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Collective behavior and predation success in a predator-prey model inspired by hunting bats
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We establish an agent-based model to study the impact of prey behavior on the hunting success of predators.
The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject
to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey.
The prey either align velocity directions with peers, defined as “interacting” prey, or swarm “independently” of
peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey
using low noise have the maximum predation avoidance because they form localized large groups, while they
suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent
prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise
regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit
more ordered collective behavior or more uniform spatial distribution as they are interacting or independent,
respectively.
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I. INTRODUCTION

Collective behavior is a striking phenomenon observed in
animals of diverse species, such as fish swimming in schools
[1], birds flying in flocks [2], ants forming organized lanes
[3], and mosquitoes flying in swarms [4]. This social behavior
is known to provide a variety of benefits for individuals. For
example, it may increase the chance for animals to locate food
sources [5], conserve heat and energy of a colony [6], help
an individual find a mate [7], and reduce the risk of being
predated [8]. The benefit of protection from predation, which
is of primary interest in this paper, results from the “many eyes”
effect [9] and cognitive fusion to predators [10] when animals
swarm in groups. The “many eyes” effect enables individuals
to have better predator detection through information sharing
with peers. An individual’s risk of being attacked is diluted
by the presence of other group members, which may coalesce
into a superorganism in the predator’s perception.

Capturing the dynamics of such groups is of interest to a
variety of scientific and engineering research questions. In the
literature, collective behavior is modeled either through con-
tinuum approaches or by establishing agent-based models. For
one type of continuum approach, the Navier-Stokes equations
are applied to study collective behavior as the motion of a
fluid [11,12]; for another continuum-type approach, equations
are derived using self-propulsion and velocity reorientation
of particles obeying a discrete model [13]. In addition to
these modeling efforts, extensive research has been devoted
to developing agent-based models, wherein individuals are
considered as dynamic particles interacting with peers homo-
geneously [14]. The agent’s behavioral responses are defined
using discrete decision making [15,16] or by building potential
functions based on the state of the group [17–19]. Among
the models defining a decision-making process, common
rules applied to individuals for interacting with peers include
“repulsion,” “alignment,” and “attraction.” The “repulsion”
rule mandates that each individual keeps a certain distance
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from peers; the “alignment” and “attraction” rules dictate
that group members seek consensus in orientations and
positions, respectively. Typical models based on such rules
and potential functions generate collective behavior [4,20–22]
as group-level structures emerge from established principles
of behavioral algorithms prescribed to individuals [23].

Research using agent-based models has also tackled the
predator-prey relationship; such work finds that the relative
population sizes, as well as overall species fitness, can be
refined by varying model parameters. In [24], the ranges
of sensing for predators and prey are varied to explore
a model with carnivorous predators, herbivorous prey, and
plants subject to behavioral rules. The authors find that
increasing the sensing range for predators is beneficial for
individual survival and detrimental for predator population
size; analogously, increasing prey sensing range results in a
smaller prey population. The steady-state population dynamics
of predators and prey are investigated in [25], which finds
that agents’ initial conditions and the spatial arrangement and
availability of resources for prey, such as food and refuge,
determine the distribution of system behaviors. We comment
that these studies only consider agents moving in discrete
two-dimensional domains.

In this paper, we establish an agent-based predator-prey
model in a three-dimensional domain to explore the relation-
ship between the collective behavior of prey and predation
success. The agents, predators and prey, are modeled as
self-propelled particles inspired by rules common to the
animal kingdom, that is, both predators and prey sense the
environment, and predators hunt for and feed on prey. In
the model, the sensing mechanisms and behavioral rules
implemented in predators and prey represent the biological
system of insectivorous bats and the insects they hunt [26–28].
In particular, predators are equipped with a limited sensing
space that is analogous to bats’ sonar beam pattern [29,30],
which is a key factor in determining their hunting success,
and the prey are not capable of sensing the predators. We
consider two cases in terms of prey’s behavior: (i) prey exhibit
collective behavior in the manner of Vicsek [31] by orienting
velocity directions with peers subject to additive noise, and
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(ii) prey swarm independently as random walkers subject
to noise. By comparing simulation results of the two prey-
swarming cases, we find that, in a sufficiently large environ-
ment, prey forming a few localized cohesive groups have a
low chance of being detected by predators. Conversely, if prey
are uniformly positioned in the environment, limited rather
than extensive traversal of the domain is a better strategy to
avoid predation. These results validate the current views held
in the biological community that protection from predation is
a significant motivator of collective behavior.

II. MODELING

A. Description

We consider a system of N̂ + N agents moving in a
cube of side length L with periodic boundary conditions in
discrete time. In the three-dimensional domain, the agents
are partitioned into N̂ predators and N prey with constant
velocity magnitudes ŝ and s, respectively. Each predator has
a three-dimensional sensing space, a spherical cone. For the
spherical cone, its apex is the predator’s position, its side length
is the predator’s sensing range r̂s , and its opening angle is the
predator’s angular range of sensing φ̂. The predator’s velocity
vector starts at the apex of the spherical cone and aligns with
its central axis. For predator i, i = 1,2, . . . ,N̂ , the position
update at time t + �t is

x̂i(t + �t) = x̂i(t) + v̂i(t + �t) �t, (1)

where t , �t ∈ R+, �t is a constant, and x̂i , v̂i ∈ R3 are the
predator’s position and velocity vectors, respectively.

Each prey has a spherical sensing space whose center
is the prey’s position and whose radius equals the prey’s
sensing range rs . At time t , the position vector of prey
k, k = 1,2, . . . ,N , is xk(t) ∈ R3 and its velocity vector is
vk(t) ∈ R3. The position update for prey is the same as above
for predators in (1). A schematic of the model geometry is
shown in Fig. 1.

The initial positions and velocity directions of predators
and prey in R3 are generated with uniformly distributed
random probability in the cube of side length L centered at the
coordinate origin and in the unit sphere [32], respectively. The
state update for both predators and prey depends only on the
preceding time step. In the following, we define algorithms to
update the velocity directions of predators and prey.

B. Predator velocity update algorithm

In the model, predators are designed to randomly search in
the domain until they detect prey, after which they head toward
the nearest prey detected. Thus, we define the following two
rules to update the velocity directions for predators: a predator
heads toward (“hunts”) prey if prey are detected, and walks
randomly if prey are not detected.

The hunting rule mandates that predators head toward prey
that occupy their sensing spaces. When a predator’s sensing
space is occupied by at least one prey, the predator chooses
the nearest prey as a target and orients its velocity direction
toward it persistently until the prey is no longer in the sensing
space, which is similar to hunting in big brown bats [33]. If
the distance between the predator and the prey is less than the

FIG. 1. (Color online) Schematic of three-dimensional sensing
geometry for one predator (red circle) and one prey (black circle).
The predator i has position x̂i and velocity v̂i ; the prey k has position
xk and velocity vk . The blue cone shows the predator’s sensing space
with sensing range r̂s , angular range φ̂, and eating range r̂e. The gray
sphere shows the prey’s sensing space with sensing range rs .

eating range r̂e in the sensing space, the prey is considered
to be “eaten.” In this case, the prey’s position and velocity
vectors are randomly reassigned with uniform distribution at
the next time step, which results in a prey population of fixed
size. When the hunted prey is eaten, the predator chooses the
next closest prey in its sensing space and keeps on hunting.
We comment that prey that are isolated are not preferentially
selected as targets of predators, since the periodic boundary
conditions constrain the prey population by design. We define
the set of prey that occupy predator i’s sensing space at time
t as Ni(t) and the index of the prey targeted as k∗. Then the
hunting velocity update for the predator is

v̂h
i (t + �t) = ŝ

xk∗ (t) − x̂i(t)

‖xk∗ (t) − x̂i(t)‖ , k∗ ∈ Ni(t). (2)

If there are no prey in a predator’s sensing space, the
predator behaves as an independent random walker. In this
case, a predator’s velocity direction relies only on its previous
velocity perturbed by a random noise defined by a perturbation
parameter η̂. The random-walking velocity update for the
predator is

v̂w
i (t + �t) = ŝ

v̂i(t) + ω(η̂)

‖v̂i(t) + ω(η̂)‖ , (3)

where ω(η̂) ∈ R3 is a realization of a vector-valued random
variable whose magnitude is given by a Gaussian distribution
with mean zero and standard deviation ŝ tan(η̂π ) and whose
direction is uniformly distributed in the plane that is normal
to the predator’s velocity direction at time t . The magnitude
of ω(η̂) is restricted to the interval [0,ŝ tan(η̂π )], which
enforces that the angle between v̂w

i (t + �t) and v̂i(t) is less
than or equal to η̂π . When η̂ = 0, the angle between these
two vectors is always zero; when η̂ = 1, this angle varies
between zero and π . Loosely speaking, larger values of η̂

result in higher random noise added at each time step, and
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thus more convoluted trajectories for the predators. To avoid
unrealistically large values of this noise, which may occur
since the Gaussian distribution is defined in R, the realization
of the random variable is regenerated when its magnitude has
a value outside the stated interval. This restriction also ensures
that the normalization with respect to the random noise term
is defined.

We update the predator’s velocity using the hunting and
random-walking updates as

v̂i(t + �t) =
{

v̂h
i (t + �t) for Ni(t) �= ∅,

v̂w
i (t + �t) otherwise.

We note that predators in the model do not interact with their
peers, which is selected to agree with observations on groups
of bats that congregate socially but do not move or hunt as a
typical collective [34].

C. Prey velocity update algorithm

Based on whether or not prey interact with each other,
we define two types of prey behavior to update their velocity
directions: interacting prey align velocity directions with peers
with Gaussian-distributed random noise, and independent prey
swarm randomly in addition to noise.

The alignment ability is defined for interacting prey in
three dimensions based on Vicsek’s model [35]. If the distance
between a prey’s position and its peer’s position is less than the
prey’s sensing range rs , the peer occupies the prey’s sensing
space. We denoteNk(t) as the set of indices of prey that occupy
prey k’s sensing space at time t , with k ∈ Nk(t) by convention.
Prey k’s provisional velocity update, uk(t + �t), is given by
the average of the velocity vectors of prey l ∈ Nk(t). In other
words,

uk(t + �t) = s

∑
l∈Nk(t) vl(t)

‖∑
l∈Nk(t) vl(t)‖ . (4)

The provisional velocity update is perturbed by Gaussian-
distributed random noise defined by a perturbation parameter
η, which is analogous to random walking for predators defined
above. Therefore, we obtain the velocity update for prey k as

vk(t + �t) = s
uk(t + �t) + ω(η)

‖uk(t + �t) + ω(η)‖ . (5)

Independent prey swarm randomly using a rule analogous
to the random walking velocity update in predators [36].
However, independent prey use the noise parameter η similarly
to interacting prey. The two types of prey behavior can be
achieved by using rs �= 0 for interacting prey and rs = 0 for
independent prey. In other words,

uk(t + �t) = vk(t) (6)

for independent prey, since interactions with peers are not
considered. With the maximum noise at η = 1, interactions
among prey are totally dominated by noise and both interacting
and independent prey exhibit the same random swarming
behavior. We note that, although we define interactions among
prey based on metric distances in line with [31,35], similar
collective behavior also results from prey interacting with

peers selected using topological distances [1,2], which may
be implemented analogously.

We comment that preys’ velocity update is not influenced
by predators’ behavior because prey do not detect predators
in the model. As a result, there is no self-protection in prey
from being predated upon. This assumption is in accordance
with examples of insectivorous bats’ prey, such as flying
beetles, which do not evade hunting bats [37]. Moreover,
lack of bidirectional perception between predators and prey
necessitates the selection of only a single time scale for the
decision-making process, which is based on the predators
alone since their hunting success is the variable of interest.

III. OBSERVABLES

We define four observables to evaluate the behavior of
prey: polarization, cohesion, cell occupancy parameter, and
cell coverage. The polarization measures the alignment of
prey, the cohesion captures prey grouping, the cell occupancy
parameter conveys the spatial distribution of prey grouping,
and the cell coverage shows the extent covered by an average
prey trajectory. Note that high polarization, cohesion, and cell
occupancy parameter values indicate prey collective behavior
for moderate or large prey population sizes. Finally, the
predation success is quantified as the average number of prey
eaten by each predator per time step.

The polarization of prey is calculated as the absolute value
of their average normalized velocities [31]. In other words, the
prey polarization at time t is

p(t) = 1

N

∥∥∥∥∥
N∑

k=1

vk(t)

s

∥∥∥∥∥ . (7)

The value of p(t) ranges from 0 to 1, where 0 means that
prey velocity directions are homogeneously oriented in the
unit sphere and 1 means that all prey are moving in the same
direction. Note that the polarization is 1 for the number of prey
N = 1.

We compute the prey cohesion based on the method of
average nearest neighbor [38], which allows equally high
values when prey form large or small groups. In particular,
the cohesion is given by the average distance between prey
and their nearest peers [39]. With a reference distance Ld , the
prey cohesion at time t is

c(t) = exp

(
− 1

NLd

N∑
k=1

dk(t)

)
, (8)

where

dk(t) = min
l �=k

‖xl(t) − xk(t)‖, l = 1,2, . . . ,N (9)

is the distance between prey k and its nearest peer at time t . The
reference distance Ld is defined as the cutoff length between
peers that are nominally near and far and thus can be used to
tailor the absolute magnitude of cohesion. The cohesion c(t)
varies between 0 and 1, where a large value indicates high
cohesion.

To obtain the cell occupancy parameter and cell coverage,
we divide the cubic domain into cubic cells with equal side
length Lc. We select Lc as a factor of L so that the number
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of cells is (L/Lc)3, which is an integer. The number of prey
in cell m, denoted as no(m,t), divided by the total number of
prey N is the normalized cell occupancy o(m,t) of the cell at
time t . In other words,

o(m,t) = no(m,t)

N
. (10)

The normalized cell occupancies of all the cells are sorted
by magnitude from greatest to least to obtain the normalized
sorted cell occupancy at time t , which quantifies the extent
of prey groups similarly to the density profiles considered in
[40]. The distribution of the normalized sorted cell occupancy
which shows large occupancy values for a small number of
cells indicates that prey form a small number of large groups.
On the contrary, flatter distributions show that prey individuals
are likely to be uniformly distributed in the domain. Since
most distributions exhibit approximately exponential decay
based on inspection, we average the normalized sorted cell
occupancy with respect to time for the simulation and fit it
with an exponential probability density function [41], which
is

f (y,λ) = λe−λy, (11)

where y is the index of the average sorted cell occupancy
for each cell, which is a positive integer between 1 and the
total number of cells, f is the average normalized sorted cell
occupancy, and λ is the cell occupancy parameter obtained
by fitting the above distribution. The value of λ is larger for
distributions which are peaked for a small number of cells and
exhibit fast decay, and it is smaller for distributions which are
approximately constant and exhibit slow decay.

The discrete spatial cells are also used to measure the
straightness of prey paths. We define the cell coverage for
prey k, denoted as nc(k,t), to be the number of distinct cells
that the prey’s trajectory occupies during the time interval
[t,t + �τ ] for a constant �τ ∈ R+. Cell coverage with a
value of 1 means that the prey resides in the same cell with
a convoluted trajectory over the time interval, while a higher
cell coverage value means that the prey traverses a large extent
of the domain by moving over a fairly straight path. Note
that, when computing the cell coverage for prey, we neglect
time intervals in which prey are eaten because their positions
are regenerated randomly in the domain, which results in
discontinuous prey trajectories.

The average number of prey eaten by each predator per
time step is obtained to evaluate predation success during
simulation. This quantity is calculated as

n̄e = Ne

N̂T
, (12)

where Ne denotes the total number of prey eaten over the entire
simulation length in time steps, defined as T . We comment
that this metric is normalized by the number of predators to
highlight their ability to hunt in the environment of variable
resources and is thus not normalized by the number of prey
present.

IV. SIMULATION RESULTS

We seek to determine the parameters of the model for the
simulation study by taking inspiration from biological systems.
The predators’ sensing range is taken as r̂s = 5 m and their
angular range of sensing is φ̂ = 120◦, which are physical
parameters from big brown bats, Eptesicus fuscus [33,42].
The prey’s sensing range is taken as half that of the predators’,
which is rs = 2.5 m. The predator speed is taken as the bat
nominal flying speed 5 m/s [43], and the same proportionality
between predator and prey sensing ranges is assumed for their
velocities. With the prey velocity smaller than the predators’,
the predators are likely to achieve predation once they sense
prey. We consider the population size of predators as N̂ = 10
and the side length of the domain as L = 50 m, such that the
density of predators is 0.08 per 1000 m3. The low density of
predators in the domain ensures sufficiently large space for
each predator to hunt and lowers their chance of collisions
that are neglected in the model, consistently with collision
avoidance in bats’ behavior [28]. The perturbation parameter
for the predator swarm is η̂ = 0.1, which results in relatively
straight trajectories which may occur in bats’ flights [44,45].

We take the eating range r̂e as the distance a predator
travels in one time step, which is defined as �t = 0.1 s for all
simulations. In computing prey cohesion, we take the cutoff
length Ld = 5 m equal to the diameter of the prey spherical
sensing space, which is the threshold above which two prey
are not able to interact directly or indirectly through common
neighbors. By this definition, two prey separated by Ld have
a cohesion of 1/e = 0.368, which defines a nominally small
value for this observable. For the simulation study, we consider
the hunting behavior of predators with various prey population
sizes ranging from 5 to 1000. Thus, the density of prey varies
from 0.04 per 1000 m3 to 8 per 1000 m3. The side length of
the cubic cells is taken as Lc = 10 m, such that the volume of
one cell is 1000 m3 and the total number of cells in the domain
is 125. The time interval for prey cell coverage, �τ , is taken
as 150 �t , which gives 37.5 m if a prey travels straight with a
velocity of 0.25 m/�t . This selected time interval ensures that
a prey can potentially traverse multiple cells, while eliminating
double counting of a periodic trajectory since the maximum
distance that a prey travels is less than L. For both cases of
interacting prey and independent prey, the prey perturbation
parameter η varies from 0 to 1, which enables us to obtain
both the minimum and maximum effects from random noise.
Table I gives a summary of the parameter values used in the
simulation study.

Figure 2 shows exemplary frames of predators and inter-
acting prey swarming in simulations with N = 500. We see
that, with η = 0, interacting prey form relatively large groups,
while with η = 0.2, they form small groups comprising a few
nearby peers. When η = 1, interacting prey are likely to be
homogeneously positioned in the domain with no observable
clusters. Thus, the three representative values of η—0, 0.2,
and 1—are considered to be associated with low, moderate,
and high noise for prey, respectively. For simulations with
independent prey, the distributions of particles in the domain
are similar to Fig. 2(c). In addition, the motion of each agent
follows a straighter trajectory as the noise is decreased.
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TABLE I. Parameter values for predators and prey.

Predators Prey

Parameter Symbol Value Symbol Value Unit

Population size N̂ 10 N 5, 10, 20, 50, 100, 200, 500, 1000
Speed ŝ 0.5 s 0.25 m/�t

5 2.5 m/s
Sensing range r̂s 5 rs 2.5 m
Perturbation parameter η̂ 0.1 η 0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5, 1
Time interval for cell coverage �τ 150 �t

Angular range of sensing φ̂ 120 ◦

Eating range r̂e 0.5 m
Reference distance for cohesion Ld 5 m

For the simulation study, we take T = 25 000 time steps as
one simulation replicate and average the prey’s polarization,
cohesion, normalized sorted cell occupancy, cell coverage, and
the predator’s predation success within each replicate with
respect to time. Moreover, the cell occupancy parameter λ for
each replicate is obtained by fitting the average normalized
sorted cell occupancy to the exponential probability density
function; the cell coverage values are obtained for each
replicate by partitioning the time series into time intervals of
length �τ . Simulations are recorded after excluding an initial
transient phase of 10 000 time steps. Fifteen replicates are
considered for each set of parameters. The number of replicates
and the simulation length are selected to ensure stationarity of
the results. In other words, the mean of the averages for the
observables over the 15 replicates divided by their standard
deviation is less than 10%.

Through observation, we find that the mean polarization,
cohesion, and cell occupancy parameter λ values remain
practically constant for independent prey of fixed population
size as noise is varied; this result is absent for interacting
prey. Thus, we report the polarization, cohesion, and cell
occupancy parameter values for interacting prey in contour
plots as the number of prey N and the prey perturbation
parameter η are varied in Figs. 3(a), 3(b), and 3(c), respectively.
These quantities are shown for independent prey in plots with

varying N only; see the black dashed curves in Figs. 3(d), 3(e),
and 3(f). Insets inside these three plots display the contour plots
which show vertical striation characteristic of the observables.
We comment that many contours do not appear smooth due to
the small number of data points for large prey population sizes
and the lack of smoothing the raw data.

The polarization, cohesion, and cell occupancy parameter
values of independent prey are verified through a Monte
Carlo simulation. We comment that the expected value for
polarization may be computed analytically as a function
of N in terms of random variables defining uniformly
distributed points on the unit sphere [32]. However, this
procedure requires evaluating 2N nested integrals, which
poses both analytical and numerical challenges. Due to the
nearest-neighbor selection process inherent in the cohesion
computation and the sorting of cell occupancies, the cohesion
and cell occupancy parameter may not be analytically defined
in integral expressions. Thus the Monte Carlo simulation is
selected for comparison of these observables to the model
simulation. In the Monte Carlo simulation, the particles are
assigned with random velocity directions and positions at each
time step, thus omitting the dynamics of the model. The Monte
Carlo simulations are computed with 10 replicates analogously
to the model simulations; observable values are also obtained
in the same way as above. The quantities from the Monte
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FIG. 2. (Color online) Frames of model simulation with 10 predators and 500 interacting prey when (a) η = 0, (b) η = 0.2, and (c) η = 1.
Red dots show predator positions which coincide with the apex of the blue spherical cones showing their sensing spaces; black dots show prey
positions. The unit for the numbers on the axes is meters.
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FIG. 3. (Color online) Mean (a) and (d) polarization, (b) and (e) cohesion, and (c) and (f) natural logarithm of the cell occupancy parameter
for interacting and independent prey, respectively. Contour plots displayed as prey population size N and perturbation parameter η are varied.
The black circles show the mean observable values obtained from the model with independent prey and the blue crosses show results of Monte
Carlo simulations. The superscript bar notation denotes the mean over the replicates and the error bars denote standard deviations over all
selected values of η. Insets in the second row show contour plots for independent prey. For each inset, the color map is consistent with the
contour plot above, that is, with the corresponding observable for interacting prey.

Carlo simulation are denoted as blue crosses in the plots for
independent prey.

In Fig. 3(a), we see that the addition of noise is destructive
to the polarization of interacting prey. When the noise is low,
interacting prey are highly polarized. However, when the noise
increases to the moderate level at η = 0.2, the polarization
of interacting prey drops steeply to low values, which are
practically constant as the noise increases to its maximum at
η = 1. For a fixed value of noise, there is a nonmonotonic trend
accompanied with increasing population sizes for interacting
prey: polarization decreases to a minimum value for a relatively
small population size and increases as population size grows
further. Figure 3(d) shows that the polarization of independent
prey decreases with increasing prey population size for all
values of noise, as evidenced by the small error bars.

In Fig. 3(b), low noise results in higher cohesion in
interacting prey of fixed moderate or large population sizes.
This effect is absent in independent prey whose cohesion
depends exclusively on N in Fig. 3(e). Generally speaking,
cohesion values increase with larger prey population sizes for
both interacting and independent prey.

In Fig. 3(c), we see that low noise corresponds to large
values of the natural logarithm of the cell occupancy parameter,
ln(λ), in interacting prey. Simulations with high noise have

low ln(λ) values in interacting prey for moderate or large prey
population sizes, similarly to independent prey with all levels
of noise in Fig. 3(f). Note that, due to the normalization of the
sorted cell occupancy, the fitting gives large ln(λ) values for a
small number of prey.

Curves, as opposed to contour plots, are also selected to
show the cell coverage for both interacting and independent
prey because its values for a fixed prey noise are found
to be nearly constant for all prey population sizes N ; see
the small error bars in Fig. 4. We see that increasing noise
results in decreasing cell coverage for both types of prey,
which means the prey’s trajectories are less straight and
cover fewer cells with high prey noise. We comment that the
cell coverage for both interacting and independent prey are
practically identical, evidencing that random noise rather than
the averaging protocol determines the cell coverage values.

The predation success for both interacting and independent
prey is shown in contour plots in Fig. 5, as its values vary
with both N and η. In Fig. 5(a), we see that interacting prey
are least eaten with noise close to zero, while they suffer the
highest predation with the moderate noise at η = 0.2; when
noise increases from the moderate value, they have increased
protection from predation. Figure 5(b) shows that increasing
noise is universally positive to independent prey for avoiding

062724-6



COLLECTIVE BEHAVIOR AND PREDATION SUCCESS IN . . . PHYSICAL REVIEW E 88, 062724 (2013)

0 0.5 1

2

3

4

5

6

7

η

n̄
c

Interacting prey
Independent prey

FIG. 4. (Color online) Mean prey cell coverage, as prey pertur-
bation parameter η is varied. The superscript bar notation denotes
the mean over the 15 replicates, and the error bars denote standard
deviations over all selected values of N .

predation. Moreover, all the above effects about predation
success are enhanced with larger prey population sizes.

The relationship between the observables can be observed
by computing the correlation coefficient R using a t-test
[46]. The test statistic t =

√
[R2(ν − 2)/(1 − R2)], where ν

is the degrees of freedom. We take p < 0.05 as significant.
For polarization, cohesion, cell occupancy parameter, and
predation success, the correlations are calculated between each
pair of observables for all values of N and η considering both
the prey population size and noise effects; the quantity ν is
the product of the number of perturbation parameter values
and the number of prey population sizes tested, which is
8 × 8 = 64 in this case. We find that, for interacting prey, the
cohesion and cell occupancy parameter are both significantly
correlated with predation success (cohesion: R = 0.89, p <

0.01; cell occupancy parameter: R = −0.69, p < 0.01) and
with each other (R = −0.67, p < 0.01); on the other hand,
the polarization is not correlated with predation success
(R = 0.19, p = 0.13). We further investigate the correlation
between cell coverage and predation success for all η values
with a fixed N , because cell coverage varies only with noise, as
seen in Fig. 4; ν equals 8, the number of perturbation parameter
values, in this case. Computing the correlation between cell
coverage and predation success for each N of independent
prey, we obtain the range of R values [0.94, 0.97] with all
p < 0.01, which means that cell coverage is significantly
correlated to predation success for any prey population size
for independent prey.

V. DISCUSSION

Based on the simulation study with varying noise, interac-
tion scheme, and prey population size, we find the following
principles regarding predation avoidance: (i) when random
noise is sufficiently low, interacting with peers is highly
beneficial to avoid predation; (ii) for a prey population of
fixed size, there is a maximum probability for interacting
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FIG. 5. (Color online) Mean number of eaten (a) interacting and
(b) independent prey, as prey population size N and perturbation
parameter η are varied.

prey to be eaten when they use noise of a moderate value;
and (iii) increasing noise increases the probability to avoid
predation for independent prey, an effect that also exists in
the case of interacting prey using high noise. Furthermore,
these effects are enhanced by increasing the prey population
size.

The benefit of protection from predation for interacting
prey using low noise results from the formation of large and
cohesive groups. For interacting prey, the alignment rule that
prey orient velocity directions with peers results in coherent
motion of prey, as shown by the high polarization values
for η < 0.2, consistently with [31]. The polarized collective
motion induces cohesive prey groups, which confirms the
observation in [1] that high polarization corresponds to high
cohesion with a similar one-dimensional model. Noise added
to the prey’s orientation update has a destructive influence
on the prey’s collective behavior, which is seen by a steep
reduction in polarization and cohesion. Further observation
through the cell occupancy parameter values for interacting
prey shows that lower noise leads to the formation of larger
groups. Larger groups result since, with less perturbation to the
interaction from noise, prey are more likely to form groups and
their coordinated motion is more stable. For sufficiently large
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prey population sizes, prey coalescing in a few large groups
require the predators to search widely for them, which reduces
their probability of being detected and predated. This finding is
supported by the negative correlation between cell occupancy
parameter values and predation success. Furthermore, this
result agrees with the biological literature that cites protection
from predation as a primary benefit of collective behavior
[47,48]. We comment that, due to its limited sensing space,
a predator has low possibility to prey upon sufficiently large
prey groups in their entirety, since not all group members are
likely to successively occupy its sensing space. This prevents
unfettered consumption of large prey populations by predators
in the model and thus supports the benefit of forming large
groups.

For an interacting prey population of constant size, there is a
maximum probability of being predated when the prey form a
number of small groups using moderate noise. At the moderate
noise level occurring at approximately η = 0.2, the alignment
of interacting prey is perturbed significantly and the prey form
small groups compared to the case of low noise, as seen in the
cell occupancy parameter values. These small groups occur in
relatively large numbers and may move independently in the
domain, which corresponds to the sharp decline in polarization.
This is supported by the fact that the cohesion reduces less
as noise increases, as it is measured in terms of average
nearest neighbors. The relatively large number of small groups
are likely to be uniformly distributed in the domain, which
increases their probability of being detected and predated by
predators. In addition, if prey in a small group are detected by
a predator, the predator may eat a large portion of the group in
contrast to the previously mentioned case of large prey groups.
Finally, these trends are supported by the positive correlation
between prey cohesion and predation success.

Noise reduces the risk of being detected, and therefore
predated upon, when prey swarm independently because high
noise results in trajectories with less cell coverage. Indepen-
dent prey have uniform spatial distribution in the domain,
which means that a predator is near prey regardless of its
position. When the noise is low, the prey’s trajectories are
likely to be straight. In contrast, when noise is high, the prey’s
velocity directions are perturbed at every time step, which
results in convoluted trajectories that are likely to cover fewer
cells. Since prey are less likely to encounter predators that they
are not initially near when their trajectories cover fewer cells,
prey using high noise are less likely to be detected and predated
upon as a result. The reasoning is supported by the positive
correlation between cell coverage and predation success for
independent prey. This effect is also evident in interacting
prey with noise that is sufficiently high to promote the group’s
uniform spatial distribution in the domain.

The above effects are all enhanced by larger prey population
sizes. For independent prey, the high density of prey in the
domain increases the possibility of an individual to encounter
predators and get eaten, as prey are likely to be uniformly

distributed in the domain. For small interacting prey population
sizes, the impact of interacting on the predation success is not
obvious since prey’s collective behavior fails to emerge for
most noise levels. The sensing space of prey occupies only
0.015 71% of the domain volume in the model. Therefore, prey
with low density have low chance to interact with peers and do
not exhibit emergent collective behavior, as evidenced by the
nonmonotonic trend in polarization with minimum values at
small prey population sizes. The collective behavior is further
hindered as prey are repeatedly eaten and random velocity
and position vectors are reassigned for them. This fact can
be seen by comparing the polarization values for interacting
prey in the presence of predators to the simulations of the
Vicsek model in three dimensions in [35], whose values are
larger in magnitude. We note that when the number of prey is
small, the polarization may be high because a limited number
of prey velocity vectors have orientations which are more
likely to be inhomogeneously distributed in the unit sphere.
This size effect is demonstrated by the nonzero polarization of
independent prey computed with both the model and Monte
Carlo simulations, which vanishes with increasing group size.

In conclusion, coalescing in localized cohesive groups is an
effective strategy for individuals to avoid predation by inde-
pendent predators. For independent individuals, minimizing
the straightness of a path results in decreased predation as
opposed to traversing large proportions of the domain, since
traveling may expose their positions to predators and increase
the risk of being detected. This modeling framework may be
translated to diverse applications for studying the dynamics
and control of multiagent systems such as animal groups and
robotic teams. Similar modeling strategies have been used to
model characteristic circular motion in groups of planktonic
crustaceans, Daphnia [49], and to control teams of robots
locating static targets [50].

Future work will include generalizing the model to incorpo-
rate more diverse sensing schemes for predators, enabling them
to sense and interact with each other [51,52], as is observed in a
variety of natural settings [53–55]. Potential emergence in the
group of predators will broaden this work to enable exploration
of the role of collective behavior in aiding rather than hindering
predation. Moreover, prey will be enabled to detect and evade
predators [56,57], which is expected to reduce the predation
in the simulation and be more relevant to biological systems.
The future work is anticipated to find applications in the area
of biologically inspired control of robot teams interacting with
animal groups [58] or cooperating in dynamic, real-world
environments [59,60].
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[11] A. Czirók and T. Vicsek, Physica A 281, 17 (2000).
[12] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
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