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Zipf’s law is the major regularity of statistical linguistics that has served as a prototype for rank-frequency
relations and scaling laws in natural sciences. Here we show that Zipf’s law—together with its applicability for a
single text and its generalizations to high and low frequencies including hapax legomena—can be derived from
assuming that the words are drawn into the text with random probabilities. Their a priori density relates, via the
Bayesian statistics, to the mental lexicon of the author who produced the text.
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I. INTRODUCTION

Zipf’s law states that in a given text the ordered and normal-
ized frequencies f1 > f2 > · · · for the occurrence of the word
with rank r behave as fr ∝ r−γ with γ ≈ 1 [1,2]. This law
applies to texts written in many natural and artificial languages.
Its almost universal validity has fascinated generations of
scholars, but its message is still not well understood: Is it
just a consequence of simple statistical regularities [3,4] or
does it reflect a deeper structure of the text [5]?

Many approaches have been proposed for deriving Zipf’s
law, suggesting that it can have different origins. They are
divided into several groups.

(1) Some theories approach deduction of the law from
certain general premises of the language [3,6–11]. This group
includes the Zipf’s program whereby the language trades off
between maximizing the information transfer and minimizing
the speaking-hearing effort (this accounts for multifunctional-
ity and short length of the most frequent words). This program
is so far also not conclusive: It is not clear whether it really
reproduces Zipf’s law; see Refs. [7,8] for a recent review.
Another derivation of the law is based on the idea that the
words organize into a hierarchical structure, where the most
frequent words are the ones with a wider meaning [11].

The general problem of derivations from this group is that
explaining Zipf’s law for the language (and verifying it for a
frequency dictionary or for a large corpus) does not yet explain
the law for a concrete text, where the frequency of the same
word varies widely from one text to another and is far from its
value in a frequency dictionary [12]. Hence, the above deriva-
tions do not explain why Zipf’s law applies to a single text.1

(2) The law can be derived from certain probabilistic models
[4,13–16]. Albeit some of these models assume relevance
for realistic text-generating processes [14,15], their a priori
assumed probability structure is intricate; hence, the question

1For example, if the word frequencies obeying Zipf’s law are
deduced from considerations related to the meaning of the words
(as in Ref. [11]), then applicability to a single text is unclear, since
the fact that the words normally have widely different frequencies
in different texts requires a substantial reconsideration of the word’s
meaning in each text (this is not the case in real texts).

“Why Zipf’s law?” translates into “Why a specific probabilistic
model?” By far the most known probabilistic model is a ran-
dom text, where words are generated through random combi-
nations of letters and the space symbol seemingly reproducing
the fr ∝ r−1 shape of the law [3,4]. But the reproduction is
elusive, since the model leads to a huge redundancy—many
words have the same frequency and length—absent in normal
texts [17]; see also Ref. [18] in this context. A recent study
outlines in detail the statistical differences between random
and usual texts and reviews previous literature [19].

(3) Derivations from various generalizations of the max-
imum entropy method [12,20–24]. Here one employs the
most noninformative (most disordered) distribution of word
frequencies compatible with certain constraints. However,
the choice of the entropy function to be maximized (and of
relevant constraints) is neither unique nor completely clear, in
contrast to the original maximum entropy method, as applied
in statistical physics [25].2 A related approach to deriving
Zipf’s law employs not the maximal entropy method directly
but rather tools of entropy-based complexity theory [27].

Note that Zipf’s law does not hold for all ranks: Rank-
frequency relations deviate from Zipf’s law at low and high
frequencies [1,2]. The high-frequency deviation relates to
functional words, while the low-frequency one indicates on
hapax legomena the domain of rare words [1,2]. This domain
is subject to a specific relation (sometimes called the Lotka’s
law or the second law of Zipf) that is normally discussed
separately from Zipf’s law proper [2,28]. However, one expects
that Zipf’s law does allow generalizations to high and low
frequencies and that also the validity range of Zipf’s law proper
will come out from this generalization.

Our approach for deriving Zipf’s law uses a probability
model. It differs from previous models in several respects.
First, it explains the law for a single text together with its
limits of validity, i.e., together with the range of ranks where it
holds. It also explains the rank-frequency relation for frequent
(functional) words, as well as for very rare words (hapax
legomena) and relates them to Zipf’s law. In particular, for

2In this context we note that Zipf’s law can be related to modern
ideas of statistical physics such as scaling and universality [26].
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TABLE I. Parameters of three texts: The Age of Reason (AR)
by T. Paine, 1794 (the major source of British deism), Thoughts on
the Funding System and Its Effects (TF) by P. Ravenstone, 1824
(economics), and Dream Lover (DL) by J. MacIntyre, 1987 (romance
novella). Total number of words is N , the number of different words is
n, rmin and rmax are, respectively, the lower and the upper ranks of the
Zipfian domain, and c and γ are the fitted values of the parameters.

Texts N n rmin rmax c γ

TF 26624 2067 36 371 0.168 1.032
AR 22641 1706 32 339 0.178 1.038
DL 24990 1748 34 230 0.192 1.039

hapax legomena we propose a regularity that works better
than the Lotka’s law.

Second, the a priori structure of our model can be connected
to the mental lexicon [29] of the author who produced the
text. Third, the model is not ad hoc: It is based on the ideas
of latent semantic analysis that is used successfully for text
modeling [30]. The latent semantic analysis arose from a
long scientific tradition (in statistics, physics, sociology, etc.),
where observed effects are explained through simpler (but hid-
den) regularities; see, e.g., Ref. [31] for a general introduction.

This paper is organized as follows. Section II discusses the
validity range of Zipf’s law employing empiric data from three
English texts. Section III introduces our model and discusses
its basic assumptions. In Sec. IV we solve this model, while
the next section, Sec. V, presents the theoretical understanding
of Zipf’s law. Section VI validates the model from features
of the mental lexicon (no preliminary knowledge of this
psycholinguistic concept is assumed). We conclude in the last
section. Technical questions are discussed in the Appendices.

II. THE VALIDITY RANGE OF ZIPF’S LAW

A. Linear fitting

Below we present empirical results exemplified on three
English texts (see Table I) that clarify the validity range of the
law and confirm known results but also make new points that
motivate the theoretical model worked out in the sequel.

For each text we extract the ordered frequencies of n

different words:

{fr}nr=1, f1 � · · · � fn,

n∑
r=1

fr = 1. (1)

To fit {fr}nr=1 to the Zipf’s form f̂r = cr−γ , we represent the
data as {yr (xr )}nr=1, where yr = ln fr and xr = ln r , and fit it
to the linear form {ŷr = ln c − γ xr}nr=1. Two unknowns ln c

and γ are obtained from minimizing the sum of squared errors
(see Appendix A for details),

Serr =
n∑

r=1

(yr − ŷr )2. (2)

Now minc,γ [Serr] = S∗
err and the correlation coefficient R2

between {yr}nr=1 and {ŷr}nr=1 (see Appendix A) measure the
fitting quality

S∗
err → 0 and R2 → 1, (3)

FIG. 1. (Color online) Frequency fr vs rank for the text TF;
see Table I and (1). Red (upper, straight) line: the Zipf curve
fr = 0.168r−1.032. Arrows indicate on the validity range of the Zipf’s
law. Blue (lower, curved) line: the solution of (13) and (14) for
c = 0.168 and n = 2067. It coincides with the generalized Zipf law
(23) for r > rmin = 36. The stepwise behavior of fr for r > rmax

refers to hapax legomena.

indicating a good fit. We minimize Serr over c and γ for rmin �
r � rmax and find the maximal value of rmax − rmin for which
S∗

err and 1 − R2 are smaller than, respectively, 0.05 and 0.005.
This value of rmax − rmin also determines the final fitted values
of c and γ ; see Table I and Appendix A for technical details.
The quality of this fitting was additionally confirmed via the
Kolmogorov-Smirnov (KS) test; see Appendix A 2.

B. Main empiric features of Zipf’s law

For each text there is a specific (Zipfian) range of ranks
r ∈ [rmin,rmax], where the Zipf’s law holds with γ ≈ 1 and
c < 0.2 [1,2]; see Table I and Fig. 1. For r < rmin and r > rmax

the law is invalid, since the frequencies are below the Zipf
curve. We show below how a consistent generalization of the
law allows us to cover these domains as well.

Even if the same word enters into different texts it typically
has quite different frequencies [12], e.g., among 83 common
words in the Zipfian ranges of AR and DL (see Table I), only
12 words have approximately equal ranks and frequencies.

The pre-Zipfian 1 � r < rmin range contains mainly func-
tion words. They serve for establishing grammatical construc-
tions (e.g., the, a, such, this, that, where, were).3 But the
majority of words in the Zipfian range do have a narrow
meaning (content words). A subset of those content words
has a meaning that is specific for the text and can serve as its
keywords [32]. Below in Sec. VI we explain why the keywords
appear in the Zipfian domain.

The absolute majority of different words with ranks in
[rmin,rmax] have different frequencies. The number of different

3Few keywords appear also in the pre-Zipfian range, e.g., love and
miss for DL and god and man for AR. Some keywords are also located
in the post-Zipfian area, e.g., eloi for TM, but the majority of them
are in the Zipfian range.
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words having the same frequency is �10 only for r � rmax. For
r > rmax we meet the hapax legomena: Words occurring only
a few times in the text (frN = 1,2, . . . is a small integer)
and many words having the same frequency fr [2]. The
effect is not described by a smooth rank-frequency relation,
including Zipf’s law. Hence, in this sense Zipf’s law holds for
as high ranks as possible (i.e., for r > rmax no any smooth
rank-frequency relation is expected to work).

Note that the very existence of hapax legomena is a
nontrivial effect, since one can easily imagine (artificial)
texts, where (say) no character appear only once. The theory
reviewed below in Sec. V B allows us to explain the hapax
legomena range together with Zipf’s law. It also predicts a
generalization of Zipf’s law to frequencies r < rmin that fits
better (than Zipf’s law) to the empiric data; see Fig. 1.

The minimal frequency of the Zipfian domain holds

frmax > c/n. (4)

We checked that this is valid not only for separate texts but
also for the frequency dictionaries of English and Irish. For
our texts a stronger—but less precise—relation holds,

frmax � 1

n
. (5)

Hence, frmaxN � N
n

� 1; see Table I.
Thus, once the validity range [rmin,rmax] of Zipf’s law is

determined via strict statistical criteria (as we did above), its
linguistic meaning emerges clearly: [1,rmin] contains mostly
functional words, while the region [rmax,n] carries rare words
(hapax legomena). In particular, the keywords are mainly
contained in the Zipfian range [rmin,rmax].

III. INTRODUCTION TO THE MODEL

A. Necessary conditions for a model explaining Zipf’s law

A model for Zipf’s law is supposed to satisfy the following
features.

(I) Apply to separate texts, i.e., explain how different texts
can satisfy the same form of the rank-frequency relation
despite the fact that the same words do not occur with same
frequencies in the different texts; see Sec. II B.

(II) Derive the law together with its extensions for all
frequencies, limits of validity, and the hapax legomena effect.
(III) Relate the law to formation of a text.

B. Main assumptions of the model

Two sources of the model are the latent semantic analysis
[30], and the idea of applying ordered statistics for rank-
frequency relations [9,33,34].

Our model makes four [(A)–(D)] assumptions.
(A) The bag-of-words picture focusses on the frequency

of the words that occur in a text and neglects their mutual
disposition (i.e., syntactic structure) [35]. This is a natural
assumption for a theory describing word frequencies, which
are invariant with respect to an arbitrary permutation of the
words in a text.

Given n different words {wk}nk=1, the joint probability for
wk to occur νk � 0 times in a text T is multinomial,

π [ν|θ] = N ! θ
ν1
1 . . . θνn

n

ν1! . . . νn!
, ν = {νk}nk=1, θ = {θk}nk=1, (6)

where N = ∑n
k=1 νk is the length of the text, νk is the number

of occurrences of wk , and θk is the probability of wk .
Hence, according to (6) the text is regarded to be a sample

of word realizations drawn independently with probabilities
θk . Note that the bag-of-words picture [together with (6)]
resembles in several respects the ideal gas of statistical physics
(no direct interactions between the words-particles).

The bag-of-words picture is well known in computational
linguistics [35]. But for our purposes it incomplete, because it
implies that each word has the same probability for different
texts [recall (I)].

(B) To improve this point we make θ a random vector [35]
with a text-dependent density P (θ |T ). With this assumption
the variation of the word frequencies from text to another will
be explained by the randomness of the word probabilities.4

The above assumption is in fact basic for statistical physics
of disordered systems [36]. Here certain parameters—e.g., in-
teraction parameters for complex nuclei [36]—change widely
from one sample to another. For modeling this situation one
assumes that these parameters are random. The assumption
agrees with experiments provided that the probability density
of these parameters respect certain gross features of the system,
e.g., its symmetries [36]. In our situation these gross features
relate to those of the mental lexicon (for the text-producing
author); see Sec. VI for details.

We now have three random objects: text T , probabilities
θ , and the occurrence numbers ν. Since θ was introduced to
explain the relation of T with ν, it is natural to assume that the
triple (T ,θ ,ν) form a Markov chain: The text T influences the
observed ν only via θ . Then the probability p(ν|T ) of ν in a
given text T reads

p(ν|T ) =
∫

dθ π [ν|θ] P (θ |T ). (7)

This form of p(ν|T ) is basic for probabilistic latent se-
mantic analysis [30], a successful method of computational
linguistics. There the density P (θ |T ) of latent variables θ is
determined from the data fitting. But we shall deduce P (θ |T )
theoretically.

(C) The text-conditioned density P (θ |T ) is generated from
a prior density P (θ ) via conditioning on the ordering of w =
{wk}nk=1 in T ,

P (θ |T ) = P (θ ) χT (θ,w)

/∫
dθ ′ P (θ ′) χT (θ ′,w). (8)

4The assumption on random θ was made within the bag-of-words
picture, but it was additionally assumed that u(θ ) follows the
Dirichlet density u(θ ) = θ−ζ (1 > ζ � 0) [35], which is used almost
exclusively for a density over probabilities. The Dirichlet density
with ζ = 0 was used for modeling the rank-frequency relation of
letters [33]. But our purpose implies a different choice for u(θ );
see (20).

062804-3



ARMEN E. ALLAHVERDYAN, WEIBING DENG, AND Q. A. WANG PHYSICAL REVIEW E 88, 062804 (2013)

Thus if different words of T are ordered as (w1, . . . ,wn) with
respect to the decreasing frequency of their occurrence in T

(i.e., w1 is more frequent than w2), then χT (θ,w) is defined
as follows: χT (θ ,w) = 1 if θ1 � · · · � θn and χT (θ,w) = 0
otherwise.

As substantiated below in Sec. VI, P (θ ) refers to the mental
lexicon of the author prior to generating a concrete text.

(D) For simplicity, we assume that the probabilities θk are
distributed identically (see Sec. VI for a partial verification of
this assumption) and the dependence among them is due to∑n

k=1 θk = 1 only,

P (θ ) ∝ u(θ1) ... u(θn) δ

(
n∑

k=1

θk − 1

)
, (9)

where δ(x) is the δ function and the normalization ensuring∫ ∞
0

∏n
k=1 dθk P (θ ) = 1 is omitted.

IV. SOLUTION OF THE MODEL

The conditional probability pr (ν|T ) for the rth most
frequent word wr to occur ν times in the text T reads from (6)
and (7),

pr (ν|T ) = N !

ν!(N − ν)!

∫ 1

0
dθ θν(1 − θ )N−νPr (θ |T ), (10)

Pr (t |T ) =
∫

dθ P (θ |T )δ(t − θr ), (11)

where Pr (t |T ) is the marginal density for the probability t of
wr . For n � 1, we deduce from (8) and (9) that Pr (t |T ) follows
the law of large numbers; see Appendix A. It is Gaussian,

Pr (t |T ) ∝ exp

[
− n3

2σ 2
r

(t − φr )2

]
, (12)

where σr = O(1) [for φr = o(1)], and the mean φr is found
from two equations for two unknowns μ and φr ,

r/n =
∫ ∞

φr

dθ u(θ ) e−μθn

/ ∫ ∞

0
dθ u(θ ) e−μθn, (13)∫ ∞

0
dθ θ u(θ ) e−μθn = 1

n

∫ ∞

0
dθ u(θ ) e−μθn. (14)

Equation (12) holds for Pr (t |T ) whenever its standard devi-
ation σrn

−3/2 is much smaller than the mean φr ; as checked
below, this happens already for r > 10.

The meaning of (13) and (14) is explained via the marginal
density

P (θ1) =
∫ ∞

0

n∏
k=2

dθk P (θ ) (15)

∝ u(θl)e
−μθln, (16)

found from (9); see Appendix C for a derivation. It is seen that
the meaning of (14) is that it ensures∫ ∞

0
dθ θ P (θ ) = 1

n
. (17)

This relation follows from
∑n

k=1 θk = 1 and it determines μ;
see Appendices B and C. It is shown there that μ emerges
from the saddle-point method and is related to the Lagrange
multiplier of the constraint δ(

∑n
k=1θk − 1) in Eq. (9). Thus

it plays the same role as the chemical potential in statistical

physics. The latter enforces the conservation of the particle
number, while in our situation μ enforces the conservation of
probability

∑n
k=1 θk = 1.

Now one possible interpretation of (13) is that it equates the
relative rank r/n to the (unconditional) probability

∫ ∞
φr

dθ P (θ )
of θ � φr . This type of reasoning is popular in heuristic
derivations of power laws (including Zipf’s law) [34].

In Eq. (10), Pr (θ |T ) is much more narrow peaked than
θν(1 − θ )N−ν , since n3 � N � 1 (see Table I). Hence, in this
limit, we approximate Pr (θ |T ) by the δ function δ(θ − φr )
[see (12)] and get from (10)

pr (ν|T ) = N !

ν!(N − ν)!
φν

r (1 − φr )N−ν . (18)

Equation (18) is the main outcome of the model; it shows
that the conditional probability pr (ν|T ) for the occurrence
number ν of the word wr has the same form (18) for different
text (see I). In Eq. (18), φr is the effective probability of
the word wr . If Nφr � 1, pr (ν|T ) is peaked at ν = Nφr :
the frequency of a word that appears many times equals its
probability (the law of large numbers). Each word of the
Zipfian domain occurs at least ν ∼ N/n � 1 times; see the
discussion around (4) and (5). For such words we approximate

fr ≡ ν/N � φr . (19)

It is seen below that the proper Zipf’s law relates via (19)
to the law of large numbers.

V. RESULTS AND DISCUSSION

A. The Zipfian range

So far u(f ) in Eq. (9) is left unspecified. Now we postulate

u(f ) = (n−1c + f )−2, (20)

where c is related below to the prefactor of Zipf’s law. The
postulate (20) is explained in Sec. VI below.

For c � 0.2, cμ determined from (14) and (20) is small and
is found from integration by parts as follows:

μ � c−1 e−γE− 1+c
c , (21)

where γE = 0.55117 is the Euler’s constant. One solves (13)
for cμ → 0 as follows:

r

n
= ce−nφrμ/(c + nφr ). (22)

For r > rmin, φrnμ = frnμ < 0.04  1; see Eq. (21) and
Table I. We get from (19) and (22)

fr = c(r−1 − n−1). (23)

This is Zipf’s law generalized by the factor n−1 at high
ranks r . This cut-off factor ensures faster (than r−1) decay
of fr for large r . In the literature a cut-off factor similar to
1
n

is introduced due to additional mechanisms (hence, new
parameters); see Ref. [14]. In our situation the power law and
cut-off come from the same mechanism.

Figure 2 illustrates the approximate solution (23) of (13),
(14), and (20); it is confirmed that the approximation is reliable
for c � 0.2.

Figure 1 shows that (23) reproduces well the empirical
behavior of fr for r > rmin. Our derivation shows that c is the
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FIG. 2. (Color online) Main figure: Upper (green) curve: the
generalized Zipf’s curve (23) written in the scaling form t = c[r−1 −
1], where t = frn, r = r/n, and c = 0.2. Squares: solutions of (13),
(14), and (20) for c = 0.2. Lower (red) curve: The same as for the
upper curve but for c = 0.1. Rounds: Solutions of (13), (14), and (20)
for c = 0.1. It is seen that the generalized Zipf’s curve coincide with
the actual solutions. Inset: Solid curve: The same as for solid curves
in the main figure but for c = 1.0. Dots: Solutions of (13), (14), and
(20) for c = 1.0. Now the generalized Zipf’s curve does not coincide
with the actual solution.

prefactor of Zipf’s law and that our assumption on c < 0.2
above (21) agrees with observations; see Table I. For c � 0.2,
(13) and (14) do not predict Zipf’s law (23); see Fig. 2.5

When the prefactor c and the number of different words n

are taken from empirical results, (13)–(20) predict the Zipfian
range [rmin,rmax], in agreement with the observed values of
these quantities; see Fig. 1.

For r < rmin, it is no longer true that frnμ  1. So the
fuller expression (13) is to be used. It reproduces qualitatively
the empiric behavior of fr ; see Fig. 1. We do not expect any
better agreement theory and observations for r < rmin because
the behavior of frequencies in this range is irregular.

B. Hapax legomena

According to (18), the probability φr is small for r � rmax

and, hence, the occurrence number ν ≡ frN of a words wr

is a small integer (e.g., 1 or 2) that cannot be approximated
by a continuous function of r; see Eq. (18) and Fig. 1. To
describe this hapax legomena range, define rk as the rank, when

5Note that since Zipf’s law does not apply for all ranks, c is not a
normalization constant, i.e., its value is not fixed from the fact that
the sum of probabilities should be equal to 1. The normalization still
allows us to put upper and lower bounds on c. First, recall from Fig. 1
that Zipf’s law is an upper bound for the frequencies at all ranks. This
holds generally [1,2]. Then we get c

∑n

k=1 k−1 � c(γE + ln n) > 1,
where γE = 0.55117 is Euler’s constant. Within the applicability
range of Zipf’s law we have c

∑rmax
k=rmin

k−1 � c(γE + ln rmax
rmin

) < 1.
These two formulas bound c from above and below. For the text TF
(see Table I) they produce 0.1218 < c < 03436. Hence, the bounds
do not explain the fact that for real texts c < 0.2; see Table I.

TABLE II. Description of the hapax legomena for the text TF;
see Table I and Eq. (24). The maximal relative error r̂k−rk

rk
= 0.0357

is reached for k = 6.

r/k 1 2 3 4 5 6 7 8 9 10

rk 1446 1061 848 722 611 529 474 437 398 370
r̂k 1414 1074 866 726 624 547 488 440 400 368

ν ≡ frN jumps from integer k to k + 1. Since φr reproduces
well the trend of fr even for r > rmax, see Fig. 1, rk can be
theoretically predicted from (23) by equating its left-hand side
to k/N as follows:

r̂k =
[

k

Nc
+ 1

n

]−1

, k = 0,1,2, . . . (24)

Equation (24) is exact for k = 0 and agrees with rk for
k � 1; see Table II. Hence, it describes the hapax legomena
phenomenon (many words have the same small frequency).

For k � Nc/n we deduce from (24) r̂k − r̂k+1 ∝ k−2 for
the number of words having the frequency k/N . This relation,
which is a crude particular case of (24), is sometimes called
the Lotka’s law or the second Zipf law [2,28].

C. Preliminary summary

Thus the theory presented in this section achieved the
promises (I) and (II) of our program: though different texts
can have different frequencies for same words, the frequencies
of words in a given text follow Zipf’s law with the correct
prefactor c � 0.2. Without additional fitting parameters and
new mechanisms we recovered the corrected form of this law
applicable for large and small frequencies (hapax legomena).

But why we would select (20) if we would not know that
it reproduces Zipf’s law? Answering this question will fulfill
(III).

VI. MENTAL LEXICON AND THE A PRIORI DENSITY

Here we explain the choice (9) and (20) for the a priori
probability density for the probabilities θ = (θ1, . . . ,θn) of
different words (w1, . . . ,wn). To avoid the awkward term
“probability for probability,” we shall call P (θ) likelihood.
We focus on the marginal likelihood (16) and (20),

P (θ ) = (n−1c + θ )−2e−μnθ , (25)

since P (θ ) determines the rank-frequency relation (13); see
(15) and (16).

A. General features of mental lexicon

Recall from Sec. III that the basic reason for the words to
have random (not fixed) probabilities is that the text-producing
author should be able to compose different texts, where
the same word can have different frequencies. Hence, the
likelihood P (θ) of random probabilities relates to the prior
knowledge (or lexicon) of the text-generating author on the
words. This concept of mental lexicon—the store of words
in the long-time memory so the words are employed online
for expressing thoughts via phrases and sentences—is well
established in psycholinguistics [29]. Though the theory of
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mental lexicon is yet under construction [29], some of its basic
features are well-established experimentally and are employed
below for explaining the choice (25).

We assume that during the conceptual planning of the
text, i.e., when deciding on its topic, style, and potential
audience, the author already chooses (at least approximately)
two structural parameters: the number n of different words
to appear there and the constant c. This is why the marginal
likelihood (25) depends on the parameters c and n. We recall
that c (along with n) is a structural parameter of the text (see
footnote 5 in this context), e.g., because according to (4),
c/n separates the Zipfian (keyword-dominated) range from
the hapax legomena range (rare words).

According to (9), different words have the same marginal
likelihood: the likelihood P (θ ) is symmetric with respect to
interchanging the words w1, . . . ,wn. This feature relates to an
experimental fact that words are stored in the mental lexicon
in the same way [37]. The difference between them—e.g.,
whether the word is more familiar to the author, and/or
used by him or her more frequently [38]—can be relevant
during the (later) phonologization stage of speech and text
production [37].

Naturally, the above symmetry holds for the a priori
likelihood. The posterior likelihood P (θ |T ) [see (8)], the one
that is conditioned over the written text, does not and should
not have such a symmetry.

B. Bayesian group

Once each word wk has to have a variable (random)
probability θk , there should be a way for the author to change
(increase or decrease) this probability, e.g., when the author
decides that the word wk is to become the keyword of the text.
The ensuing relation between the probability vectors θ ′ (new)
and θ (old) should be a group, since the author should be able
to come back from θ ′ to θ , e.g., when revising the text.

One can impose two natural restrictions on this group [39].
These restrictions follow the general idea that the meaning
of θ as probabilities of certain events is conserved during the
transformation.

First, the words that have strictly zero probability θk = 0
will stay zero probability,

θ ′
k = 0 if and only if θk = 0. (26)

This feature naturally means that groups operates without
adding new words and without excluding the existing words.

Second, the probability mixtures are conserved: if

θ = λχ + (1 − λ)η, 0 < λ < 1, (27)

where χ = (χ1, . . . ,χn) and η = (η1, . . . ,ηn) are arbitrary
probability vectors, and where λ is a (mixing) parameter, then

θ ′ = λ′χ ′ + (1 − λ′)η′, 0 < λ′ < 1. (28)

Here primed and nonprimed probability vectors relate to each
other via the sought group, while λ′ and λ generally differ.6

6The requirement on conserving mixtures can be explained as
follows. Words have attributes (connotation, denotation, inclination,
conjugation, etc.). When studying rank-frequency relations one

The only group that (for n � 3) is consistent with the above
two conditions [(26) and (27)] is [39]

θ ′
k = τkθk∑n

l=1 τlθl

, τk > 0, k = 1, . . . ,n, (29)

where τk are the group parameters. Equation (29) is a
generalized Bayes formula [39].7 It is used in the Bayesian
statistics for motivating the choice of priors [39], a task related
to ours.

If the author wants to increase τ1 times the probability of
the word w1, then in Eq. (29) τ1 > 1 and τk�2 = 1,

θ ′
1 = τ1θ1

1 + (τ1 − 1)θ1
, θ ′

l = θl

1 + (τ1 − 1)θ1
, for l � 2.

(30)

The inverse of (30) is found by interchanging θ ′
k with θk and

τ1 with τ−1
1 .

For Zipf’s law (and assuming the limit n � 1) the relevant
probabilities are small, θ ′

1 = O(1/n); see Fig. 1. Then

1 + (
τ−1

1 − 1
)
θ ′

1 ≈ 1, (31)

and (30) becomes the scaling transformation of one variable,

θ ′
1 = τ1θ1, θ ′

l = θl, l � 2. (32)

The transformed likelihood reads from (32) and (25),

P ′(θ ′
1) = 1

τ1
P

(
θ ′

1

τ1

)
= 1

τ1

(
c

n
+ θ ′

1

τ1

)−2

, (33)

where the factor e−μnθ ′
1/τ1 was put to 1 [cf. (31)], since nθ ′

1 =
O(1) in the regime relevant for the Zipf’s law and μ is small;
see (21).

According to (32), other densities do not change P ′(θ ′
l ) =

P (θ ′
l ) for l � 2.

C. The meaning of the likelihood (prior density)

Once P (θ ) describes the mental lexicon, and (29) is an
operation by which the text is written, we suppose that the
features of P (θ ) can be explained by checking its response

naturally puts aside these features, i.e., one is ignorant of them. Hence,
word probability fk can be represented as a mixture fk = ∑

α λαfkα ,
where α means the set of attributes and λα is a probability of those
attributes. It is then natural to require that the group transformation
conserves this representation over the attributes.

7Equation (29) becomes the Bayes formula if we relate τk to a
conditional probability [25]. In this alternative interpretation of (29),
the author has to retrieve a word w having certain specific features
(i.e., it is a transitive verb) from the set of words w1, . . . ,wn having
probabilities θ1, . . . ,θn. If we denote by Pr(E|w = wk) the condi-
tional probability that the word wk displays the needed feature E, we
can relate in Eq. (29) τk = Pr(E|w = wk), and (29) will describe the
searching process for the word having the needed feature E.
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to (29).8 For the ratio of the new to the old likelihood of the
probability θ ′

1 we get from (33)

P ′(θ ′
1)/P (θ ′

1) = τ1 > 1 for θ ′
1 � cτ1/n, (34)

= τ−1
1 < 1 for θ ′

1  cτ1/n. (35)

The meaning of (34) and (35) is that once the author decides
to increase the probability of the word w1 by τ1 times,
this word will be τ1 times more likely produced with the
higher probabilities, and τ1 times less likely with smaller
probabilities; see (35). This is the mechanism that ensures the
appearance of the keywords in the Zipfian range. It is unique
to the form (25) of the marginal likelihood, which by itself is
due to the form (20) of u(θ ).

The feature expressed by (34) and (35) is qualitatively
consistent with the fact that keywords (of a single text) tend
to form clusters [40], i.e., the usage of a keyword invites its
reusage on relatively short distances (no such regularity is seen
for functional words).

If P (θ ) is assumed to reflect the organization of the mental
lexicon, then according to (34) and (35) this organization is
efficient, because the decision on increasing the probability
of w1 translates to increasing the likelihood of larger values
of the probability. The organization is also stable, since the
likelihood at large probabilities increases right at the amount
the author planned, not more.

D. The rank-frequency relation for the noninformative
likelihood

Above we related the prior likelihood P (θ ) to the organiza-
tion of the mental lexicon. Now we would like to clarify this
relation by looking at some alternative forms of the marginal
likelihood. For reasons that will become apparent below, we
take for such an alternative form

ũ(θ ) ∝ (c̃n−1 + θ )−1, (36)

which will produce

P̃ (θ ) = (c̃n−1 + θ )−1e−nθμ̃. (37)

Here μ̃ is determined from∫ ∞

0

dy(y − 1)

c̃ + y
e−μ̃y = 0, (38)

by analogy to (14).
It is clear that instead of (34) and (35), we now get

P ′(θ ′
1)/P (θ ′

1) = 1 (39)

i.e., the likelihood of large probabilities does not change at
all. This indicates on the lack of organization in the “mental
lexicon” described by (36).

8Equation (29) is applied in Bayesian statistics with a similar
purpose of motivating the prior likelihood [25,39]. There, however,
the attention is focused on the noninformative prior likelihood
that will stay invariant under (29). This is not suitable for our
purpose precisely because we expect that the mental lexicon—
whose organization P (θ ) refers to—will somehow reflect the basic
mechanism (29), i.e., P (θ ) will display specific changes under (29).

It is expected that the choice (36) does generally relate to
the lack of organization or, in terms of the Bayesian statistics,
to the lack of information [25,39]; see also footnote 8 in this
context. This is because (36) can be considered a regularized
form of the Haldane’s prior likelihood u(θ ) ∝ θ−1. There are
several different arguments [including those similar to (39)]
which show the Haldane’s likelihood is noninformative; see
Refs. [25,39] for reviews.

The rank-frequency relation generated by (37) will read by
analogy to (13)

r

n
=

∫ ∞
φrn

dy

c̃+y
e−μ̃y∫ ∞

0
dy

c̃+y
e−μ̃y

. (40)

In the limit of a sufficiently small c̃, the rank-frequency relation
obtained from (40) and (38) is exponential,

φr � αn e−αnr , α = ln(1/c̃), (41)

instead of Zipf’s law [cf. derivations (21) and (22)]. According
to (41) the majority of words have negligible frequencies;
hence, a small group of high-frequency words dominates the
text. Intuitively, this connects well with the above statement
on the lack of organization (information).

VII. CONCLUSION

We thus answer the first question asked in the introduction:
Zipf’s law relates to the stable and efficient organization of
the mental lexicon of the text-producing author. Using the
ideas of latent semantic analysis and the mental lexicon we
are able to deduce the applicability of Zipf’s law to a single
text (cf. the fourth paragraph of Sec. I) and come up with a
generalized rank-frequency relation that—besides the proper
scaling regime of Zipf’s law—describes hapax legomena (low-
frequency, rare words), as well as the high-frequency domain
(functional words).

Our derivation of Zipf’s law employs ideas of Bayesian
statistics, but it differs from derivations that are based on the
maximum entropy method; see Refs. [12,20–24]. While the
latter method looks for the most noninformative distribution of
frequencies compatible with certain constraints, our derivation
looks for a specific informative prior distribution of the word
hidden probabilities. This difference between informational
and noninformational is natural once Zipf’s law is related to
the mental lexicon.

Practically, our derivation of Zipf’s law can motivate the
usage of prior (20) in the schemes of latent semantic analysis.
We expect these schemes to be more efficient for real texts,
if the prior structure of the model conforms Zipf’s law. The
proposed methods can find applications for studying rank-
frequency relations and power laws in other fields.
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APPENDIX A: FITTING

1. Linear (least-squares) fitting

Here we recall the main ideas of the linear fitting method
that are employed in the Sec. II of the main text.

Table I of the main text presents three texts we studied
(we worked out more texts that consistently show the same
applicability pattern of Zipf’s law). For each text we extract
the ordered frequencies of different words (the number of
different words is n; the overall number of words in a text
is N ):

{fr}nr=1, f1 � · · · � fn,

n∑
r=1

fr = 1. (A1)

We should now see whether the data {fr}nr=1 fits to a power
law: f̂r = cr−γ . We represent the data as

{yr (xr )}nr=1, yr = ln fr, xr = ln r (A2)

and fit it to the linear form {ŷr = ln c − γ xr}nr=1. Two
unknowns ln c and γ are obtained from minimizing the sum
of squared errors,

Serr =
n∑

r=1

(yr − ŷr )2. (A3)

It is known since Gauss that this minimization produces

−γ ∗ =
∑n

k=1(xk − x)(yk − y)∑n
k=1(xk − x)2

, ln c∗ = y + γ ∗x, (A4)

where we defined

y ≡ 1

n

n∑
k=1

yk, x ≡ 1

n

n∑
k=1

xk. (A5)

As a measure of fitting quality one can take

min
c,γ

[Serr(c,γ )] = Serr(c
∗,γ ∗) ≡ S∗

err. (A6)

This is, however, not the only relevant quality measure.
Another (more global) aspect of this quality is the coefficient
of correlation between {yr}nr=1 and {ŷr}nr=1,

R2 = [
∑n

k=1(yk − ȳ)(ŷ∗
k − ŷ∗) ]2∑n

k=1(yk − ȳ)2
∑n

k=1(ŷ∗
k − ŷ∗)2

, (A7)

where

ŷ∗ = {ŷ∗
r = ln c∗ − γ ∗xr}nr=1, ŷ∗ ≡ 1

n

n∑
k=1

ŷ∗
k . (A8)

For the linear fitting (A4) the squared correlation coefficient is
equal to the coefficient of determination,

R2 =
n∑

k=1

(ŷ∗
k − y)2

/ n∑
k=1

(yk − y)2, (A9)

the amount of variation in the data explained by the fitting.
Hence, S∗

err → 0 and R2 → 1 mean good fitting. We minimize
Serr over c and γ for rmin � r � rmax and find the maximal

TABLE III. KS test for the numerical fitting and theoretical
results. In the KS test, D and p denote the maximum difference
(test statistics) and p value, respectively. D1 and p1 are calculated
from the KS test between empiric data and numerical fitting, D2 and
p2 are between empiric data and the theoretical result, and D3 and p3

are between numerical fitting and the theoretical result.

Texts D1 p1 D2 p2 D3 p3

TF 0.0418 0.865 0.0365 0.939 0.0381 0.912
AR 0.0564 0.624 0.0469 0.783 0.0443 0.825
DL 0.0451 0.812 0.0421 0.865 0.0472 0.761

value of rmax − rmin for which S∗
err and 1 − R2 are smaller

than, respectively, 0.05 and 0.005. This value of rmax − rmin

also determines the final fitted values c∗ and γ ∗ of c and γ ,
respectively; see Tables I and II and Fig. 1. Thus c∗ and γ ∗ are
found simultaneously with the validity range [rmax,rmax] of the
law. Whenever there is no risk of confusion, we, for simplicity,
refer to c∗ and γ ∗ as c and γ , respectively.

2. KS test for the numerical fitting and theoretical result

We wanted to have an alternative method for checking the
quality of the above least-squares method and for checking
to what extent our empirical data agrees with the theoretical
prediction. To this end we applied the KS test to our data on
the word frequencies. The empiric results on word frequencies
fr in the Zipfian range [rmin,rmax] are fit to the power law and
then also to the theoretical prediction described in Sec. IV
and V. With the null hypothesis that empiric data follows the
numerical fittings and/or theoretical results, we calculated the
maximum differences (test statistics) D and the corresponding
p values in the KS tests. From Table III one sees that all the test
statistics D are quite small, while the p values are much larger
than 0.1. We conclude that from the viewpoint of the KS test the
numerical fittings and theoretical results can be used to char-
acterize the empiric data in the Zipfian range reasonably well.

APPENDIX B: DERIVATION OF EQS. (12)–(14)
OF THE MAIN TEXT.

In Eq. (11) of the main text we defined Pr (t |T ): the marginal
density for the probability t of the word wr . Using (8) we
rewrite (11) as

Pr (t |T ) ∝
∫ ∞

0
dθ1

∫ θ1

0
dθ2

∫ θ2

0
dθ3 . . .

∫ θn−1

0
dθn

×P (θ1, . . . ,θn) δ(t − θr ), (B1)

where

P (θ ) ∝ u(θ1) . . . u(θn) δ

(
n∑

k=1

θk − 1

)
, (B2)

as given by (9) of the main text. Recall that θ = (θ1, . . . ,θn).
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In Eq. (B2) we employ the Fourier representation of the δ

function,

δ

(
n∑

k=1

θk − 1

)
=

∫ i∞

−i∞

dz

2πi
ez−z

∑n
k=1θk , (B3)

put (B2) into (B1), and then apply integration by parts. The
result reads

Pr (t |T ) ∝ u(t)
∫ i∞

−i∞

dz ez

2πi
χn−r

0 (t,z)χr−1
1 (t,z) e−tz, (B4)

where

χ0(t,z) ≡
∫ t

0
dy e−zyu(y), χ1(t,z) ≡

∫ ∞

t

dy e−zyu(y).

The integral in Eq. (B4) will be worked out via the saddle-
point method. But before that we need to fix the scales of the
involved quantities. To this end, make the following changes
of variables:

z̃ = z/n, t̃ = tn, ỹ = yn, r̃ = r/n. (B5)

Then Pr (t |T ) reads from (B4)

Pr (t |T ) ∝ u(t)
∫ i∞

−i∞

dz̃

2πi
enϕ(t̃ ,z̃)−t̃ z̃, (B6)

ϕ(t̃ ,z̃) = z̃ + (1 − r̃) ln
∫ t̃

0

dy e−z̃y

(c + y)2

+
(

r̃ − 1

n

)
ln

∫ ∞

t̃

dy e−z̃y

(c + y)2
, (B7)

where in Eq. (B7) we already used u(t) = (n−1c + t)−2; see
Eq. (20) of the main text.

If n � 1 and 0 < r̃ < 1 is a finite number (neither close
to 1, nor to zero), the behavior of ρr (t) in various averages,
e.g.,

∫
dt t ρr (t), is determined by the values of z̃ = z̃s and

t̃ = t̃s that maximize φ(t̃ ,z̃). They are found from saddle-point
equations,

∂t̃φ(t̃s ,z̃s) = ∂z̃φ(t̃s ,z̃s) = 0. (B8)

After reworking the two equations (B8) we get Eqs. (13) and
(14) of the main text.

Due to (B5), z̃s (that is real and positive) and t̃s stay finite for
n � 1. Hence, the integration line over z̃ in Eq. (B6) is shifted
to pass through z̃s (the saddle-point method). Now φ(t̃ ,z̃) is
expanded around z̃ = z̃s and t̃ = t̃s [first-order terms nullify
due to (B8)]:

φ(t̃ ,z̃) = φ(t̃s ,z̃s) + 1
2∂t̃ t̃φ(t̃s ,z̃s)(t̃ − t̃s)

2, (B9)

+ 1
2∂z̃z̃φ(t̃s ,z̃s)(z̃ − z̃s)

2, (B10)

+ ∂t̃z̃φ(t̃s ,z̃s)(t̃ − t̃s)(z̃ − z̃s) + · · · . (B11)

Now only these terms can be retained in the integral over z̃.
Since this integral goes over the imaginary axis, while z̃s is
real, the integration contour is to be shifted to pass through

z̃s . For the convergence of the resulting Gaussian integral we
need 1

2∂z̃z̃φ(t̃s ,z̃s) > 0. Taking this Gaussian integral leads us
to (up to factors that either constant or irrelevant for n � 1)

Pr (t |T ) ∝ e
− n

2σ2 (t̃−t̃s )2 = e
− n3

2σ2 (t− t̃s
n

)2

, (B12)

1

σ 2
= [ ∂t̃z̃φ(t̃s ,z̃s) ]2

∂z̃z̃φ(t̃s ,z̃s)
− ∂t̃ t̃φ(t̃s ,z̃s). (B13)

Hence Pr (t |T ) is approximately Gaussian, with the stan-
dard deviation O(n−3/2) much smaller than the average
for t̃s = O(1).

In working out (B13), we shall employ the fact that in
Eq. (B7) z̃s = μ is a small parameter; see Eq. (21) of the main
text. This produces (up to smaller corrections)

σ = (c + t̃s)
√

t̃s . (B14)

Equation (B12) derives (12) of the main text, while (B14)
accounts for the estimate of σr that was presented after (12) of
the main text.

APPENDIX C: DERIVATION OF EQ. (16)

The marginal probability P (t) is defined from (B2) as

P (t) =
∫

dθP (θ ) δ(t − θr ). (C1)

using (B2) and (B3) we obtain from (C1)

P (t) ∝ u(t)
∫ i∞

−i∞

dz̃

2πi
enφ(t,z̃)−t̃ z̃, (C2)

φ(t,z̃) = (1 − t)z̃ + ln
∫ ∞

0
dy e−z̃y (c + y)−2. (C3)

We use the saddle-point method for (C2). This produces the
same saddle-point equation (B8) for z̃s ,

1 =
∫ ∞

0 dy e−z̃s y (c + y)−2∫ ∞
0 dy y e−z̃s y (c + y)−2

, (C4)

provided that we note the dominant range t ∝ 1/n  1 of t in
Eq. (C3). Thus

P (θ ) ∝ u(θ )e−nθz̃s . (C5)

This validates (16) of the main text.
Likewise, one can show that the marginal density

P (θ1, . . . ,θm) factorizes provided that m  n,

P (θ1, . . . ,θm) ∝ u(θ1)e−μθ1n . . . u(θm)e−μθmn. (C6)

Equation (C6) can be established more heuristically via the
exact relation [

∑n
k=1 θk]2 = 1, where f means averaging

over P (θ1, . . . ,θn). This relation predicts, together with
θk = 1

n
, that θiθj − θi θj = O(n−3), hence, approximate

factorization.
Using (C5) with u(θ ) = ( c

n
+ θ )−2 we note that the standard

deviation 〈(θ − 〈θ〉)2〉 = 1
n

√
c
z̃s

− 1 � 1
n

√
c
z̃s

is larger than the

average 〈θ〉 = ∫
dθθP (θ ) = 1

n
, since c/z̃s � 1.
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