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Hierarchical scale-free network is fragile against random failure
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We investigate site percolation in a hierarchical scale-free network known as the Dorogovtsev-Goltsev-Mendes
network. We use the generating function method to show that the percolation threshold is 1, i.e., the system is not
in the percolating phase when the occupation probability is less than 1. The present result is contrasted to bond
percolation in the same network of which the percolation threshold is zero. We also show that the percolation
threshold of intentional attacks is 1. Our results suggest that this hierarchical scale-free network is very fragile
against both random failure and intentional attacks. Such a structural defect is common in many hierarchical
network models.
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I. INTRODUCTION

The prominent resilience of real networks to random failure
and intentional attacks is one of the important issues in network
science [1–4]. Many real networks are scale free, i.e., the
degree distribution p(k) is a power law denoted by p(k) ∝
k−γ with 2 � γ � 3. Albert et al. examined the robustness of
networks against two types of attacks: random failure in which
nodes are sequentially removed with equal probability and
intentional attack, which preferentially removes nodes of large
degrees [5]. They showed that scale-free networks with small
γ are highly robust against random failure, i.e., the network
remains intact until almost all nodes have been removed. On
the other hand, such networks are very fragile to intentional
attacks because removal of a small fraction of hubs destroys
the network.

Random failures and intentional attacks in networks can be
interpreted as percolation problems and have been well studied
(see Refs. [2,3] and references therein). It is well known
that the site (bond) percolation model with the probability
p that each site (bond) is occupied (open) has a percolation
threshold pc above which the largest connected component
is O(N ), N being the number of nodes. Such a network is
said to be robust (fragile) against failure if pc (1 − pc) is very
small when a random failure is regarded as a node vacancy
in site percolation and as a closed link in bond percolation.
The local tree approximation for uncorrelated networks [6],
which is a standard theory in network science [3], confirms
that scale-free networks with heavy-tailed degree distributions
are robust against random failures [7,8], i.e., pc is zero for both
bond and site percolations when γ � 3. This approximation
can be applied to the case of intentional attacks to show
that uncorrelated scale-free networks with small γ are fragile
against such attacks [7,9]. This theory can be extended so as
to treat clustered networks and correlated networks [10–15].

Apart from the local tree approximation, bond percola-
tion in growing and hierarchical networks has been studied
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extensively (see below), whereas, almost no analytical studies
have focused on site percolation. To date, little attention has
been paid to the difference between bond percolation and site
percolation in complex networks, possibly because the critical
properties of the two percolation models are not qualitatively
different within the local tree approximation [7,8]. However,
what we will demonstrate here is that the opposite can
occur. We examine site percolation in a hierarchical scale-free
network known as the Dorogovtsev-Goltsev-Mendes (DGM)
network [16] or the (1,2) flower [17,18]. Dorogovtsev [19]
calculated bond percolation in this network by renormalization
group and showed that the percolation threshold pc is zero. On
the other hand, we use generating functions to show that the
percolation threshold pc of site percolation is not zero but 1.
That is, this network is fragile even against random failure.
Our analytical result is supported perfectly by Monte Carlo
simulation.

Before discussing the main topic, we emphasize that
percolation characteristics on some graphs are delineated by
two nontrivial transition points, namely, pc1 and pc2 [20–22].
According to the value of p, the system shows one of
the three phases: (i) nonpercolating phase (0 � p � pc1)
in which all clusters are of finite size, (ii) critical phase
(pc1 < p < pc2) (called the patchy phase in Ref. [23]) in which
infinitely many infinite clusters exist, and (iii) percolating
phase (pc2 � p � 1) in which the system has a unique
infinite cluster. Here an infinite cluster is a cluster whose
size is on the order O(Nα)(0 < α � 1). Note that pc2 is
equal to the percolation threshold pc, pc = pc2. By using the
order parameter m ≡ limN→∞ smax(N ; p)/N and the fractal
exponent ψ ≡ limN→∞ logN smax(N ) [24,25], we represent
these phases as: (i) m = 0 and ψ = 0, (ii) m = 0 and 0 < ψ <

1, and (iii) m > 0 and ψ = 1, respectively. Here smax(N ; p) is
the mean size of the largest cluster in a graph of size N at a
given value of p. As known, pc1 = pc2 on Euclidean lattices,
whereas, pc1 < pc2 on transitive nonamenable graphs [21,22].
Also, in complex networks, some growing network models
[25–29] and hierarchical network models [23,30–33] yield
0 = pc1 < pc2 for bond percolation, whereas, pc1 = pc2 for
some static network models, such as uncorrelated networks
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FIG. 1. (a) Realization of the DGM network with generation n =
1–3. (b) Construction of Gn+1 from Gn. Three copies of Gn (G(k)

n , k =
1–3) are connected by identifying A(1) and B(3) to be the new A, A(3)

and B(2) to be the new B, and A(2) and B(1) to be the new C, respectively.

[2,3]. In this paper, we analytically show that pc1 = 0 and
pc2 = 1 for site percolation, whereas, pc1 = pc2 = 0 for bond
percolation [19]. We also demonstrate that pc1 = pc2 = 1 for
intentional attacks on the DGM network.

II. MODEL

The DGM network was proposed as a deterministic growing
network [16]. Let us denote the DGM network with generation
(= time) n by Gn. The model starts from a triangle at n =
1. At each time step n, every link in Gn adds a new node,
which links to both end nodes of the link, to create Gn+1. The
realizations of the first three generations G1, G2, and G3 are
shown in Fig. 1(a). This model also is regarded as a recursively
constructed hierarchical network: G1 consists of a triangle of
nodes A, B, and C. We refer to these nodes as roots. Then,
Gn+1 is constructed from three copies of Gn that are joined at
the roots as shown in Fig. 1(b).

The structural properties of this network have been de-
scribed in Refs. [16,17]. The number of links in Gn is 3n, and
the number of nodes is (3n + 3)/2. The number of nodes Nn(�)
of degree k = 2� (� = 1,2, . . . ,n) is Nn(�) = 3n−� for � < n

and Nn(n) = 3. Thus, the degree distribution p(k) is a power
law, p(k) ∝ k−γ with γ = 1 + ln 3/ ln 2. Furthermore, the
DGM network is a small-world network because the diameter
of Gn is n and the clustering coefficient is 4/5 in the limit
n → ∞.

III. GENERATING FUNCTION

Let us consider site percolation in Gn with an occupation
probability p. We calculate the mean size sroot(Nn; p) of the
root cluster, which includes at least one of the roots A, B,
and C, rather than the mean largest cluster size smax(Nn; p).
Here, A, B, and C have the largest degree k = 2n in Gn and
can, therefore, be regarded as hubs. Also, the root cluster is
always unique because these roots are connected directly in the

A B BA
Tn(x) Sn(x)

(a) (b)

FIG. 2. Schematic of (a) Tn(x) and (b) Sn(x).

cluster. Since this root cluster is expected to become the largest
cluster, we assume that smax(Nn; p) is well approximated by
sroot(Nn; p). This assumption is verified numerically below.

To evaluate sroot(Nn; p), we consider the following two
quantities in Gn: The probability that the size of the root
cluster is k provided that both A and B are occupied [denoted
as t

(n)
k (p), we call such clusters doubly occupied] and the

probability that the size of the root cluster is k provided that
A is occupied and B is unoccupied [denoted as s

(n)
k (p), we

call such clusters singly occupied]. For convenience, A and B
are not included in counting the cluster size k for t

(n)
k (p) and

s
(n)
k (p), but C is included. We now introduce the generating

functions Tn(x) and Sn(x) for t
(n)
k (p) and s

(n)
k (p) (Fig. 2), which

are defined as

Tn(x) ≡
∞∑

k=0

t
(n)
k (p)xk, (1a)

Sn(x) ≡
∞∑

k=0

s
(n)
k (p)xk. (1b)

Here, Tn(1) = Sn(1) = 1 for all n. Given the self-similar
structure, the recursion relations for these generating functions
are readily obtained as

Tn+1(x) = pxT 3
n (x) + qTn(x)S2

n(x), (2a)

Sn+1(x) = pxTn(x)S2
n(x) + qS2

n(x), (2b)

where q ≡ 1 − p [Figs. 3(a) and 3(b)]. The initial condition
is T1(x) = S1(x) = q + px. For example, the first term of the
right-hand side in Eq. (2a) represents the contribution of the
first graph of Fig. 3(a) in which root C is occupied. It consists
of the factor px for the occupied root C and the factor T 3

n (x)
for three doubly occupied root clusters. Here, x accounts for
the occupied root C, which is not counted in Tn(x) or Sn(x),
but is counted in Tn+1(x) or Sn+1(x). The second term of the
right-hand side in Eq. (2a) represents the contribution of the
second graph of Fig. 3(a). The factor q means the probability
of root C being unoccupied, and Tn(x)S2

n(x) is given from one
doubly occupied root cluster and two singly occupied root
clusters.

Now, we consider the mean size of the root cluster. By
f

(n)
k (p), we denote the probability that the size of the root

cluster in Gn is k. For evaluating the generating function
Fn(x) ≡ ∑∞

k=0 f
(n)
k (p)xk , we only need to count possible

contributing diagrams as shown in Fig. 3(c). Noting that all
roots A, B, and C in Gn+1 are not counted as occupied in Tn(x)
and Sn(x), we easily find that Fn+1(x) is evaluated as

Fn+1(x) = p3x3T 3
n (x) + 3p2qx2Tn(x)S2

n(x)

+ 3pq2xS2
n(x) + q3. (3)
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FIG. 3. Possible contributions to (a) Tn+1(x), (b) Sn+1(x), and (c) Fn+1(x). Each solid (dashed) circle represents the root node being occupied
(unoccupied). The black circles represent occupied root nodes, which should be taken into account by multiplying x. For example, the first
diagram of (a) represents pxT 3

n (x), the second diagram of (b) represents qS2
n(x), and the second one in the second line of (c) represents

pq2xS2
n(x).

For n = 1, we have F1(x) = p3x3 + 3p2qx2 + 3pq2x + q3.
Then, sroot(Nn+1; p) = F ′

n+1(1) is given by

sroot(Nn+1; p) = 3p2T ′
n(1) + 6pqS ′

n(1) + 3p, (4)

and sroot(N1; p) = 3p. Here, the prime denotes the first
derivative with respect to x. By Eq. (2), we have T ′

n(1) and
S ′

n(1) recursively as

T ′
n+1(1) = (2p + 1)T ′

n(1) + 2qS ′
n(1) + p, (5a)

S ′
n+1(1) = pT ′

n(1) + 2S ′
n(1) + p, (5b)

with T ′
1(1) = S ′

1(1) = p.
Now, we consider the fractal exponent of the root cluster

ψroot, where sroot(Nn; p) ∝ N
ψroot
n . For n � 1, the recursion

relations (5) are approximated as xn+1 = A · xn, where

xn =
(

T ′
n(1)

S ′
n(1)

)
, A =

(
2p + 1 2q

p 2

)
. (6)

Solving the characteristic equation of A yields the largest
eigenvalue λ(A),

λ(A) = 1
2 (2p + 3 +

√
1 + 4p − 4p2). (7)

By noting sroot(Nn; p) ∝ λ(A)n, we have the fractal exponent
of the root cluster as

ψroot(p) = ln
[

1
2 (2p + 3 +

√
1 + 4p − 4p2)

]
ln 3

(8)

for 0 < p � 1. At p = 0, ψroot(p) = 0.

IV. RESULT

From Eq. (8), it is apparent that ln 2/ ln 3 < ψroot < 1
for 0 < p < 1. This indicates that pc1 = 0 and pc2 = 1 and
the order parameter is zero except at p = 1. In Fig. 4(a),
mroot(Nn; p) = sroot(Nn; p)/Nn is plotted over several genera-
tions using Eqs. (4) and (5). We also performed the Monte
Carlo simulation of site percolation in the DGM network
for different generations (n ranging from 8 to 13). The
number of percolation trials at each p is 200 000. The order
parameters m(Nn; p) = smax(Nn; p)/Nn obtained by Monte
Carlo simulation for n = 9 and 12 are shown in Fig. 4(a). The
numerical results of m(Nn; p) lie precisely on the analytical
curves of mroot(Nn; p). From Fig. 4(a), we find that, across the
range of p, the order parameter decays to zero as n increases,
although the convergence is very slow. The giant component
of O(N ) disappears at p < 1 in the thermodynamic limit,
implying that this network is essentially fragile against random
failures.

In Fig. 4(b), we plot the fractal exponent ψroot(p) given
by Eq. (8) (solid line) and ψ(Nn; p) obtained from the
Monte Carlo simulations (symbols). Here, the fractal expo-
nent ψ(N ; p) = d ln smax(N ; p)/d ln N of a finite graph is
evaluated as the difference ψ(Nn; p) ≈ [ln smax(Nn+1; p) −
ln smax(Nn−1; p)]/(ln Nn+1 − ln Nn−1). When p � 0.2, the
Monte Carlo results lie in the theoretical curve. When p � 0.2,
the data points deviate from this curve, but this deviation can
be diminished by increasing n.

The DGM network is also fragile against intentional attacks.
Note that, in Gn, the degree of the node added at generation
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FIG. 4. (a) Order parameter and (b) fractal exponent profiles for different generations. The solid lines in (a) are the numerical evaluations
of mroot(Nn; p) given by Eqs. (4) and (5) for generations n = 9, 12, 100, and 1000 (from left to right). The solid line in (b) represents ψroot(p)
given by Eq. (8). The open circles and triangles denote the results obtained from the Monte Carlo simulation for (a) m(Nn; p) and (b) ψ(Nn; p)
with n = 12 and 9, respectively. The inset of (b) shows the plot of the fractal exponent ψ(Nn; p) of the configuration model having the same
degree distribution as that of the DGM network. The number of nodes is Nn = 265 722 (circles), 88 575 (squares), and 29 526 (triangles). The
number of trials over each realization is 1000, and the number of graph realizations is 100.

� is 2n−�, i.e., the older the node is, the larger the degree
is. Let us consider removing the nodes added at generations
less than � from Gn. Then, the three clusters, including the
nodes added at generation �, can be considered as the largest
clusters. Simple reasoning gives the size of these clusters as
3n−� in Gn, i.e., ψ(Nn; p) = 1 − �/n. To prevent the fraction
of removed nodes p̃ = 1 − p = 3�−1/3n from disappearing in
the limit n → ∞, � needs to increase as � = n − c, where c

is some constant. Then, we conclude that ψ = c/n → 0 for
p < 1, implying that pc1 = 1. Thus, we have pc1 = pc2 = 1
for intentional attacks.

V. SUMMARY

To summarize, we have examined site percolation in the
DGM network. We have shown that pc1 = 0 and pc2 = 1
for site percolation (random failure), whereas, pc1 = pc2 = 0
for bond percolation [19]. We also have demonstrated that
pc1 = pc2 = 1 for intentional attacks. We conclude that this
hierarchical network is fragile against both random failure and
intentional attacks.

How universal are the behaviors observed here among com-
plex networks? The origin of the observed fragility should be
assigned to the hierarchical structure of the DGM network. We
have numerically observed site percolation in the configuration
model having the same degree distribution as that of the DGM
network [see the inset of Fig. 4(b)]. The numerically obtained
ψ(N ; p) approaches 1 even for small p(>0) when N increases.
This means pc2 = 0, which is consistent with the result by the
local tree approximation [7,8] (note that degree exponent γ

of this network is less than 3). Furthermore, for site-bond
percolation in another hierarchical scale-free network, called
the decorated (2,2) flower, the critical open bond probability

is 1 except for the case of no dilution [34]. An important
point here is that the difference in fragility between bond and
site percolations in the DGM network may be related to a
geometrical property, i.e., the number of ends. Consider an
infinite graph G. The number of ends of G, e(G), is given as the
supremum of the number of infinitely connected components
in G\S, where G\S is the graph obtained from G by removing
an arbitrary finite subset S of nodes or edges. If G is locally
finite and transitive, pc = 1 when e(G) = ∞ [35] and pc < 1
when e(G) = 1 [37]. In the infinite DGM network G∞, which
is neither locally finite nor transitive, the number of ends for
the deletion of nodes and that for the deletion of edges can be
considerably different: In the case of node and edge deletions,
e(G∞) is infinite and unity, respectively. In other words,
G∞ can disintegrate if a finite number of nodes is removed,
which occurs with a nonzero probability when p < 1, but is
robust against edge removals, thus, reflecting the qualitative
difference in percolation threshold between site and bond
percolations. Such a structural defect appears to be common
among previously identified hierarchical scale-free networks,
such as the (decorated) (u,v) flower, the Ravasz-Barabási
hierarchical network [38], and a hierarchical network proposed
by Barabási et al. [39]. We expect that fragility against random
failures is also common in hierarchical network models. The
validity of this conjecture will be investigated in future studies.
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