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Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex
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The excitation energy transfer dynamics in the Fenna-Matthews-Olson complex is quantified in terms of
a non-Markovianity measure based on the time evolution of the trace distance of two quantum states. We
use a system description derived from experiments and different environmental fluctuation spectral functions,
which are obtained either from experimental data or from molecular dynamics simulations. These exhibit, in all
cases, a nontrivial structure with several peaks attributed to vibrational modes of the pigment-protein complex.
Such a structured environmental spectrum can, in principle, give rise to strong non-Markovian effects. We present
numerically exact real-time path-integral calculations for the transfer dynamics and find, in all cases, a monotonic
decrease of the trace distance with increasing time which renders a Markovian description valid.
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I. INTRODUCTION

In photosynthesis, the energy of solar photons is converted
into chemical energy, which is used by the plants for their phys-
iological processes. The photon absorption occurs at (antenna)
pigment-protein complexes, generating an exciton. This is
transferred toward the reaction center, where charge separation
occurs. One of the most extensively studied pigment-protein
complexes is the Fenna-Matthews-Olson (FMO) complex. It
is a small water-soluble protein unique to green sulfur bacteria
[1] and responsible for passing the excitation energy from the
chlorosome to the photosynthetic reaction center.

Recent experimental studies using two-dimensional elec-
tronic spectroscopy [2,3] on photosynthetic molecules (in
particular the FMO complex) have revealed long-lasting
coherent oscillations of the nondiagonal peaks at cryogenic
[4–6] and, surprisingly, also at room temperature [7–9]. This
has led to an increasing interest in elucidating the role
played by quantum coherence on the energy transfer dynamics
of these systems [10–21]. In order to explain these long-
lasting coherences, several models have been proposed, e.g.,
nonadiabatic vibrational-electronic mixing [20], vibrational
coherences [15,19], and vibronic excitons [16,21].

Because of the large amount of atoms constituting the
pigment-protein complexes, a full microscopic description is
cumbersome. Therefore, the electronic states of these com-
plexes are treated within an open quantum system approach
[22]. In this approach, the dynamics of a given quantum system
of interest is subject to the coupling to thermal fluctuations gen-
erated by an environment held at temperature T . Commonly, in
most physical situations, Gaussian fluctuations prevail and thus
can be described in a model based on a collection of quantum
mechanical harmonic oscillators. The statistical properties of
the quantum mechanical (operator-valued) fluctuating forces
ξ (t) then crucially determine the relaxation and decoherence
features of the quantum system. A straightforward assumption
is that the fluctuations at a certain instant of time do not
depend on their previous history and thus are uncorrelated
over time. A Markovian approximation can be made and the
resulting time evolution becomes local in time, rendering
the solution of the underlying equations of motion rather
simple. To judge the viability of the Markov approximation,
the autocorrelation function of the fluctuations has to be

considered. The properties of the environmental harmonic
oscillators, i.e., their masses mk , frequencies ωk , and the
coupling constants κk , can be collected in the spectral density
G(ω) = ∑

k κ2
k /(2mkωk)δ(ω − ωk) [22]. Then, the temporal

correlation properties of the fluctuations are given by the bath
autocorrelation function [22]

L(t) = 〈ξ (t)ξ (0)〉T
=

∫ ∞

0
dωG(ω)

[
coth

�ω

2kBT
cos ωt − i sin ωt

]
, (1)

where � is the Planck constant divided by 2π and kB is the
Boltzmann constant. Thus, the fluctuations are composed of
harmonic modes with frequency ω at temperature T , and each
mode contributes with a spectral weight given by G(ω).

For many condensed matter systems, the typical situation
[22] corresponds to a bath with a smooth structureless spectral
density in the form of an ohmic spectral density G(ω) ∝
ω exp(−ω/ωc) with a cutoff frequency ωc, which is chosen
to be the largest frequency scale in the problem. The resulting
autocorrelation function L(t) for large ωc is strongly peaked
at short times and can safely be approximated by a δ function.
This implies that the environmental fluctuations evolve on the
shortest time scale characterized by ω−1

c , describing a fast
bath, where the memory effects are rather instantaneously lost
or simply do not exist [23].

In extended bulk condensed matter systems, ohmic envi-
ronments are ubiquitous, but nonohmic and highly structured
environmental spectral densities arise in finite size systems,
such as, for instance, photoactive molecular complexes. There,
after the formation of an exciton, its quantum dynamics is
subject to fluctuating electric fields at the exciton position. The
fluctuations are created by a continuous distribution of fluctu-
ating polarization modes generated either by a polar solvent
or by a surrounding protein. The underlying spectral density
can be obtained from experimental data (see, for instance,
Ref. [24] for the fluctuational spectrum in the FMO molecular
complex), or from numerical simulations, such as molecular
dynamics calculations [25], or from theoretical modeling of
the dielectric functions ε(ω), for instance, in the Onsager
continuum model of solvation [26]. These fluctuations are
reminiscent of phonons in a crystal.
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However, the molecular complexes typically have distinct
molecular vibrational modes at particular frequencies. For
instance, up to 30 different discrete vibrational molecular
modes have been identified experimentally in the FMO
complex [24]. One can include such sharp molecular modes
in the environmental spectral density via δ peaks at the mode
frequencies. The consequence for the correlation properties
is immediately clear if we consider for the moment such
a single vibrational mode at frequency � > 0 by G�(ω) ∝
δ(ω − �). For temperatures kBT � ��, pertinent oscillatory
correlations are generated according to L(t) ∝ e−i�t , which
follows from Eq. (1). If we associate a finite linewidth γ0 to this
vibrational mode, the oscillatory correlations decay exponen-
tially with time according to L(t) ∝ e−i�t−γ0t [27]. When these
vibrational lifetimes are on the order of the system time scale,
all bath-induced memory effects live on a comparable time
scale and a Markovian approximation no longer can be made
a priori for such a highly structured environmental spectrum
[27]. Such vibrational degrees of freedom are common to large
molecular complexes. For instance, a typical environmental
fluctuation spectral function of the FMO complex is obtained
either from experimental data [24] or from molecular dynamics
simulations [25,28]. They are highly structured with many
prominent vibrational peaks which induce a complicated
pattern of several vibrational oscillatory correlations with long
lifetime.

In order to describe the dynamics of an open quantum
system beyond a Markovian approximation, few numerically
exact approaches are available. These all need substantial
computer power [29], which limits their application to rather
small molecular complexes such as, for example, the FMO
complex. Investigations of the energy transfer efficiency
through the FMO complex typically employ Markovian
master equations (see, for example, [30,31]), although it has
been shown that a weak-coupling Markovian approach fails
[12,32,33], the reason being [12] that multiphonon processes
are neglected. The question, however, of whether or not
the exact dynamics is Markovian has not been studied so
far. In the case that the dynamics is Markovian, a weak-
coupling lowest order Born approximation can still not be
used to determine the Redfield rate tensor [12,32,33]. However,
importantly, a Markovian quantum master equation could still
be used to discuss the dynamics, for example, of the transfer
efficiency [30,31], if the rate tensor is either treated as an
effective fit parameter or obtained from some more advanced

theory. In turn, this would be beneficial since it would allow
us to investigate larger molecular complexes.

To quantify how much the resulting dynamics is non-
Markovian and, therefore, how reliable a Markovian approxi-
mation could be, several measures of the non-Markovianity
have been recently proposed [34–36] based on different
mathematical and physical concepts. For example, the non-
Markovianity measure in Ref. [36] is rooted in the math-
ematical property of the dynamical map that generates the
quantum time evolution, i.e., the deviation from divisibility
of the trace-preserving completely positive map. On the other
hand, the non-Markovianity measure in Ref. [35] is based
on the physical features of the system-bath interaction in
terms of information backflow from the environment to the
system, which has been experimentally measured [37,38]. We
therefore use this last measure to quantify non-Markovian
effects during the excitation energy transfer dynamics of
the FMO complex in the presence of discrete vibrational
modes.

In the next section, we indicate how the FMO complex
is modeled and show explicitly the different environmental
fluctuation spectral functions used in this work. We then briefly
present the non-Markovianity measure we used in Sec. III.
The excitation energy transfer dynamics is simulated by using
the numerically exact quasiadiabatic propagator path integral
(QUAPI) method and quantified in terms of the trace distance
in Sec. IV. Finally, concluding remarks are provided in Sec. V.

II. FMO MODEL

The FMO protein consists of three identical and weakly
interacting subunits, each of which contains eight bacteri-
ochlorophyll a (BChla) molecular sites [1,39]. The eighth
pigment was recently resolved [40,41], but it is only very
weakly coupled to the other BChls in the subunit and thus
irrelevant for the present investigation. Each pigment is
described as a two-level system restricting the consideration
to the ground and first excited state. The different times
scales of fast exciton transfer (∼1 ps) as compared to the
slow recombination (∼1 ns) allow us to reduce the problem
further and to describe the exciton dynamics within the single
excitation subspace. The numerically determined site energies
and dipolar couplings result in the Hamiltonian [42]

HFMO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

240 −87.7 5.5 −5.9 6.7 −13.7 −9.9
315 30.8 8.2 0.7 11.8 4.3

0 −53.5 −2.2 −9.6 6.0
130 −70.7 −17.0 −63.3

285 81.1 −1.3
435 39.7

245

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

in units of cm−1 in the site representation for Chlorobium
tepidum, with BChl 3 defined as the site with the lowest energy
[39].

The vibrational pigment-protein-solvent environment in-
duces thermal fluctuations on the excitation transfer dynamics.
We model them by employing an open system approach
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[22,43] in terms of the total Hamiltonian

H = HFMO +
7∑

j=1

|j 〉〈j |
∑

k

κ
(j )
k qj,k

+
7∑

j=1

1

2

∑
k

(
p2

j,k + ω2
j,kq

2
j,k

)
, (3)

with momenta pj,k , displacement qj,k , frequency ωj,k , and
coupling κ

(j )
k of the environmental vibrations at site j . The

fluctuations at different BChl sites are assumed to be identical
but spatially uncorrelated [14].

Recent reports [16,19,44,45] indicate that vibrational de-
grees of freedom close to resonance to exciton transitions may
be responsible for the long-lived oscillatory features in the
two-dimensional electronic spectra of the FMO complex [5,7].
Therein, specific vibrational modes are treated as part of the
system and thus on an equal footing as the exciton states.
We note that, within the open system approach used here, the
environment is typically assumed to be in thermal equilibrium,
thus allowing a study of the influence of quantum and thermal
equilibrium fluctuations on the system. By including specific
vibrational modes with a substantial coupling to the system
into the environmental spectrum one assumes, consequently,
that the thermalization time scale of these modes are much
shorter than any system time scale. This does not exclude non-
Markovian dynamics of the system but only nonequilibrium
fluctuations of the vibrational modes.

The environmental influence on the system dynamics is
fully characterized by the spectral density function G(ω) =∑

j,k(|κ (j )
k |2/2ωj,k)δ(ω − ωj,k) [22]. The environmental spec-

tral density is not easily experimentally accessible and,
likewise, various parametrizations have been obtained based
on different approaches. Since, a priori, it is unclear whether
they result in the same non-Markovianity, we study three
different spectral densities known in the literature. Aghtar et al.
[25] have obtained a spectral density from molecular dynamics
simulations of the FMO complex in specific solvent environ-
ments. Adolphs and Renger [42] as well as Kreisbeck, Kramer,
and co-workers [46,47] extract a spectral density from the
results of temperature-dependent fluorescence line-narrowing
measurements by Wendling et al. [24], but eventually they
obtain different functions. Adolphs and Renger describe the
phonon background based on data available for the B777-
complexes [48] and then subsequently add a single intramolec-
ular vibrational mode in the form of a Dirac-delta peak, which
is believed to be the most relevant mode. In contrast, Kreisbeck
and Kramer are forced to parametrize the spectral density
functions as a sum of shifted Drude-Lorentz peaks due to
the hierarchy equation of motion approach used to determine
the dynamics. We will study all three cases separately below.

A. Fluctuational spectrum of Adolphs and Renger

Adolphs and Renger [42] give a closed expression for
the spectral density based on two contributions: (i) a broad
continuous low-frequency part S0g0(ω), which originates in
the phonon-like protein vibrations and contributes with the
Huang-Rhys factor S0, and (ii) a single effective vibrational
mode SH δ(ω − ωH ) of the pigments with Huang-Rhys factor

SH . The total spectral density is given as

G(ω) = ω2S0g0(ω) + ω2SH δ(ω − ωH ). (4)

If one assumes that the local modulation of pigment transition
energies by the protein environment is a global quantity that
does not differ much between the specific environment of the
pigments [42], the low-frequency function g0(ω) has the same
form as the spectral density that was originally extracted from
1.6 K fluorescence line-narrowing spectra of B777-complexes
[48]. In particular, it has the form

g0(ω) = (6.105 × 10−5)
ω3

ω4
1

exp

[
−

√
ω

ω1

]

+ (3.8156 × 10−5)
ω3

ω4
2

exp

[
−

√
ω

ω2

]
, (5)

with ω1 = 0.575 cm−1 and ω2 = 2 cm−1. The Huang-Rhys
factor of the protein-pigment coupling was estimated by
Wendling et al. [24] from the temperature dependence of the
absorption spectra to be S0 ∼ 0.5 and yields a satisfactory
agreement with the experimental data.

In addition, Adolphs and Renger have included an effective
single vibrational mode of the pigments at frequency ωH =
180 cm−1 with the Huang-Rhys factor SH = 0.22 [42]. Earlier,
Wendling et al. [24], for instance, have identified up to 30
vibrational modes in their experimental data. They arrive
at an overall Huang-Rhys factor of 0.45 ± 0.05, while they
obtain a Huang-Rhys factor of 0.3 for the continuous phonon
background. Out of this, Adolphs and Renger constructed an
effective Huang-Rhys factor of the single vibrational mode
at 180 cm−1 of SH = 0.22 by including all high-frequency
vibrational modes into an effective single mode. The value
of SH = 0.22 given by Adolphs and Renger appears to be
somewhat large, which is due to the effective description
[42]. In more detail, the effective mode at 180 cm−1 in fact
consists of three strongly overlapping vibrational modes at
173, 185, and 195 cm−1. Following Wendling et al. [24], we
may combine the weight of the three modes around 180 cm−1

out of the 30 modes to an effective Huang-Rhys factor of SH =
0.027. Likewise, in a related work on the vibronic fine structure
of the light-harvesting complex II of green plants [49], also up
to 48 vibrational modes were found with considerably smaller
Huang-Rhys factors. Hence, for the single effective vibrational
mode constructed by Adolphs and Renger [42], all weight is
concentrated at this mode while, in reality, the spectral weight
is spread over many channels. Since we are interested in the
non-Markovian properties, they would be weaker for smaller
Huang-Rhys factors and, thus, we consider the case of the
largest Huang-Rhys factor of SH = 0.22 in the following.

Under realistic physiological conditions, the unphysical δ

peak should be broadened since the protein is embedded in
water, which, as a polar solvent, gives rise to an additional
weak ohmic damping of the protein vibrations [14]. We assume
that the broadening has a Lorentzian line shape with width γ

in the form

ω2SH δ(ω − ωH ) → SH ω2
Hγ

ω2(
ω2 − ω2

H

)2 + (γω)2
. (6)

This specific form of the peak ensures that the Huang-Rhys
factor SH is kept constant when varying the width γ . In Fig. 1,
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FIG. 1. (Color online) Spectral density function of Adolphs and
Renger [Eq. (4)] for different Lorentzian peak widths γ centered at
ωH = 180 cm−1.

we show the resulting spectral density function of Eq. (4) for
several widths γ . Typically, peaked spectral functions result
in strong non-Markovian dynamics [27,50]. However, in the
present case the continuous background spectrum g0(ω) is
rather large (see Fig. 1), which broadens the exciton transitions,
leading to a weak dependence on the width γ and position ωH

of the Lorentzian peak and washing out non-Markovian effects
(see Sec. IV A).

The influence of vibrational modes on the system dynamics
is relevant only when their energies are comparable to the
energy difference between the exciton states [51]. The exciton
states of the FMO complex are obtained by diagonalizing
Eq. (2), with the squares of the eigenvector elements of the
seven exciton states tabulated in Table I and schematically
shown in Fig. 2.
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FIG. 2. (Color online) Structural arrangement of the seven BChl
molecules (black numbers) in FMO (Chl. tepidum) [40,52] super-
posed with a schematic representation of the delocalization patterns
of the different excitons (colored shading, italic red numbers). The
exciton numeration is in ascending energy order. The two main
excitation transfer routes are indicated by the green and black thin
arrows. Entrance and exit sites are indicated by blue thick arrows.

Experimental results [39,53] indicate that BChls 1 and 6 are
oriented toward the peripheral chlorosome antenna complex.
Therefore, it is believed that these are the initially excited sites.
In contrast, BChl 3 interacts with the cytoplasmic membrane,
which embeds the reaction center. The orientation of this site
and the fact that it has the lowest energy indicates that BChl 3
is the exit site. As indicated in Table I and Fig. 2, the lowest
energy exciton 1 is almost completely localized at BChl 3,
which is in agreement with this site being the energy sink
toward the reaction center. The exciton pair 3 and 6 is mainly
localized on BChls 1 and 2. These two BChls are the ones
which are most strongly coupled in the Adolphs-Renger FMO
Hamiltonian [Eq. (2)]. Meanwhile, the pair of excitons 5 and
7 is mainly localized on BChls 5 and 6, which is the second
most strongly coupled BChl pair. By diagonalizing the FMO
Hamiltonian in Eq. (2), we found that the energy difference
between excitons 3 and 6 and between excitons 5 and 7 is
190.8 and 211.0 cm−1, respectively. Due to the orientation of
BChls 1 and 6, it is expected that these specific excitons play
a relevant role on the excitation energy transfer dynamics, in
particular, since their energy difference is close to that of the
localized vibrational mode at 180 cm−1.

In order to evaluate the influence of a localized vibrational
mode in resonance with exciton transitions, we calculate the
dynamics when the Lorentzian peak is exactly in resonance
with the energy difference between excitons 3 and 6 and
between excitons 5 and 7, which corresponds to ωH values
of 190.8 and 211.0 cm−1, respectively. We also examine the
dynamics in the case where no localized vibration exist, i.e.,
no peak (γ = 0). The resulting spectral density functions for
ωH in resonance with excitonic energy differences and with
no localized vibrational mode are shown in Fig. 3.

B. Fluctuational spectrum of Kreisbeck and Kramer

The vibronic component of the experimentally deter-
mined fluctuational spectrum of the FMO complex [24] was
parametrized by Kreisbeck, Kramer, and co-workers [46,47]

0 200 400 6000
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30

G
( ω

)  
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m
-1

]

ω  [cm-1]

ωH = 190.8 cm-1

ωH = 211.0 cm-1

γ = 0

FIG. 3. (Color online) Spectral density function of Adolphs and
Renger [Eq. (4)] with no localized vibrational mode (solid black line)
and for ωH in resonance with excitonic energy differences: ωH =
190.8 cm−1 (dashed red line) and ωH = 211.0 cm−1 (dash-dotted
blue line). γ = 1 cm−1 in both cases.
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TABLE I. Square of the eigenvector elements of the FMO Hamiltonian [Eq. (2)] in the exciton representation with exciton numeration in
ascending energy order. The negative sign (−) indicates that the corresponding eigenvector element is negative and the bold numbers indicate
the predominant site contribution to the excitonic state.

BChl 1 BChl 2 BChl 3 BChl 4 BChl 5 BChl 6 BChl 7

Exciton 1 (−)0.0019 (−)0.0108 0.8255 0.1485 0.0085 0.0002 0.0047
Exciton 2 0.0066 0.0029 (−)0.1418 0.5923 0.1057 (−)0.0086 0.1420
Exciton 3 0.6934 0.2745 0.0140 (−)0.0005 (−)0.0137 0.0034 0.0006
Exciton 4 (−)0.0011 (−)0.0140 0.0016 (−)0.0256 (−)0.2562 0.0014 0.7002
Exciton 5 0.0002 0.0138 0.0144 (−)0.2048 0.4314 (−)0.2181 0.1174
Exciton 6 0.2909 (−)0.6741 (−)0.0027 (−)0.0053 0.0226 0.0040 (−)0.0003
Exciton 7 0.0059 (−)0.0099 (−)0.0000 0.0231 (−)0.1618 (−)0.7644 (−)0.0348

using the Meier-Tannor decomposition [54] to represent
general spectral density functions as a sum of shifted Drude-
Lorentz peaks. The resulting spectral density function for the
FMO complex has the form

Gn(ω) =
n∑

k=1

[
νkλkω

ν2
k + (ω + �k)2 + νkλkω

ν2
k + (ω − �k)2

]
. (7)

Figure 4 shows the spectral density function in Eq. (7) with the
corresponding parameters listed in Table II. The experimental
spectral density is well approximated by the sum of 11 shifted
Drude-Lorentz peaks [n = 11 in Eq. (7)], reproducing the
low-frequency portion and taking into account all the strongly
coupled vibronic modes, which are visible as peaks in the
spectral density function. An alternative parametrization with
only three peaks [n = 3 in Eq. (7)] is also given.

C. Fluctuational spectrum of Aghtar et al.

As a third case, Aghtar et al. [25] have calculated
the spectral density function for the FMO complex from
molecular dynamics simulations. Their procedure [28], which
has been also used in other photosynthetic systems such as
the light-harvesting II complex [55], consists in ground-state
energy minimizations at different temperatures and normal
pressure, i.e., molecular dynamics simulations. The effects

0
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ω
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m
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n=3
n=11

100 300

FIG. 4. (Color online) Spectral density function of Kreisbeck and
Kramer for the FMO complex in the form of a sum of shifted Drude-
Lorentz peaks [Eq. (7)] with the parameters listed in Table II.

of thermal fluctuations on the energy transfer dynamics and
optical properties are accounted for by quantum chemistry
calculations of the excitation energies and the electronic
couplings along the molecular dynamics trajectories. For
this, they use Zerner’s intermediate neglect of differential
overlap method with parameters for spectroscopic properties
together with the configuration interaction scheme using single
excitations only (ZINDO/S-CIS). With this they calculate the
distribution of site energies for the individual BChls which
are used to determine their spatial and temporal correlations.
The time-dependent bath correlation function Cj (t) relates to
the spectral density function Gj (ω) of site j through

Gj (ω) = 2

π�
tanh

(
�ω

2kBT

) ∫ ∞

0
dt Cj (t) cos (ωt) . (8)

The spectral density function Gj (ω) describes the frequency-
dependent coupling of BChl j to the thermal environment
[25]. Molecular dynamics simulations allow one to include
the microscopic description of the solvent environment used
in the experimental measurements. Here, two specific cases are
considered: water as a solvent at 300 K and a glycerol:water
(65:35) mixture as a solvent at 310 K. The resulting site-
dependent spectral density functions Gj (ω) are shown in
Fig. 5.

III. MEASURE OF THE NON-MARKOVIANITY

In an open quantum system, the evolution of any two initial
states ρ1,2(0) is given by a family of trace-preserving and
completely positive quantum dynamical maps (t,0) such
that ρ1,2(t) = (t,0)ρ1,2(0). These two quantum states can be
distinguished in terms of the trace distance, which provides a
metric in the space of physical states [56]. The dynamical
change of the distinguishability of the states of an open
quantum system can be interpreted in terms of information
exchange between the system and its environment [56]. In a
Markovian process, there is an infinitesimally small correlation
time between the system and environment dynamics, which
leads to a monotonic flow of information from the system
to the environment. However, in a non-Markovian process the
long-lived correlations may generate a backflow of information
from the environment to the system and memory effects can
then occur. In order to quantify the degree of non-Markovianity
during the quantum evolution, several non-Markovianity mea-
surements have been proposed. The one used here is based
on physical features of the system-bath interaction, where the
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TABLE II. Parameters of the spectral density function [Eq. (7)]
derived by Kreisbeck and Kramer [46]. �k and λk are given in units
of cm−1 and ν−1

k is given in units of femtoseconds.

3 peaks �k 85 170 300
ν−1

k 250 120 65
λk 10 15 13

11 peaks �k 53 73 117 185 235 260 285 327 363 380 480
ν−1

k 1600 550 400 370 750 800 750 600 750 750 500
λk 1.2 6.4 7.4 15.6 3.4 1.8 4 2 1.8 1.9 2

backflow of information from the environment to the system is
quantified [35,57]. Other measurements, such as that proposed
in Ref. [36], are based on the mathematical properties of
the dynamical map that generates the quantum evolution.
In general, these measures yield different results [58–62].
However, any process that is non-Markovian according to
Ref. [35] is also non-Markovian according to Ref. [36], while
the converse is not always true. The reason for this is that the
conditions for information backflow are much more rigorous
than that for indivisibility. Therefore, information backflow
causes the indivisibility of the dynamics, but the reverse is not
always true [60–62].

The information exchange between the system and its
environment can be quantified through the dynamics of the
trace distance between a pair of quantum states ρ1 and ρ2 of
the open system, which is defined as [63]

D (ρ1,ρ2) = 1
2 tr |ρ1 − ρ2| , (9)

where |O| =
√

O†O. The trace distance can be interpreted as a
measure of the distinguishability of states ρ1 and ρ2, satisfying
0 � D � 1 [35]. For open quantum systems, the trace distance
of the states ρ1,2(t) [evolving under the dynamical map (t)] is
a monotonically decreasing function of time D (ρ1,ρ2) �
D (ρ1,ρ2), which means that the distinguishability of two states

water at 300K
glycerol:water 65:35 at 310K

BChl 4

6lhCB5lhCB

2lhCB1lhCB

BChl 3

BChl 7
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200
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FIG. 5. (Color online) Site-dependent spectral density functions
Gj (ω) of Aghtar et al. for the FMO complex as determined from
molecular dynamics simulations [25] with water as a solvent at
300 K (solid black line) and with a glycerol:water (65:35) mixture as
a solvent at 310 K (dashed blue line).

always decreases. In general, under a Markovian evolution,
any two initial states become less and less distinguishable
as time increases. This can be interpreted as an unidirectional
flow of information from the system to the environment, which
continuously reduces the possibility of distinguishing the given
states [35].

If the rate of change of the trace distance is defined as

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t),ρ2(t)), (10)

which depends on the specific initial states ρ1,2(0), a Marko-
vian evolution implies that σ � 0 for all quantum processes.
Conversely, a process is said to be non-Markovian if it
satisfies σ > 0. In the latter case, the distinguishability of
the pair of states increases at certain times by backflow
of information from the environment to the system. The
non-Markovianity measure [of the quantum process (t)]
quantifies the total increase of the distinguishability over the
whole time evolution, i.e., the total amount of information
which flows from the environment back to the system:

N () = max
ρ1,2(0)

∫
σ>0

σ (t,ρ1,2(0)) dt, (11)

where the time integration extends over all time intervals
(ai,bi) in which σ > 0, and the maximum is taken over all
pairs of initial states [35,57]. Therefore, N () represents a
functional of the family of dynamical maps (t) describing
the physical process [64].

The non-Markovianity measure N () has been used to
quantify non-Markovian effects during the quantum evolution
of driven systems [58], the spin-boson model [64], biomolec-
ular dimers [65], molecular charge qubits [66], initially
correlated system-bath models [67,68], and others [69–73].
Very recently,N () has been measured experimentally for the
polarization states of photons acting as system states, coupled
to the photon frequency modes acting as environmental states.
Non-Markovian dynamics has been induced by controlling
the initial state of the environment [37] or by modifying the
interaction between the system and the environment [38].
These results demonstrate that this particular measure provides
an experimentally accessible observable which quantifies
memory effects [56].

IV. NON-MARKOVIAN EFFECTS IN THE FMO COMPLEX

Here, non-Markovian effects in the exciton dynamics
of the FMO complex arising from the different models
presented in Sec. II are examined. All these models include
explicitly localized vibrational modes, which can, in principle,
induce strong non-Markovian behavior [27,50]. However, only
vibrational modes up to energies which are comparable to
the largest energy difference between the exciton states are
relevant [51].

In order to quantify the non-Markovianity of the quantum
evolution via Eq. (11), the explicit system dynamics is needed.
This is given by the time evolution of the reduced density
matrix ρ(t), which is obtained after tracing out the bath degrees
of freedom. Here, the reduced density matrix is calculated by
using the QUAPI scheme [74], which is a numerically exact
iteration scheme that has been successfully applied to many

062719-6



QUANTIFICATION OF NON-MARKOVIAN EFFECTS IN . . . PHYSICAL REVIEW E 88, 062719 (2013)

problems of open quantum systems. In particular, it allows one
to treat nearly arbitrary spectral functions at finite temperatures
[14,23,66,75–77].

The non-Markovianity quantifier, Eq. (11), is calculated by
a maximization procedure over all pairs of initial states [35,57].
It has been shown [59] that often this maximization can be
removed without influencing the sensibility of the measure in
finite-dimensional physical systems, which usually can only be
prepared in specific initial states as is the case for the particular
chromophores of photosynthetic complexes [14,65]. In the
case of the FMO complex, these initial states are ρ1(0) = ρ11

and ρ2(0) = ρ66, corresponding to the BChl 1 and BChl 6
sites (see Fig. 2), which are oriented toward the peripheral
chlorosome [14,39,42,53].

Using this argument and Eq. (10) allow us to write the
non-Markovianity measurement in the form

N =
∑

i

[D(ρ1(bi),ρ2(bi)) − D(ρ1(ai),ρ2(ai))] , (12)

with the sum running over all time intervals (ai,bi) during
which the trace distance increases, thus integrating over all
time spans of growing distinguishability.

A. Non-Markovianity in the Adolphs-Renger model

The evolution of the trace distance [Eq. (9)] for the spectral
density function derived by Adolphs and Renger [Eq. (4)]
in the absence of any localized vibrational mode (γ = 0) is
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FIG. 6. (Color online) Time evolution of the trace distance
[Eq. (9)] for the spectral density function derived by Adolphs and
Renger [Eq. (4)] in the absence of any localized vibrational mode
(γ = 0).

shown in Fig. 6. We observe that the trace distance decays
faster at higher temperatures and this decay is monotonic,
indicating a unidirectional flow of information from the system
to the environment, rendering the dynamics Markovian. The
same kind of dynamics is observed for different positions ωH

and widths γ of the Lorentzian peak in Eq. (4), as seen in
Fig. 7. Because there is no time interval over which the trace

0300
90012001500

0.2
0.4

0.6
0.8

1.0

0

0.5

1

time [fs]
γ [cm-1]

D
(ρ

1,ρ
2)

0

1

600

0300
90012001500

0.2
0.4

0.6
0.8

1.0

0

0.5

1

time [fs]
γ [cm-1]

D
(ρ

1,ρ
2)

0

1

600

0300
90012001500

0.2
0.4

0.6
0.8

1.0

0

0.5

1

time [fs]
γ [cm-1]

D
(ρ

1,ρ
2)

0

1

600

0300
90012001500

0.2
0.4

0.6
0.8

1.0

0

0.5

1

time [fs]
γ [cm-1]

D
(ρ

1,ρ
2)

0

1

600

0300
90012001500

0.2
0.4

0.6
0.8

1.0

0

0.5

1

time [fs]
γ [cm-1]

D
(ρ

1,ρ
2)

0

1

600

0300
90012001500

0.2
0.4

0.6
0.8

1.0

0

0.5

1

time [fs]
γ [cm-1]

D
( ρ

1,ρ
2)

0

1

600

(a)

(c)

(b)

T = 300 KT = 77 K

FIG. 7. (Color online) Time evolution of the trace distance [Eq. (9)] for the spectral density function derived by Adolphs and Renger
[Eq. (4)] as a function of the width γ of the Lorentzian peak centered at (a) 180, (b) 190.8, and (c) 211.0 cm−1. Left and right columns
correspond to temperatures of 77 and 300 K, respectively.
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distance increases, we obtain N = 0 for all cases shown in
Figs. 6 and 7. Our results indicate that the presence of a single
localized vibrational mode in the bath spectral density does
not induce any non-Markovian effect in the exciton dynamics
of the FMO complex, even in the case when its frequency is
exactly in resonance with exciton transitions. The broadening
of the vibrational mode over a larger range of γ values (not
shown) seems to have a negligible effect on the dynamics. This
can be explained by observing that the continuous background
spectrum g0(ω) in Eq. (4) is rather large (see Figs. 1 and 3),
which results in linewidths for the exciton transitions already
exceeding the width of the Lorentzian peak. In such a case, the
Lorentzian peak becomes effectively smeared out and detailed
results depend only weakly on its width γ and position ωH .
This, in turn, would suppress any non-Markovian behavior too,
as observed in Fig. 7.

B. Non-Markovianity in the Kreisbeck-Kramer model

Figure 8 shows the time-dependent trace distance [Eq. (9)]
for the spectral density derived by Kreisbeck and Kramer
[Eq. (7)] with n = 3 and n = 11. As before, at room tempera-
ture, we observe a faster monotonic decay of the trace distance
as compared to the decay at cryogenic temperature. This decay
is faster for n = 11 than for n = 3 due to the faster increase
of the spectral weight of low-frequency modes in the former
case (see Fig. 4). We obtain N = 0 for all the examined cases.
These results allow us to conclude that, in spite of the role
played by localized vibrational modes in the coherence times
(not shown), they do not induce any non-Markovian effects in
the exciton dynamics of the FMO complex.

C. Non-Markovianity in the Aghtar et al. model

The evolution of the trace distance [Eq. (9)] for the spectral
density function derived by Aghtar et al. [25] [Eq. (8)]
from molecular dynamics simulations is shown in Fig. 9.
In both cases, we observe a similar monotonic decay of the
trace distance, which again indicates a Markovian dynamics
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FIG. 8. (Color online) Time evolution of the trace distance
[Eq. (9)] for the spectral density derived by Kreisbeck and Kramer
[Eq. (7)] with n = 3 (thin black lines) and n = 11 (thick red lines) at
77 K (solid lines) and 300 K (dashed lines).
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FIG. 9. (Color online) Time evolution of the trace distance
[Eq. (9)] for the spectral density derived by Aghtar et al. [Eq. (8)] with
water as a solvent at 300 K (solid black line) and with a glycerol:water
(65:35) mixture as a solvent at 310 K (dashed blue line).

(N = 0). The fact that the trace distance at 300 K decays
faster than the case at 310 K is because the spectral weight
at low frequencies for water as a solvent is larger than for the
glycerol:water (65:35) mixture as a solvent (see Fig. 5). This
allows us to rule out the possibility of non-Markovian effects
arising from microscopic details of the polar environment.

V. CONCLUSIONS

We have investigated possible non-Markovian effects in
the excitation energy transfer dynamics of the FMO complex
by using the numerically exact QUAPI scheme. The BChl
system is described according to experimental results and the
fluctuating pigment-protein-solvent environment is described
by known spectral functions, which are obtained either from
experimental data or from molecular dynamics simulations
(Sec. II). All spectral density functions exhibit a nontrivial
structure with several peaks attributed to vibrational modes of
the pigment-protein complex, which are explicitly included
as part of the environment. The spectral density functions
derived by Adolphs and Renger [42], Eq. (4), and by Kreisbeck
and Kramer [46], Eq. (7), include, respectively, a single and
several localized vibrational modes. On the other hand, the
site-dependent spectral density functions derived by Aghtar
et al. [25], Eq. (8), include the specific microscopic details of
the polar environment.

We have quantified the non-Markovian effects during the
excitation transfer dynamics by means of a non-Markovianity
measure based on the trace distance of two quantum states
(Sec. IV). By evaluating the time evolution of the trace
distance, we found that the presence of localized vibrational
modes does not induce any non-Markovian effects in the
exciton dynamics of the FMO complex. When considering
a single mode in the bath spectral density (Sec. IV A), we
found that neither its position nor its width induce any
non-Markovian exciton dynamics, even in the case when its
frequency is exactly in resonance with exciton transitions.
These effects do not arise when several localized vibrational
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modes are included (Sec. IV B) nor from the microscopic
details of the polar environment (Sec. IV C).

Our results indicate that the excitation energy transfer
dynamics of the FMO complex follows a Markovian dynamics.
Similarly, it has been shown that the excitation energy transfer
efficiency does not depend on the presence of non-Markovian
effects [78]. The discrete vibrational modes within the en-
vironmental fluctuation spectra do not render the dynamics
non-Markovian since the continuous phonon contribution of
the fluctuation spectra results already in large linewidths for
the exciton transitions. Hence, each exciton transition overlaps
with the vibrational mode spectral peak, thus suppressing
non-Markovian effects. The resulting Markovian dynamics is
still not describable by weak system-bath coupling approaches

[12]. However, our results show that Markovian quantum
master equations could be used to discuss the dynamics,
or the transfer efficiency, if the rate tensor is either treated
as an effective fitting parameter or obtained from some
more involved theory approach. Our results therefore will
help to considerably simplify the numerical effort in future
investigations, and thus larger light-harvesting complexes will
be treatable.
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