∞(z)
.

(38)

For the minimal degree cutoff s = 2, i.e., P (0) = P (1) = 0,
when q = qmax, P∞(z)|z→0 = 1, and P ′

∞(z)|z→0 = −1, so we
get

qmax = 1

m − 1
. (39)

Comparison between analytical and simulation results is
shown in Fig. 8.

IV. ABSENCE OF NO-FEEDBACK CONDITION

The above detailed analysis considers the case of the
no-feedback condition since even for two fully interdependent

networks with feedback condition, both networks will com-
pletely collapse even if a single node fails. For the case
of absence of the no-feedback condition (i.e., feedback
condition), Eq. (15) becomes

x = p[qxg(x) − q + 1]m. (40)

For this case when networks are fully interdependent, i.e.,
q = 1, Eq. (40) becomes

x[1 − pxm−1g(x)] = 0. (41)

Since for any random networks 1 − pxm−1g(x) �= 0, it follows
that x = 0, thus, these networks are prone to cascade of failures
and collapse even for p = 1. However, feedback condition can
not destroy a network of partially interdependent networks
when q is sufficiently small. Substituting z = xf (x) + 1 − x

and Eqs. (1)–(3) into Eq. (40) and eliminating x, we obtain

1

p
= 1 − H (z)

1 − z
(1 − q + qP∞)m. (42)
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FIG. 9. (Color online) The giant component for a RR network of ER networks with feedback condition P∞ as a function of p for ER
average average degree k̄ = 10, for different values of m for q = 0.5 (a) and for different values of q for m = 3 (b). The curves in (a) and (b)
are obtained using Eq. (44) and are in excellent agreement with simulations. The symbols are obtained from simulations of Fig. 1(b) topology
when m = 3 and n = 6 networks (forming a circle when m = 2) by averaging over 20 realizations of N = 2 × 105. The absence of first order
regime in NetONet formed of ER networks is due to the fact that at the initial stage, nodes in each network are interdependent on isolated
nodes (or clusters) in the other network. However, if only nodes in the giant components of both networks are interdependent, all three regimes
(second order, first order, and collapse) will occur, as in the case of a RR NetONet formed of RR networks [see Eq. (50) and Fig. 12].

For ER networks, we obtain an equation for f :

ln f = k̄p

(
1 − q − q

ln f

k̄

)−m

(f − 1). (43)

By substituting P∞ = −(ln f )/k̄, we determine the mutual
percolation giant component for a RR network of ER networks
with feedback condition

P∞ = p(1 − e−k̄P∞ )(1 − q + qP∞)m. (44)

Figure 9 shows numerical solutions of Eq. (44) for several q

and m values, which are in excellent agreement with simula-
tions, presented as symbols. These solutions imply that P∞ as
a function of p exhibits only a second order phase transition.

Indeed, from substituting P∞ = z (z ∈ [0,1]) into Eq. (44),
we obtain

R(z) = 1

p
= (1 − e−k̄z)

z
(1 − q + qz)m (45)

and

dR(z)

dz
= k̄z − ek̄z + 1

pz(ek̄z − 1)
− mq

p(1 − q + qz)
. (46)

Next, we prove that R(z) is a decreasing function of z, i.e.,
dR(z)/dz < 0. Indeed, it is easy to see

d

dz
(k̄z − ek̄z + 1) = k̄ − k̄ek̄z � 0, (47)

and the equal condition is satisfied only when z = 0, so k̄z −
ek̄z + 1 < 0. Thus, we obtain that R(z) is a monotonically
decreasing function of z, which is very different from the
no-feedback condition. So, the maximum of R(z) is obtained
only when z → 0, which corresponds to the critical value of pc,

pc = 1

k̄(1 − q)m
, (48)

which is the same as Eq. (26). Thus, the second order threshold
of no feedback pII

c is the same as the feedback pc, which is

also shown in Fig. 10(a). However, the feedback case is still
more vulnerable than the no-feedback case. Figures 10(b)
and 10(c) show P∞ for p = 1, i.e., the giant component in
each network of the NetONet when there are no node failures,
as a function of q. We can see that for the no-feedback case
[Fig. 10(b)], the system still has a very large giant component
left when both m and q are large, but for the feedback case,
there is no giant component when both m and q are large. This
happens because of the singly connected nodes and isolated
nodes in each network [28].

Substituting pc � 1 into Eq. (48), we obtain k̄ � 1/(1 −
q)m or q � 1 − (1/k̄)1/m, which represents the minimum k̄

and maximum q for which a phase transition exists:

k̄min = 1

(1 − q)m
(49)

and

qmax = 1 − (1/k̄)1/m. (50)

Equations (49) and (50) demonstrate that the NetONet col-
lapses when q and m are fixed and k̄ < k̄min and when m and k̄

are fixed and q > qmax, i.e., there is no phase transition in these
zones. However, qmax of the feedback case is smaller than that
of the no-feedback case as shown in Fig. 11(a), indicating again
that the feedback case is more vulnerable than the no-feedback
case. In Fig. 11(b), we show that increasing k̄ or decreasing m

will increase qmax, i.e., increase the robustness of NetONet.
Next, we study the feedback condition for the case of RR

NetONet formed of RR networks of degree k. In this case,
Eq. (44) becomes

1 −
[

1 − P∞
p(1 − q − qP∞)

] 1
k

= p

{
1 −

[
1 − P∞

p(1 − q − qP∞)

] k−1
k

}
(1 − q + qP∞)m.

(51)
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FIG. 10. (a) Comparison of pc as a function of q between no-feedback and feedback conditions when k̄ = 10. For the no-feedback condition,
the parts of curves below the symbols show pII

c and above the symbols show pI
c . For the feedback condition, they only have the pc of second

order, and pII
c for the no-feedback case is equal to pc of the feedback case, but this does not mean that these two cases have equal vulnerability.

P∞(1) as a function of q for different values of m when k̄ = 8 with (b) no-feedback condition and (c) feedback condition. When q = 0,
P∞(1) = 1 − exp(−k̄) for all m and for both feedback and no-feedback cases. Comparing (b) and (c), we can see that the feedback case is
much more vulnerable than the no-feedback condition because P∞(1) of the no-feedback case is much smaller than the feedback case.
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FIG. 11. (a) The maximum value of coupling strength qmax as a function of k̄ for the feedback and no-feedback conditions when m = 3.
We can see that qmax of the no-feedback case is larger than that of the feedback case, which indicates that the no-feedback case is more robust
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FIG. 12. The giant component for a RR NetONet formed of RR
networks with feedback condition P∞ as a function of p for a RR of
degree k = 6 and m = 3, for two different values of q. The curves are
obtained using Eq. (51), which shows a first order phase transition
when q is large but a second order phase transition when q is small.

We find that the RR networks are very different from the ER
networks, and the system shows first order phase transition
for large q and a second order phase transition for small q as
shown in Fig. 12.

V. DISCUSSION

In summary, we develop a general framework [Eqs. (10)
and (11)] for studying percolation in several types of NetONet
of random networks with any degree distribution. We demon-
strate our approach for a RR network of ER networks that
can be exactly solved analytically [Eq. (23)] and for a RR
of SF networks for which the analytical expressions can be
solved numerically. We find that qmax and qc exist, where
a NetONet shows a second order transition when q < qc,
a first order phase transition followed by a second order
phase transition when qc < q < qmax, and that in all other
cases there is no phase transition because all nodes in the
NetONet spontaneously collapse. Thus, the percolation theory
of a single network is a limiting case of a more general

case of percolation of interdependent networks. Our results
show [Eq. (23)] that the percolation threshold and the giant
component depend solely on the average degree of the ER
network and the degree of the RR network, but not on the
number of networks. Note that the results are the same for
lattices and for a RR NetONet of random networks, but the
cascades of failures propagate differently, which is similar to
the case of a fully interdependent tree where the steady state
results are the same for different topology of a treelike network
of networks but the dynamic process of cascading failures is
different [28]. These findings enable us to study the percolation
of different topologies of NetONet. We expect this work to
provide insights leading to further analysis of real data on
interdependent networks. The benchmark models we present
here can be used to study the structural, functional, and robust-
ness properties of interdependent networks. Because, in real
NetONets, individual networks are not randomly connected
and their interdependent nodes are not selected at random,
it is crucial that we understand many types of correlations
existing in real-world systems and to further develop the
theoretical tools studying all of them. Note that the effect of
clustering within the networks in a system of interdependent
networks was studied recently [57,58]. Future studies of
interdependent networks will need to focus on (i) the analysis
of real data from many different interdependent systems and
(ii) the development of mathematical tools for studying the
vulnerability of real-world interdependent systems.
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