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Partial mixing phase of binary cells in finite systems
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We study the self-organization of binary cell mixtures in finite cubic lattices. Depending on the relative
attractions between cell types, the binary mixture model generates four distinct cellular associations: complete
sorting, shell-core sorting, partial mixing, and complete mixing of heterotypic cells. At the boundaries between
these four phases, the cellular associations show large variations, representing phase transitions. We find that
the partial mixing phase is highly tolerant to thermal fluctuations. Interestingly, human pancreatic islets, the
micro-organs for glucose homeostasis, adapt the partial mixing phase consisting of α and β cells.
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I. INTRODUCTION

Natural materials and systems have specialized structures.
Even a simple system with two species can form various
patterns. The binary mixture has been intensively studied in
physics and chemistry. The physical models generally consider
interactions between two species: up and down spins in the
Ising model [1], occupied and empty sites in the contact
process [2], and binary gases in the lattice gas model [3].
Binary mixtures of lipids and detergent is another example
studied in chemistry [4].

The concept of self-organization in the binary mixture
models has also been used to explain the morphogenesis in
biology [5]. Steinberg has proposed the differential adhesion
hypothesis (DAH) that given adhesion strengths between cell
types, the binary cell mixture has an equilibrium structure
minimizing its free energy [5]. As an alternative hypothesis,
differential cell motility has also been proposed to explain cell
sorting in the binary cell mixture [6]. During the past decades,
DAH has been confirmed in experiments [7]. In addition, DAH
developed different computational models. One simple model
is the cellular lattice model in which each site represents
a cell. Considered were the 2-dimensional regular square
lattice [8], 2-dimensional triangular lattice [9], 3-dimensional
cubic lattice [10], and 3-dimensional hexagonal close-packed
lattice [11]. Another popular model is the subcellular lattice
model, proposed by Graner and Glazier [12,13]. In this model,
each cell extends over many contiguous sites on a lattice.
Therefore, the model can describe morphological changes
of single cells specifically at cell-to-cell contacts. Since the
computational cost for updating many sites per cell is high,
this model has been considered usually in 2 dimensions
[12–14] and rarely extended to 3 dimensions [15]. DAH has
also been considered in a centric model and vertex model
(reviewed in Refs. [16,17]). In addition to the lattice models,
off-lattice and continuous models have been developed to
study cell movement [18,19] and cell sorting [11].

Unlike general physical and chemical binary mixture
models, the biological model has to consider cellular compo-
sition and finite size effect in addition to cellular interactions.
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Pancreatic islets, consisting of two major cell types, are
micro-organs for glucose homeostasis. Persistent elevation
of blood glucose levels is defined as the metabolic disease,
diabetes. Endocrine α and β cells in the islet play reciprocal
roles for increasing and decreasing glucose levels in fast
and fed conditions, respectively. In addition, they interact
with each other [20,21], although its implication for glucose
homeostasis has not been completely understood. Considering
their functional interaction, their physical contacts may have
physiological implications. In general, an islet contains a
few to several thousand endocrine cells [22]. Although the
size range of islets is similar between species, the spatial
organization of α and β cells looks different between species.
In mouse islets, dominant β cells are located in the core, while
α cells are surrounded on the periphery. However, human islets
contain a higher fraction of α cells, 20%–40%, compared with
10%–20% in mouse islets [22]. In human islets, α cells are
not only distributed on the islet periphery, but also scattered
within islets [23–25]. Controversial observations have been
reported regarding the cell arrangement in human islets.
Some reported an organized structure where human islets
were subdivided into subunits comprising clusters of β cells
surrounded by α cells [25], while others reported a more or
less random structure where α and β cells were irregularly
distributed throughout human islets [23,24].

To examine the species-dependent structures of pancreatic
islets and their potential cell rearrangement under pathological
conditions, we systematically study the self-organization of
the binary mixture model. In particular, we consider a simple
cubic lattice model, which is simple for computation while
complex enough to reproduce all the structural aspects of
pancreatic islets.

This paper is organized as follows: We describe our model
and simulation method in the next section. Then, we show
and discuss how cellular interaction and composition govern
the self-organization of islets in Secs. III and IV. Finally, we
summarize our findings in Sec. V.

II. BINARY MIXTURE MODEL

To understand the spatial organization of binary cells, we
consider a lattice model where each site is occupied by either
an α or β cell. The relative attractions between cell types
are represented by Jαα , Jββ , and Jαβ for α-α, β-β, and α-β
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contacts, respectively. The total contact energy of the system
is then defined as

E = −
∑
〈ij〉

Jσiσj
, (1)

where σi = {α,β} represents the cell type at the ith site, and
the bracket 〈ij 〉 represents nearest neighbors. Note that Jσiσj

is
the cell-to-cell contact energy between σi and σj . For example,
when the system has total Nαα , Nββ , and Nαβ contacts of α-α,
β-β, and α-β, respectively, the total contact energy becomes

E = −(JααNαα + JββNββ + JαβNαβ ). (2)

We are here interested in the regime of attractive interactions,
i.e., Jαα,Jββ,Jαβ > 0. The frustration in the model originates
from the competition between different cell-to-cell contacts.
Our goal is to predict the spatial organization of binary cells
that minimizes the total contact energy. In other words, given
cellular composition (nα , nβ) and interaction (Jαα , Jββ , Jαβ),
we estimate the equilibrium structure represented by the order
parameter, cell-to-cell contact numbers (Nαα , Nββ , Nαβ).

In the binary mixture model, two extreme states are easily
expected. When the homotypic attractions Jαα and Jββ are
dominant, homogeneous clustering of α cells and β cells
appears. On the other hand, when the heterotypic attraction
Jαβ is dominant, heterogeneous mixing of alternating α and β

cells appears. Indeed, the heterotypic contact Nαβ shows a con-
tinuous transition from the sorting phase to the mixing phase
as a function of the heterotypic interaction Jαβ . It has been
suggested that the transition occurs at Jαβ = (Jαα + Jββ)/2
[5]. At the critical condition, no preference to either sorting or
mixing phase is anticipated. As an example of three α cells and
three β cells in 1 dimension, an equivalent cell-to-cell contact
energy is expected for the following two configurations:
(i) αααβββ and (ii) αβαβαβ, of which energy difference
should be negligible as 2(Jαα + Jββ) − 4Jαβ = 0. This simple
argument gives the critical condition. Note that this argument
is general beyond the 1-dimensional case.

In the 1-dimensional case, beyond the simple argument, we
can exactly solve this problem using a partition function,

Z =
∑
{�σ }

e−E(�σ ), (3)

where {�σ } represents all possible sets of �σ = (σ1,σ2, . . . ,σn)
satisfying the constraint of cellular composition: nα elements
in the vector �σ allocate σi = α, and nβ ones allocate σi = β

with n = nα + nβ . The total contact energy in the system
is simply determined by the number of homogeneous cell
blocks. Depending on the number of boundaries between
the homogeneous cell blocks, we decompose the partition
function, Z = Zodd + Zeven, into odd and even ones:

Zodd = 2
kmax∑
k=0

(
mα

k

)(
mβ

k

)
exp[−(mα − k)Jαα

− (mβ − k)Jββ − (2k + 1)Jαβ], (4)

Zeven =
kmax∑
k=0

{(
mα

k + 1

)(
mβ

k

)
exp[−(mα − k − 1)Jαα

− (mα − k)Jββ − 2kJαβ ]

+
(

mα

k

)(
mβ

k + 1

)
exp[−(mα − k)Jαα

− (mα − k − 1)Jββ − 2kJαβ]

}
, (5)

where mα,β = nα,β − 1 and kmax = min{mα,mβ}. After ob-
taining the partition function, it is straightforward to compute
mean and variance of cell-to-cell contact numbers:

〈Nxy〉 = − 1

Z
∂Z
∂Jxy

, (6)

δN2
xy = 1

Z
∂2Z
∂J 2

xy

− 〈Nxy〉2, (7)

where x,y = {α,β}. Henceforth, we use the contact proba-
bilities, Pxy = 〈Nxy〉/N , and its variance, δP 2

xy = δN2
xy/N

2,
normalizing the cell-to-cell contact numbers by total contact
number, N = Nαα + Nββ + Nαβ . Using the analytical solution
of the 1-dimensional partition function Z , we confirm that
the heterotypic association Pαβ continuously increases as the
heterotypic attraction Jαβ increases. In addition, the fluctuation
of the heterotypic association δP 2

αβ has a single largest peak
near the critical condition (Jαα + Jββ)/Jαβ ≈ 2. The exact
value of (Jαα + Jββ)/Jαβ , giving the largest fluctuation of the
heterotypic association, depends on system size and cellular
composition (nα,nβ).

To explore binary mixtures in 3 dimensions, we use a Monte
Carlo simulation because analytic calculation of the partition
function in Eq. (3) above 2-dimensional lattices is intractable.
Briefly explaining our algorithm, we (i) generate an initial cell
configuration �σ at random, satisfying the constraint, (nα,nβ );
(ii) randomly choose two cells to swap, and using Eq. (1),
calculate the total contact energies of E and E′ before and
after exchanging the positions of the two cells; (iii) accept the
exchange with the probability, min{1, exp(−�E/T )}, where
�E = E′ − E and T denotes thermal energy, following the
Metropolis algorithm [26,27]; and (iv) repeat this procedure
until the system reaches equilibrium. We run several million
Monte Carlo steps per cell for equilibrating and for averaging.
Then we calculate the mean and variance of the cell-to-cell
contact probabilities from the ensembles of several millions of
microscopic states �σ . We found a good agreement between
this numerical result with the above analytical results in
Eqs. (6) and (7) in the 1-dimensional case. After validating our
numerical method at least for the 1-dimensional case, we apply
it to examine the self-organization of 3-dimensional islets.
Since the biological system has a finite size, we simulated
for sizes from L × L × L = 10 × 10 × 10 to 30 × 30 × 30,
corresponding to the size range of pancreatic islets. In addition,
we used open boundary conditions because periodic boundary
conditions are not appropriate; cells at opposite ends of the
lattice cannot interact to each other in islets.

III. CELLULAR INTERACTION

Organ structure is determined by both cellular interactions
and composition. We first examine the effect of cellular
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FIG. 1. (Color online) Organization of binary cells depending on
cellular interaction. Cellular organizations of α [red (dark gray)] and
β [green (light gray)] cells in a cubic lattice with a size L = 10:
(a) complete sorting phase with a heterotypic attraction Jαβ = 0.5,
(b) shell-core sorting phase with Jαβ = 1.5, (c) partial mixing phase
with Jαβ = 2.0, and (d) complete mixing phase with Jαβ = 3.5,
compared with homotypic attractions, Jαα = 1 and Jββ = 3. Thermal
energy is T = 0.5, and fractions of each cell type are pα = pβ = 0.5.
Note that we remove one edge of cubic lattices in (b) and (c) to show
internal structures clearly.

interactions. Given cellular composition (nα , nβ), relative
strengths of attractions between cell types govern cell-to-cell
associations (Fig. 1). First, a weak heterotypic attraction
(Jαβ < Jαα,Jββ ) generates separate homogeneous clusters of
α and β cells [Fig. 1(a)]. Second, a marginal heterotypic
attraction (Jαα < Jαβ < Jββ) produces a shell-core structure
composed of β cells in the core and α cells on the periphery
[Fig. 1(b)]. Third, a little larger marginal heterotypic attraction
(Jαα � Jαβ < Jββ) starts to mix two populations of cells, but
yet preserves small clusters of homogeneous β cells [Fig. 1(c)].
Finally, a strong heterotypic attraction (Jαβ > Jαα,Jββ) results
in complete mixture of alternating α and β cells [Fig. 1(d)].
For convenience, we call these four phases complete sort-
ing, shell-core sorting, partial mixing, and complete mixing
phases, respectively. As the heterotypic attraction increases,
the heterotypic association Pαβ grows, while the homotypic
associations Pαα and Pββ diminish (Fig. 2). We observe four
distinct phases depending on the heterotypic attraction Jαβ . At
the boundaries between the phases, cellular associations show
larger fluctuations, suggesting phase transitions (Fig. 2).

In the regime of Jαα < Jαβ < (Jαα + Jββ)/2, the shell-core
sorting phase has been proposed to appear [5]. Rather unex-
pectedly, however, we found that the distinct partial mixing
phase exists between the shell-core sorting and complete
mixing phase in the 3-dimensional binary mixture model. The
new partial mixing phase shows subunits of homogeneous
cell clusters. This phase becomes clearer in a larger lattice

Jαβ
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FIG. 2. (Color online) Cellular associations depending on het-
erotypic attraction. Cell-to-cell contact probabilities Pxy with x,y =
{α,β}: Pαα (blue empty circle), Pββ (red filled diamond), and
Pαβ (black filled circle) for α-α, β-β, and α-β contacts in the
cubic lattice with L = 10; the fluctuation δP 2

αβ of the α-β contact
probability; and the difference ratio of Pββ and Pαβ , δPββ/δPαβ =
(dPββ/dJαβ )/(dPαβ/dJαβ ). For the simulation, we used homotypic
attractions, Jαα = 1 and Jββ = 3, thermal energy, T = 0.5, and frac-
tions of each cell type, pα = pβ = 0.5. Note that N is total number
of cell-to-cell contacts. Dotted lines represent critical heterotypic
attractions that show peaks for the fluctuation δP 2

αβ .

[Fig. 3(a)]. The critical heterotypic attractions J ∗
αβ decrease

as increasing of system size; in particular, J ∗
αβ between the

shell-core sorting and partial mixing phase decreases more
significantly, compared with J ∗

αβ between the partial mixing
and complete mixing phase [Fig. 3(b)].

Figure 4 is the phase diagram of our binary mixture model.
It is of interest that the relative strengths of cellular attractions
have linear relations at the phase boundaries. To understand
its origin, we consider system energies at different phases
(unprimed and primed):

E = −(JααNαα + JββNββ + JαβNαβ), (8)

E′ = −(JααN ′
αα + JββN ′

ββ + J ′
αβN ′

αβ). (9)
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FIG. 3. (Color online) Partial mixing phase. (a) Cell arrange-
ments in the binary mixture model for cellular interactions Jαα =
1,Jββ = 3,Jαβ = 2, thermal energy T = 0.5, α- and β-cell frac-
tions pα = pβ = 0.5. For a clearer view of inner structure of the
3-dimensional cubic lattice with L = 30, we show a cut section.
(b) Probability of α-β contacts and its fluctuation depending on
heterotypic attraction Jαβ with different sizes of cubic lattice: L = 10
(black filled circle) and L = 30 (blue empty circle). Note that N is
total number of cell-to-cell contacts. Black and blue (dark and light
gray) dotted lines represent critical heterotypic attractions at L = 10
and L = 30, respectively, that show peaks for the fluctuation δP 2

αβ .

As approaching to the critical interaction, J ∗
αβ = Jαβ = J ′

αβ ,
the two energies should converge as E = E′. Using that the
total contact number is constant, N = Nαα + Nββ + Nαβ =
N ′

αα + N ′
ββ + N ′

αβ , obtained is the following relation:

J ∗
αβ = Jαα − δPββ

δPαβ

(Jββ − Jαα), (10)

0.5
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complete mixing

Jββ /Jαα

J α
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(b) complete mixing

partial mixing

shell-core sorting
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FIG. 4. (Color online) Phase diagram of the 3-dimensional bi-
nary mixture model. Depending on relative strengths of cellular
interaction, complete sorting, shell-core sorting, partial mixing, and
complete mixing phases arise. Thermal energy T = 0.5 is used in the
cubic lattice with L = 10. (a) Phase diagram for Jαβ/Jαα vs Jββ/Jαα ,
given fixed fractions of each cell type pα = pβ = 0.5. (b) Phase
diagram for Jαβ/Jαα vs β-cell fraction pβ , given fixed Jαα = 1 and
Jββ = 3.

where δPββ/δPαβ = (N ′
ββ − Nββ)/(N ′

αβ − Nαβ). Indeed the
values of δPββ/δPαβ at the critical attractions J ∗

αβ in Fig. 2
explain the slopes 0.51 between the partial mixing and
complete mixing phase, 0.60 between the shell-core sorting
and partial mixing phase, 0.00 between the complete sorting
and shell-core sorting phase Fig. 4(a). In particular, for the
transition from the complete sorting to shell-core sorting
phase, the number of β-β contacts changes negligibly, while
the number of α-β contacts changes significantly (Fig. 2).
Therefore, their phase boundary becomes J ∗

αβ ≈ Jαα due to
δPββ/δPαβ ≈ 0 from Eq. (10). Finally, it should be noted
that cellular composition can also govern the binary mixtures.
Although cellular interactions are preserved, different cellular
composition can show different cellular associations. In
Fig. 4(b), given Jαβ/Jαα = 2 and Jββ/Jαα = 3, 50% β-cell
fraction shows the partial mixing phase, while 70% β-cell
fraction shows the shell-core sorting phase.

IV. CELLULAR COMPOSITION

Now we examine effects of cellular composition, finite size,
and thermal fluctuations on the structure of binary mixtures.
These effects are respectively discussed for distinct phases
described in the previous sections.
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FIG. 5. (Color online) Cellular associations depending on cellular composition. Given homotypic attractions Jαα = 1,Jββ = 3, plotted are
(a) complete sorting (Jαβ = 0.5), (b) shell-core sorting (Jαβ = 1.5), (c) partial mixing (Jαβ = 2.2), and (d) complete mixing (Jαβ = 3.5) phases.
Three sizes of cubic lattice were used: L = 5 (black filled circle), L = 10 (blue empty circle), and L = 14 (gray diamond) under a thermal
energy (T = 0.5). A higher thermal energy, T = 3.0 (red inverse triangle), was also considered with L = 10.

Complete sorting phase. When clustering of homogeneous
cells is favored, the boundary between the two clusters is the
only source for the heterotypic cell contact. In cubic lattices,
therefore, as the β-cell fraction increases, the heterotypic cell
association Pαβ does not change much, while the homotypic
cell associations Pαα and Pββ linearly decrease and increase,
respectively [Fig. 5(a)]. In a cubic lattice (L × L × L), when
the cell fraction becomes pβ = m/L(=mL2/L3) with integer
m = {1,2, . . . ,L − 1}, the boundary area between the two
cuboid clusters of homogeneous cell types is minimal. This
causes the multimodal minimum of Pαβ [Fig. 5(a)]. This
multimodality, however, disappears under a higher thermal
fluctuation.

Shell-core sorting phase. When the heterotypic attraction
roughly satisfies Jαα < Jαβ < (Jαα + Jββ )/2, the shell-core
sorting phase emerges with the β-cell core enveloped by
α cells. The shell-core sorting phase shows homotypic cell
associations similar to those of the complete sorting phase
where Pαα or Pββ linearly increase with respect to pα or
pβ [Fig. 5(b)]. The linear behavior disappears under a higher
thermal fluctuation. However, the heterotypic cell association
shows a rounded maximum P ∗

αβ at a critical fraction p∗
β ,

unlike the constant Pαβ in the complete sorting phase. The
critical fraction p∗

β and the maximum heterotypic association
P ∗

αβ depend on system size: as lattice size increases, p∗
β

increases, while P ∗
αβ decreases. In the shell-core sorting
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FIG. 6. (Color online) Robustness under thermal fluctuations.
Heterotypic association is plotted as a function of heterotypic
attraction Jαβ . Homotypic attractions Jαα = 1 and Jββ = 3 and
fractions of each cell type, pα = pβ = 0.5 used in the binary mixture
model of L = 10 cubic lattice. Different temperature energies were
compared: T = 0.5 (black filled circle), T = 1.0 (blue empty circle),
T = 2.0 (magenta inverse triangle), and T = 3.0 (red diamond).
Dotted lines represent critical attractions dividing distinct phases in
the binary mixture.

phase, the heterotypic association can be maximized when
the boundary surface between the core β-cell cluster and the
α-cell shell becomes largest. In the cubic lattice (L × L × L),
this situation is realized when β cells occupy the cubic
lattice of size (L − 2)3 in the core, and α cells occupy the
six surfaces of the cubic lattice. Thus, the critical β-cell
fraction is given by p∗

β = (1 − 2/L)3. It increases as the lattice
size L increases: p∗

β(L = 10) = 0.51 and p∗
β(L = 14) = 0.63.

We also calculate the maximum heterotypic association in
this case. The cubic lattice has total N = 3(L3 − L2) cell
contacts. Among them, the number of heterotypic contacts is
N∗

αβ = 6(L − 2)2. It gives the heterotypic association, P ∗
αβ =

N∗
αβ/N = 2(1 − 2/L)2/(L − 1). When lattice size is large

(L > 3 + √
5), the heterotypic association decreases with lat-

tice size: P ∗
αβ(L = 10) = 0.14 and P ∗

αβ(L = 14) = 0.11. Note
that the actual p∗

β(L = 10) = 0.54 and p∗
β(L = 14) = 0.64 are

a little larger than the predicted ones [Fig. 5(b)]. In addition,
the actual P ∗

αβ(L = 10) = 0.16 and P ∗
αβ(L = 14) = 0.13 are a

little larger than the predicted ones, because the appearance of
a few β cells on the pure α-cell shell can further increase the
heterotypic association.

Partial mixing phase. The partial mixing phase exists
between the shell-core and complete mixing phase. One
noteworthy feature is that cellular associations in the partial
mixing phase are tolerant to changes of thermal fluctuations,
compared with the ones in other phases [Fig. 5(c)]. In
particular, a specific heterotypic attraction Jαβ = 2.15 with
Jαα = 1 and Jββ = 3 does not change cellular associations for
different thermal fluctuations (Fig. 6).

Complete mixing phase. When the heterotypic interaction
Jαβ is dominant, alternation of α and β cells is favored.
Therefore, homotypic cell associations are prevented until one
population of cells occupies more than half fraction. This
explains the sharp transitions at pα = pβ = 0.5 [Fig. 5(d)].
The complete mixing phase has negligible finite size effects,
compared with other phases.

V. SUMMARY

We studied the binary mixture on the cubic lattice. De-
pending on the relative attractions between cell types, we
observed four distinct phases: complete sorting, shell-core
sorting, partial mixing, and complete mixing phase. Glazier
and Graner has also observed these four phases in the
extended 2-dimensional Potts model with the sub-cellular
lattice [12,13]. In this study, we demonstrated that these four
phases are clearly separate based on the large fluctuation
of cellular associations at the boundaries between them,
representing phase transitions. It is of particular interest that the
partial mixing phase distinctively exists between the shell-core
sorting and complete mixing phase. It is noteworthy that
the previous studies, based on the subcellular lattice model,
have observed the partial mixing phase as a transient phase
changing from the complete mixing phase to the shell-core
sorting phase [11–13]. However, our simulation, based on
the simple cellular lattice model, verified that the partial
mixing phase is an equilibrium phase at special differential
cell adhesions. The partial mixing phase has been named
previously the partial sorting phase [12,13]. Sorting and
mixing are two aspects of a single phenomenon. Cell sorting
has been extensively studied to examine the sorting condition
and kinetics [9–11,15,28]. However, cell mixing has not been
emphasized much, although the organized mixing of het-
erotypic cells is expected to play a crucial role for their cellular
interactions.

The partial mixing phase had a very special feature that
cellular associations at the unique phase were extremely
robust to thermal fluctuations. The phase consisted of several
subdivisions of the shell-core structures of binary cells. The
pattern showed a great similarity to large (>100 μm diameter)
human islets [25].

It is of interest that pancreatic islets, consisting of mainly
α and β cells, have similar size ranges, but different structures
between species [22,24]. Mouse and rat islets show the
shell-core sorting phase, while human islets show the partial
mixing phase. Both cellular interactions and composition can
originate the structural differences. Unlike binary mixture
models usually considered in physics, cellular composition and
finite size effect are important factors to consider in biological
systems [10,15]. It has been observed that human islets
have a higher fraction of α cells, 20%–40%, compared with
10%–20% in mouse islets [22]. The present study suggested
the possibility that the different cellular composition could
drive different structures of mouse and human islets, although
their cellular interactions were preserved. However, since
the relative attractions between the endocrine cells have not
been measured yet, it is not clear whether the different islet
structures originate from their different cellular composition,
different cellular interactions, or both. Dissociated rat islet
cells spontaneously aggregate and form pseudoislets, similar
to native rat islets [29]. This pseudoislet formation proposes
an intriguing experiment whether dissociated mouse islet cells
form the human islet structure by increasing their α-cell
composition, or dissociated human islet cells form the mouse
islet structure by decreasing their α-cell composition.

It has been reported that different endocrine cells express
different cell adhesion molecules [30]. The distinct strengths
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of relative attraction between cell types can provide the
physical mechanism of the self-organization of islet structures
[31]. Here, thermal fluctuations could provide motility of
cells during their self-organization process, and their strength
relative to the cell-to-cell attraction affected equilibrium
structures of islets. It has been proposed that under pathological
conditions, the islets could flexibly change their structures
to meet corresponding metabolic demands [32]. Perturbed
expression of cell adhesion molecules can be a potential
mechanism for the structural changes.
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