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Behavior of susceptible-vaccinated–infected–recovered epidemics with diversity
in the infection rate of individuals
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We study a susceptible-vaccinated–infected–recovered (SVIR) epidemic-spreading model with diversity of
infection rate of the individuals. By means of analytical arguments as well as extensive computer simulations, we
demonstrate that the heterogeneity in infection rate can either impede or accelerate the epidemic spreading, which
depends on the amount of vaccinated individuals introduced in the population as well as the contact pattern among
the individuals. Remarkably, as long as the individuals with different capability of acquiring the disease interact
with unequal frequency, there always exist a cross point for the fraction of vaccinated, below which the diversity
of infection rate hinders the epidemic spreading and above which expedites it. The overall results are robust to
the SVIR dynamics defined on different population models; the possible applications of the results are discussed.
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I. INTRODUCTION

Infectious diseases have always been the great enemy
of human health. Historically, large outbreaks of epidemic
usually posed a great threat to health and caused great loss
for individuals. In some sense, the history of humans is a
history of struggle with all kinds of diseases, from the Black
Death in medieval Europe to the recently notorious severe
acute respiratory syndrome [1–3], avian influenza [4,5], swine
influenza [6,7], etc.

So far, vaccination is the most effective approach to
preventing transmission of vaccine-preventable diseases, such
as seasonal influenza and influenzalike epidemics, as well
as reducing morbidity and mortality [8]. In a voluntary
vaccination program, the individuals are subject not only to
social factors such as religious belief and human rights, but also
to various other conditions such as risk of infection, prevalence
of disease, coverage, and cost of vaccination.

Recently, a great deal of effort has been devoted to the
investigation of the interplay between vaccine coverage, dis-
ease prevalence, and the vaccinating behavior of individuals by
integrating game theory into traditional epidemiological mod-
els [8–19]. For brief reviews of this research topic, we refer the
reader to Refs. [20,21] and reference therein. Bauch et al. used
game theory to explain the relationship between group interest
and self-interest in smallpox vaccination policy [8,9] and found
that voluntary vaccination was unlikely to reach the group-
optimal level. Vardavas and co-workers investigated the effect
of voluntary vaccination on the prevalence of influenza based
on minority game theory and showed that severe epidemics
could not be prevented unless vaccination programs offer in-
centives [10]. Zhang et al. studied the epidemic spreading with
voluntary vaccination strategy on both Erdös-Rényi random
graphs and Barabási-Albert scale-free networks [12]. They
found that disease outbreak can be more effectively inhibited
on scale-free networks rather than on random networks, which
is attributed to the fact that the hub nodes of scale-free networks
are more inclined to getting vaccinated after balancing the pros
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and cons. More recently, Fu and co-workers proposed a game-
theoretic model to study the dynamics of vaccination behavior
on lattice and complex networks [13,15]. They found that
the population structure causes both advantages and problems
for public health: It can promote voluntary vaccination to high
levels required for herd immunity when the cost for vaccination
is sufficiently small, whereas small increases in the cost
beyond a certain threshold will cause vaccination to plummet,
and infection to rise, more dramatically than in well-mixed
populations. Another research line studying the effect of
human behavior on the dynamics of epidemic spreading con-
siders mainly the coevolution of node dynamics and network
structure (the so-called adaptive networks [22]), which can
affect considerably the spreading of a disease [23–25].

In most classical epidemiological models [26,27], the
individuals in the population are assumed to be identical, e.g.,
all susceptible individuals acquire the disease with the same
probability whenever in contact with an infected individual,
and all infected individuals recover, or go back to being
susceptible, with the same rate. Such consideration is, however,
far from the actual situation. Generally, catching a disease
could be caused by many complex factors and there might be
great difference among the individuals in the contact rate [28],
the infection rate (or disease transmission rate) [29,30], the
recovery rate, the cost when the individual is infected, and
so forth. One example of such a scenario would be the case
where the population is divided into a relatively wealthy class
(e.g., representing urban residents), which is less susceptible to
infectious disease being considered due to better living condi-
tions and/or health care, and a class of relatively impoverished
(e.g., representing rural residents), which is more susceptible
to infection. An alternative view is to regard roughly the whole
population as composed of two main groups, say, youths and
adults, where the former is more resistant to disease than the
latter, owning to their stronger physique and immune system.

In the present work, we relax the assumption of identical
nature of the individuals and take into account their hetero-
geneity in acquiring disease when in contact with infectious
individuals. To do this, we divide the whole population into two
groups, youths (hereafter group A) and adults (group B) for
simplicity, with the same size, and assume that the individuals
from group B are more likely to be infected than those from
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group A. For the sake of comparison, we presume that only the
disease transmission rate for the individuals in the two groups
are distinct and other parameters, including the recovery rate,
the cost of infection, and the cost for vaccination, are identical.
By doing so we hope to catch any possible effects on disease
prevalence and vaccination coverage caused by the variability
of susceptibility. Our results presented below show that the
heterogeneity in infection rate has a significant influence on
disease spreading and hence cannot be ignored in the forecast
of epidemic size and vaccination coverage.

Our paper is organized as follows. In Sec. II we define
our model and give detailed information for the numerical
simulation method and the parametrizations. In Sec. III we
present and analyze the main results of our model. We
summarize and discuss the results in Sec. IV.

II. MODEL DEFINITION

It is well known that the contact pattern among individuals
dramatically impacts the spatiotemporal dynamics of epidemic
spreading in a population [26,27]. In order to examine the
robustness of the results of our model, we consider two types
of population models, namely, a simple metapopulation model
and a spatially structured population model, as illustrated in
Fig. 1.

In the metapopulation model, the whole population is
divided into two subpopulations with equal size, namely, group
A and group B. Within each subpopulation, the individuals are
assumed to be homogeneously mixed, that is, every individual
has the same opportunity to be in contact with everyone
else. Generally speaking, because of the diversity in social
conditions or lifestyles, the individuals living in an urban area
would be more likely to interact with those also living the
same area and less likely to interact with those in the suburb.
Therefore, we consider the distinct contact pattern among the
individuals to study its impact. This is done by assuming that
any pair of individuals from different (the same) groups have
an interaction frequency ε (1 − ε). Here ε is restricted to the
interval [0,0.5]. In the spatially structured population model,
we consider two kinds of occupation of the individuals on a
square lattice to introduce the diversity of interaction pattern
among them. To be more specific, in the first case, the youths

and the adults are arranged in a random way such that they can
interact with the same frequency, which is similar to the case
of ε = 0.5 in the metapopulation case. In the second case, the
individuals are regularly prearranged to gather together with
the same type of individuals [see Fig. 1(c)]. In this way, we are
able to investigate how the mixing pattern affects the epidemic
spreading in the population.

We implement our susceptible-vaccinated–infected–
recovered epidemic-spreading dynamics in the following way.
The epidemic strain infects an initial number of individuals I0

and then spreads in the population according to the classical
susceptible-infected-recovered (SIR) epidemiological model,
with per-day transmission rate r for each pair of susceptible-
infected contact and recovery rate g for each infected individ-
ual getting immune to the disease. Whenever the vaccinated
compartment is involved in the epidemiological model, a frac-
tion fV of individuals are randomly chosen in the whole popu-
lation in the initial stage to get vaccinated. For simplicity, here
we assume that vaccination grants perfect immunity for the
infectious disease. The epidemic continues until there are no
more newly infected individuals. As such, those unvaccinated
susceptible individuals would either be infected or successfully
escape from infection at the end of each spreading season.

In realistic situations, to vaccinate or not to vaccinate is
sometimes the business of the individuals. Thus, except for
the above case where the fraction of vaccinated individuals
is compulsively introduced, we also consider a voluntary
vaccination program for preventing an influenzalike infectious
disease, in which individuals need to decide whether or not to
receive a vaccine each season based on their perceived risk of
disease infection. Following previous studies [10,11,13,15],
we model the vaccination dynamics as a two-stage game.
At the first stage, each individual decides whether or not to
get vaccinated, which will incur a cost CV , including the
immediate monetary cost for vaccine and the potential risk
of vaccine side effects. Individuals catching the epidemic will
suffer from an infection cost CI , which may account for disease
complications, expenses for treatment, etc. Those individuals
who escape infection are free riders and pay for nothing.
Without loss of generality, we set CI = 1 and let c = CV /CI

describe the relative cost of vaccination, whose value is
restricted in the region of [0,1] (otherwise, doing nothing

Group B

(a)

Group A

(b) (c)

FIG. 1. (Color online) Schematic illustration of population models we studied in the main text. (a) Simple metapopulation model composed
of two subpopulations, within each one consisting of the same type of individuals. (b) Individuals from different groups are randomly arranged
on a square lattice. (c) Individuals from different groups are regularly arranged on the lattice. The A-type and B-type individuals are indicated
by blue (dark gray) and green (light gray) squares, respectively.
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would be better than getting vaccinated). The second stage
is the same epidemic spreading processes as described before.
After each spreading season, the individuals are allowed to
rechoose their choice for vaccination based on a pairwise
comparison rule (more details will be given below).

We carry out stochastic simulations for the above epi-
demiological (game-theoretic) processes in both population
models, wherein each seasonal epidemiological process is
implemented by using the well-known Gillespie algorithm
[31,32]. In particular, at any time t , we calculate each
individual’s transition rate λi(t). The rate for any susceptible
individual becoming infected is λi(t) = r × kinf and kinf is
the number of infected neighbors of the focal individual. The
rate for any infected individual recovering is λi(t) = g. The
recovered individuals do not change state and the rate for
them is therefore λi(t) = 0. Summing up all of them, we
yield the total transition rate ω(t) = �iλi(t). With this value
in hand, the time at which the next transition event occurs
is t ′ = t + �t , where �t is sampled from an exponential
distribution with mean 1

ω(t) (if we generate a uniform random

number u ∈ [0,1), then the time interval is �t = − ln(1−u)
ω(t) ).

The individual whose state is chosen to change at time t ′
is sampled with a probability proportional to λi(t). That
is, a uniform random number v ∈ [0,1) is generated and if
�k−1

j=1λj (t)/ω(t) < v < �k
j=1λj (t)/ω(t), then individual k is

chosen to change state. This elementary step is repeated until
there are no infected individuals left in the population.

III. ANALYSIS AND RESULTS

A. Metapopulation without vaccinated compartment

We first examine our model in metapopulations. For
convenience, the two groups A and B are denoted by the
subscripts a and b, respectively. According to the above
illustrated scenario, the time evolution of population states
for group A can be expressed as the following deterministic
ordinary differential equations:

dSa

dt
= −raNSa[(1 − ε)Ia + εIb], (1)

dIa

dt
= raNSa[(1 − ε)Ia + εIb] − gIa, (2)

dRa

dt
= gIa. (3)

As mentioned before, the parameter ε is the cross contact
coefficient, which stands for the contact frequency between
individuals from different groups.

For the whole system that includes groups A and B, we
have the following equations:

dS

dt
= −raNSa[(1 − ε)Ia + εIb] − rbNSb[(1 − ε)Ib + εIa],

(4)

dI

dt
= raNSa[(1 − ε)Ia + εIb]

+ rbNSb[(1 − ε)Ib + εIa] − gI, (5)

dR

dt
= g(Ia + Ib) = gI. (6)

In the limit ε → 0, the basic reproduction number (whose
value identifies the expected number of secondary infections
produced by an infected individual during that individual’s
infectious period within the entire susceptible population) of
groups A and B can be approximately written as R0a = raN/g

and R0b = rbN/g, respectively. By taking the average over
each group, we obtain the effective basic reproduction number
of the infectious disease R0 = (ra + rb)N/2g = 〈r〉N/g,1

where 〈r〉 is the average value of the disease transmission
rate of the whole population.

By varying the value of ra and rb, we are able to introduce
the difference in transmission rate of the infectious disease for
the individuals. For the sake of comparison, we keep the aver-
age value of the transmission rate fixed as 〈r〉 = (ra + rb)/2.
Denoting ra/rb by x, the relative disease transmission rate for
the two types of individuals, after some simple algebra we
have

ra = 2x〈r〉
1 + x

, rb = 2〈r〉
1 + x

. (7)

When x is close to zero, there exists a great difference between
the individuals in group A and those in group B in acquiring
the disease (i.e., we consider the case where the youths are very
resistant to the infection, while the adults are very vulnerable
to the disease). As x goes to unity, the variation of the disease
transmission rate among the two groups vanishes.

Let us show in Fig. 2 the influence of the cross contact
coefficient ε on the epidemic spreading in the population
without a vaccinated compartment. In the case of the limit
x → 1, we have ra ≈ rb, which means that the possibilities
of acquiring the disease through susceptible-infected contact
for the individuals from the two groups are almost the same.
As a consequence, the final epidemic size fR , i.e., the average
fraction of recovered individuals in the whole population, does
not change much as the parameter ε varies. Note that with the
current parametrization settings the final epidemic size without
vaccination is about 89.3% for x = 1.0 [13]. As x diminishes,
fR decreases considerably. This point can be understood by
considering the case of ε → 0. In such a case, as demonstrated
in Appendix A, due to the concavity of fR as a function of R0,
the decrease of epidemic size fRa in group A cannot be offset
by the increase of fRb in group B and consequently the final
epidemic size of the whole system will decrease continuously
as x decreases. In particular, when the value of x is less than
0.25, the value of R0a will be smaller than unity, which means
that the epidemic cannot spread throughout group A. Hence
fR of the whole population is mainly contributed by fRb and
converges approximately to a value ≈ 0.5 for x < 0.25. With
the increment of ε, the more frequent contact between the two
groups will infect more individuals in group A, while the some-
what less frequent contact among those individuals from group
B has just a slight impact on the final fRb (see Appendix A).
The introduction of heterogeneity of the infection rate can
greatly suppress the prevalence of the infectious disease.

1Note that only in the limit case of ε → 0 can R0 be approximately
written as (ra + rb)N/2g. In any cases ε � 0, we are unable to write
out the explicit form of R0, but just keep the quantity 〈r〉 = (ra + rb)
as constant.
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FIG. 2. (Color online) Epidemic spreading in the metapopulation
model without the vaccinated compartment. The final epidemic size
fR is plotted as a function of the cross coefficient ε for several different
values of the relative disease transmission rate x. The lines are for the
analytical predictions from Eqs. (4)–(6). The symbols are simulations
obtained by carrying out the Gillespie algorithm. The parameters are
the total population size N = NA + NB = 10 000, average value of
the disease transmission rate 〈r〉 = 2.5

3N
day−1 person−1, recovery rate

g = 1
3 day−1, and number of initial infection seeds Ia = Ib = 10.

Simulation results are averaged over 100 independent runs.

B. Metapopulation with vaccinated compartment

We now incorporate the vaccinated compartment into the
epidemic spreading in the metapopulation model. We denote
by fV a the proportion of the population initially vaccinated
in group A. In our work we assume the same fraction of
initially vaccinated individuals for the two groups, that is,
fV a = fV b = fV . For given values of fV , x, and ε, we obtain
the final epidemic size by implementing stochastic simulations
as described in Sec. II. The simulation results are summarized
in Fig. 3, which are in good agreement with those predicted
by numerically solving Eqs. (4)–(6).

The overall result is that with the involvement of the
vaccinated compartment, the final epidemic size will gradually
decrease with the increase of fV , which is expected since vac-
cination can provide perfect immunity to the infectious disease
and a sufficiently large fraction of vaccinated individuals can
completely prohibit the propagation of the infectious disease.
Though the difference between fR for x = 1.0 and that for
x < 1.0 is vanishing in the limit of large fV , there exists a
qualitative difference for the variation. When the individuals
from the two groups interact quite frequently ε = 0.5, the
smaller the relative disease transmission rate x is, the smaller
the final epidemic size fR is. Such a dynamic scenario,
however, changes when the interaction frequency among the
individuals from distinct groups is decreased. Specifically, a
crossover behavior of fR as a function of fV emerges as the
parameter ε drops close to zero. We notice that there arises
a critical value of fV , say, fV c (whose value is about 0.45),
below which the presence of heterogeneity in infection rate for
the individuals from different groups can hinder the epidemic
spreading, while above which the opposite effect takes place

x=0.02 0.1 0.2
0.33 0.5 1.0

ε=0.5

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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1.0

f R

f
V

x=1.0

x=0.02

x=0.02 0.1 0.2
0.33 0.5 1.0

ε=0.1x=1.0

x=0.02
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FIG. 3. (Color online) Epidemic spreading in the metapopulation
model with the vaccinated compartment. The final epidemic size fR

is plotted as a function of the fraction of vaccinated individuals fV for
several different values of the relative disease transmission rate x. The
lines are for analytical predictions from deterministic equations and
the symbols are obtained by simulations. The cross contact coefficient
(a) ε = 0.5 and (b) ε = 0.1. Other parameters are the same as in Fig. 2.
Simulation results are averaged over 100 independent runs.

(see Appendix B for more details). It is worth pointing out
that for sufficiently small ε, the individuals in the two groups
almost interact with others within the same group, which
leads to the clustering of susceptible individuals with a high
infection rate of the disease (in group B). Consequently, the
disease prevalence is enlarged as compared to the case of a
homogeneous interaction pattern of the two groups [e.g., the
curve for x = 0.02 in the case of ε = 0.1 is always above that
in the case of ε = 0.5 (not shown here)].

C. Spatially structured population with
vaccinated compartment

Now we study our model in a spatially structured popula-
tion, where the individuals are located on a square lattice.
For the sake of comparison, we calibrated the epidemic
parameters to ensure that the infection risk in an unvaccinated

062805-4



BEHAVIOR OF SUSCEPTIBLE-VACCINATED– . . . PHYSICAL REVIEW E 88, 062805 (2013)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

x=0.02 0.1 0.2
0.33 0.5 1.0

randomly arranged

f R

f
V

(a)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

x=0.02 0.1 0.2
0.33 0.5 1.0

regularly arranged

f R

f
V

(b)

FIG. 4. (Color online) Epidemic spreading in spatially structured
populations with the vaccinated compartment. The final epidemic
size fR is plotted as a function of the vaccination level fV for
several different values of the relative disease transmission rate x.
The different types of individuals are (a) randomly arranged as in
Fig. 1(b) and (b) regularly arranged as in Fig. 1(c). The parameters
are the total population size N = 100 × 100, average value of the
disease transmission rate 〈r〉 = 0.46 day−1 person−1, recovery rate
g = 1

3 day−1, and number of initial infection seeds Ia = Ib = 10.
Simulation results are averaged over 100 independent runs.

population (without variation of infection) is equal across all
population structures, that is, fR for x = 1 in the case of a
spatially structured population should be the same as fR for
x = 1 in the case of a metapopulation. The simulation results
are displayed in Fig. 4, from which we note that the final
epidemic size fR decreases much more rapidly as compared
to that in the metapopulation case when the vaccination level
increases. When the two types of individuals are randomly
prearranged, fR decreases monotonically as the variation of
infection increases for each vaccination level. Noticeably, we
find that the crossover behavior of fR as a function of fV still
exists when the interaction frequency between the two types of
individuals reduces to a very low level. From Fig. 4(b) we can
see clearly that there is a crossing point near fV c = 0.1. For

fV < fV c, the heterogeneity in infection can efficiently hinder
the disease spreading, while it promotes the propagation for
fV > fV c, similar to the results in Fig. 3(b) obtained for the
metapopulation model.

D. Spatially structured population with vaccination dynamics

In what follows we investigate how the vaccination dynam-
ics (i.e., we allow the individuals to change their vaccination
behavior based on previous experience [13]) affects the
epidemic spreading in structured populations. In the initial
state, we randomly choose half of the population to get
vaccinated. At the end of each epidemic spreading season,
we give the individuals a chance to update their strategies for
vaccination before the new one starts. We implement a pairwise
comparison process for the strategy updating. Specifically,
whenever an individual i updates one’s vaccination strategy,
one just chooses an individual j randomly from one’s nearest
neighbors to compare their cost (or payoff) and then adopts
the vaccination choice of j with a probability dependent on
the payoff difference [33–35]

qij = 1

1 + exp[−β(Pj − Pi)]
, (8)

where Pi and Pj correspond to the payoffs of the two involved
individuals and β denotes the strength of the selection.
Unless otherwise specified, we select β = 1.0, implying that
better-performing individuals are readily imitated, but it is not
impossible to adopt the behavior of an individual performing
worse. What we are interested in this case is how many
individuals are infected and the vaccination coverage in the
final stable state. The results shown in Fig. 5 are the average
of the last 1000 iterations among the total 5000 in 100
independent simulations.

We plot in Fig. 5 the epidemic size fR and the vaccination
level fV in the steady state as a function of the relative cost
for vaccination c for two differently arranged populations on
square lattice. From Figs. 5(a)–5(c) we observe that as the
value of x goes down, i.e., the heterogeneity in infection
rate for the two types of individuals becomes more notable,
the final epidemic level in the randomly arranged population
(the open symbols) changes much more evidently than that in
the case of regularly arranged population (the closed symbols).
In particular, for x = 0.5, the final fR in the randomly arranged
population is always greater than that in the regularly arranged
population as c increases, albeit the vaccination level in the
former case is slightly larger than that in the latter case for
c � 0.25 [see Fig. 5(d)]. For x = 0.3, in the randomly arranged
population, though the growth trend of fR is more apparently
for small c, it attains at a smaller level for large enough values
of c (when the vaccination level evolves to zero), which is
comparable to the case of a regularly arranged population. As
x decreases even to 0.1, fR in a randomly arranged population
can just grow to a much lower level as compared to that in the
case of a regularly arranged population, despite the fact that
the vaccination level is zero for most c values [see Fig. 5(f)].
The reason is that the A-type individuals are difficult to infect
even though they did not receive a vaccine when x is too
small and as such they play the role of a natural obstructer to
prevent large-scale spreading of the disease in the population.
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FIG. 5. (Color online) Epidemic spreading and vaccination dynamics in spatially structured populations. (a)–(c) The final epidemic size fR

and (d)–(f) the final vaccination coverage fV are plotted as a function of the cost for vaccination c for three typical values of the relative disease
transmission rate x. Open and closed symbols correspond to the results yielded for randomly and regularly arranged populations, respectively.
Other parameters are the same as in Fig. 4. Simulation results are averaged over 100 independent runs. The lines are a guide to the eyes.

In addition, those unvaccinated A-type individuals will attract
other individuals to not get vaccinated, giving rising to very
low level of vaccination in the steady state [Figs. 5(e) and 5(f)].
For a regularly arranged population, however, since the B-type
individuals are clustered together, they are very prone to the
attack of disease and consequently the final epidemic can reach
a rather large level.

IV. CONCLUSION AND DISCUSSION

In summary, we have incorporated the heterogeneity in
infection rate of individuals and also the vaccination dynamics
into the traditional susceptible-infected-recovered compart-
mental epidemic model to study their potential effects on
the disease prevalence and vaccination coverage. For this
purpose we have considered a more practical framework where
the whole population is classified into two types of groups
whose members are endowed with different capabilities in
catching a disease. To keep things simple, the individuals
within the same group are assumed to be identical in their
infection rate. The proposed model has been investigated in
a simple metapopulation and spatially structured populations,
with and without involvement of vaccination, by using numer-
ical simulations as well as analytical treatments.

We have shown that whether the introduction of het-
erogeneity in the infection rate of the individuals exerts
positive or negative effects (i.e., hampers or expedites) on
the epidemic spreading depends closely on both the extent
of the heterogeneity of the disease transmission rate and the

interaction frequency among the individuals from different
groups. To be more specific, the heterogeneity in infection rate
can always give rise to a decrease of the final epidemic size
provided the individuals from different groups interact with
equal likelihood. Nonetheless, as the individuals become more
inclined to interact mainly with others from the same group,
the heterogeneity in infection rate can hinder the epidemic
spreading only in the situation that the fraction of individuals
vaccinated is low enough. Very surprising, this just facilitates
the epidemic spreading in a regime with the presence of a
large fraction of vaccinated individuals (but not large enough
to eradicate the disease completely).

Our work is expected to provide some valuable instructions
for the prediction and intervention of epidemic spreading in the
real world. The results summarized in Figs. 2–5 suggest that
when evaluating the seriousness of an epidemic, we should
take into account both the factors of the diversity of the
infection rate of the individuals and the interaction patterns
among them simultaneously; otherwise we may overestimate
or underestimate the spreading trend. Alternatively, without
such considerations, we may overshoot or undershoot the
desired amount of action when developing, regulating, and
making vaccine policy. In addition, when individuals are
allowed to change their vaccination decisions according
to their experience and observations, we find that as the
heterogeneity in infection rate for the two types of individuals
becomes more noticeable, the final epidemic level in randomly
arranged population changes much more evidently than that
in the case of a regularly arranged population, hence giving
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us a vital clue as to how to make efficient vaccine campaign,
namely, we should distribute the vaccine in the population as
widely as possible so that the spreading path of the disease can
be efficiently suppressed.

To summarize, our proposed model captures essential
elements in real-world epidemic spreading, which has not been
fully discussed previously. Therefore, we believe our results
will give some insights to the policy makers. There are still
many issues, such as diversity of recovery rate, heterogeneous
cost for infection and vaccination, and more complex contact-
network structures, which are totally overlooked in the present
work and deserve to be explored in the future. In addition, the
spread of awareness of the epidemic and/or the vaccination
sentiment would also impact greatly the vaccination behavior
of the individuals and hence the epidemic outbreaks [36–38].
We hope our work could stimulate further work in this line of
research.
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APPENDIX A

Here we present a theoretical analysis for the simple
metapopulation model. For convenience, let us denote 〈r〉N/g

by C, which is kept as a constant. The combination of
Eqs. (1)–(3) with Eq. (7) yields

dSa

dRa

= − 2x

1 + x
SaC

[
(1 − ε) + ε

Ib

Ia

]
, (A1)

dSa

dRb

= − 2x

1 + x
SaC

[
(1 − ε)

Ia

Ib

+ ε

]
, (A2)

dSb

dRb

= − 2

1 + x
SbC

[
(1 − ε) + ε

Ia

Ib

]
, (A3)

dSb

dRa

= − 2

1 + x
SaC

[
(1 − ε)

Ib

Ia

+ ε

]
. (A4)

After eliminating Ia

Ib
and Ib

Ia
from these equations we readily

obtain
ε

Sa

dSa − x(1 − ε)

Sb

dSb = 2Cx(1 − 2ε)

1 + x
dRb, (A5)

1 − ε

Sa

dSa − xε

Sb

dSb = 2Cx(1 − 2ε)

1 + x
dRa. (A6)

Now we integrate these two equations with respect to time from
0 to ∞. By using the initial condition Sa(0) = Sb(0) ≈ 1 and
Ra(0) = Rb(0) = 0 and the final state Ia(∞) = Ib(∞) = 0,
we get the following two transcendental equations for the final
epidemic size Ra(∞) and Rb(∞) for each group:

ln[1 − Ra(∞)] = 2Cx

1 + x
[(1 − ε)Ra(∞) + εRb(∞)], (A7)

ln[1 − Rb(∞)] = 2C

1 + x
[(1 − ε)Rb(∞) + εRa(∞)]. (A8)

What we want to figure out is the relationship between the
final epidemic size fR and the cross coefficient ε, so we
take a derivative of Eqs. (A7) and (A8) with respect to ε

and get

1

Ra(∞) − 1

dRa(∞)

dε

= − 2Cx

1 + x

[
−Ra(∞) + (1 − ε)

dRa(∞)

dε

+Rb(∞) + ε
dRb(∞)

dε

]
, (A9)

1

Rb(∞) − 1

dRb(∞)

dε

= − 2Cx

1 + x

[
−Rb(∞) + (1 − ε)

dRb(∞)

dε

+Ra(∞) + ε
dRa(∞)

dε

]
. (A10)

After doing some algebra we obtain(
1

1 − Ra(∞)
− 2Cx

1 + x

)
dRa(∞)

dε

= −
(

x

1 − Rb(∞)
− 2Cx

1 + x

)
dRb(∞)

dε
. (A11)

We can rewrite this equation as

dRa(∞)

dε
= −K

dRb(∞)

dε
, (A12)

where

K =
x

1−Rb(∞) − 2Cx
1+x

1
1−Ra (∞) − 2Cx

1+x

. (A13)

In the case of ε = 0, it is easy to verify numerically that K > 1
for all our x values of interest (say, x > 0.01). More intuitively,
for SIR model in a well-mixed population, the final epidemic
size is determined by the self-consistent equation R(∞) =
1 − exp−R0R(∞). Figure 6 features the solutions, from which
we note that fR is a concave function of R0. If we decrease
the value of x such that in the limit of ε = 0 the variables

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R
0
= 1.2

R
0
= 3.8

f R

R
0

R
0
= 2.5

FIG. 6. (Color online) Solutions of the equation R(∞) = 1 −
exp−R0R(∞), where the final epidemic size fR = R(∞) as a function
of basic reproduction ratio R0 is shown.
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R0a and R0b always satisfy the relationships R0a < R0b and
(R0a + R0b)/2 = C = R0, then due to the concave curvature,
the variation of the final epidemic size in group A will be more
remarkable than that in group B, as illustrated in Fig. 6. For
each fixed value of x, as ε increases, the increasingly frequent
contact among the individuals from different groups will have
a greater affect on Ra(∞) than on Rb(∞) (as long as x is
not too small), giving rise to the increase of fR in the whole
population. Since Ra(∞) increases and Rb(∞) decreases with
the increment of ε, the value of K will decrease monotonically
according to Eq. (A13), which is reflected correctly in Fig. 2.

APPENDIX B

Here we demonstrate the existence of the crossover be-
havior for the curves of fR as a function of fV = y for
different values of x. In a well-mixed population, we know
the final fraction of recovered population for the SIR model
satisfying the equation R(∞) = 1 − exp−R0R(∞). When a
proportion y of preemptive vaccination in introduced before
the epidemic starts, we can readily obtain R(∞) = (1 − y)
(1 − exp−R0R(∞)). For our proposed model, we consider two
limited cases. The first case is x = 1, i.e., the individuals in
the two groups are identical, and in such a case we have

Rb(∞)|x=1 = (1 − y)(1 − exp−R0bRb(∞)|x=1 ), (B1)

R(∞)|x=1 = Ra(∞)|x=1 = Rb(∞)|x=1, (B2)

where R0b = rbN/g = 〈r〉N/g = C.
The other limited case is x → 0, which means that the

disease transmission rate for the individuals in group A is
nearly zero. By approximating Ra(∞)|x→0 = 0 and combining
Eqs. (A7) with (A8) we have

Rb(∞)|x→0 = (1 − y)(1 − exp−R0b(1−ε)Rb(∞)|x→0 ), (B3)

R(∞)|x→0 = Ra(∞)|x→0 + Rb(∞)|x→0

2

= Rb(∞)|x→0

2
, (B4)

where R0b = rbN/g = 2〈r〉N/g = 2C. We assume that the
curves of fR for the two cases have a crossing point so that

Rb(∞)|x=1 = Rb(∞)|x→0

2
. (B5)

TABLE I. Comparisons of the intersecting points (fV c, fR) of the
curves for x = 1.0 and 0.02 predicted by Eqs. (B6), (B1), and (B3)
with those obtained from direct stochastic simulations, with different
values of ε.

ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3

0.470, 0.237(6)a 0.477, 0.228(5) 0.482, 0.210(2) 0.507, 0.175(5)
0.473, 0.235(7)b 0.478, 0.227(7) 0.491, 0.206(4) 0.512, 0.171(5)

aResults of (fV c, fR) obtained from stochastic simulations.
bResults of (fV c, fR) predicted by analytical treatments.

Denoting Rb(∞)|x=1 by z, combining Eqs. (B1), (B3), and
(B5), and recalling that C = 2.5, we obtain

exp−10(1−ε)z = 2 exp−2.5z −1. (B6)

To validate the assumption, Eq. (B6) must have an exact
solution, which means that

(exp−10(1−ε)z)′|z=0 < (2 exp−2.5z −1)′|z=0. (B7)

Solving the inequality yields ε < 0.5. That is to say,
the crossover behavior will always exist as long as ε is
strictly smaller than one-half. From Eqs. (B6) and (B1) we
have

dε

dz
= 1

10

[
− 2.5 exp−2.5z

z(2 exp−2.5z −1)
− ln(2 exp−2.5z −1)

z2

]
< 0,

(B8)

dy

dz
= exp−2.5z +2.5z exp−2.5z −1

(exp−2.5z −1)2
< 0. (B9)

By dividing Eq. (B9) by (B8) we get dε/dy > 0, which
indicates that the crossing point will move to the right (i.e., the
curves intersect at larger values of y = fV ) with an increase
of the cross contact coefficient ε. In Table I we summarize
the crossing point values (fV c, fR) of the curves for x = 1.0
and 0.02 yielded by the stochastic simulations as well as
those predicted by Eqs. (B6), (B1), and (B3). We notice
that the results obtained from different methods match quite
well with each other. The invisible differences may be due
to the finite-system-size effect. Specifically, with increasing
ε the curves for x = 1.0 and 0.02 intersect at points with
larger fV c.
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