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Dendritic signal transmission induced by intracellular charge inhomogeneities
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Signal propagation in neuronal dendrites represents the basis for interneuron communication and information
processing in the brain. Here we take into account charge inhomogeneities arising in the vicinity of ion channels
in cytoplasm and obtain a modified cable equation. We show that charge inhomogeneities acting on a millisecond
time scale can lead to the appearance of propagating waves with wavelengths of hundreds of micrometers. They
correspond to a certain frequency band predicting the appearance of resonant properties in brain neuron signaling.
We also show that membrane potential in spiny dendrites obeys the modified cable equation suggesting a crucial
role of the spines in dendritic subthreshold resonance.
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I. INTRODUCTION

Cable theory is one of the foundations of bioelectrical
signal transmission in nerve tissues [1–4]. It describes the
propagation of membrane potential in passive neurites, par-
ticularly, in the dendrites where the concentration of active
ion channels is not sufficient enough to enable stable action
potential propagation. One of the earliest predictions of the
cable theory was exponential attenuation of postsynaptic
potentials with distance [2]. However, recent experimental
findings have suggested that distally located synaptic inputs
can also influence the somatic membrane potential [5].

In neuroscience, many findings have suggested that signal
propagation in the dendritic tree may implement simple
information processing functions at the level of a single neuron
[6]. Recently, it has been pointed out that dendrites may
play a significant role in neuronal computation beyond the
summation of attenuating local inputs. Specifically, Remme
et al. [7] have theoretically shown that ongoing dendritic
oscillations may effectively control the somatic firing rate. The
reported resonant and oscillatory properties of the dendrites
were typically associated with the presence of active channels
in the dendrites sustaining the propagation [7,8].

The cable equation can be derived by constructing an equiv-
alent electrical circuit with elements describing the electrical
properties of dendrites [2]. However, it does not take into
account inhomogeneous distributions of ion concentrations
within dendrites. To overcome this, Qian and Sejnowski [9]
modified the cable equation using the Nernst-Planck equation
describing electrodiffusive motion of ions. For spiny dendrites,
several modifications of the cable model were introduced
to account for the influence of the spines on the electrical
characteristics of the cable and anomalously slow diffusion
of ions [10–12] as well as active wave propagation [13,14].
Several authors used the Maxwell’s equations to generalize
the cable equation and account for the (linear as well as
nonlinear) charge accumulation nearby endogenous structures
of the dendrites [15–17]. Bédard and Destexhe [18] considered
nonideal properties of the membrane as a capacitor arising
from the noninstantaneous motion of ions within the dendrites.

In this paper, we show how charge inhomogeneities in the
intracellular space can influence passive signal propagation
in dendrites. In particular, we show that the existence of

excess charge areas in the vicinity of ion channels can lead to
formation of traveling waves propagating over distances larger
than diffusion lengths of nontraveling solutions predicted
by the classical cable theory. We also show that the same
effects arise in the model of a passive spiny dendrite, which
may also influence the initiation of active saltatory waves
in dendrites [13]. The existence of traveling wave solutions
ensures frequency selectivity and resonances in dendrites.
Resonant properties represent an important feature of neural
systems associated with information processing [19,20]. Neu-
ral resonances and oscillations have been typically associated
with active voltage-gated ion channels [21–25]. We show that
in addition to that charge inhomogeneities as well as dendritic
spines may lead to resonant properties in passive dendrites.

II. MODIFIED CABLE EQUATION

First, let us consider how charge inhomogeneities can be
accounted in cable theory. When charge carriers move in and
out of the ion channel they create regions of excess charge
in the vicinity of the channel. In this area the potential is
higher than in the surrounding medium [26]. Existence of the
overpotential near the channel pore leads to the increase of
the total local potential over the channel. The area of excess
charge can be described as a volume within some closed
surface E covering the channel pore (Fig. 1). Therefore, the
rate of change of the excess charge is defined by the difference
between the transchannel current and the relaxation current:

dQe

dt
= Ie − Ich. (1)

The overpotential near the channel end is described by a
smooth function Ve(x,t). The total potential over the channel
is thus Vtot = Vm + Ve. The transchannel current is linearly
related to the transchannel potential Ich = GchVtot ≈ GchVm,
where Gch is the conductivity of the single channel. We
suppose that the excess charge relaxes with characteristic
time τρ : Ie = −Qe/τρ . This time constant τρ (often called
the Maxwell-Wagner time constant [18]) may be estimated by
applying the Gauss’ law to the surface E. The lateral current
density is determined by J = σE + ∂D/∂t (where E is the
electric field, D is the displacement field, σ is the conductivity
of the solution). Then, the value of τρ is given by τρ = 2ε/σ ,
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FIG. 1. (Color online) Formation of excess charge regions in the
vicinity of ion channels (not to scale). Modified from [28].

where ε is the permittivity of the solution. One can estimate
τρ � 1 ms, therefore the excess charge within a passive cable
relaxes at the millisecond or submillisecond time scale. It is
faster than time scales typically associated with membrane
dynamics [27]. For the extracellular medium (physiological
saline) this time constant is approximately 10−10 s, which
is much smaller than the same time constant on the inner
surface of the membrane. Therefore, the effects of the charge
inhomogeneities in the extracellular medium can be neglected.

In the first approximation, the excess charge is linearly
related to the overpotential, e.g., Qe = CmKeVe, where Ke

is the so-called channel density factor, Cm is the membrane
capacitance.

Combining these assumptions we get the equation for
overpotential dynamics:

∂Ve(x,t)

∂t
= −Ve

τρ

− Gch

CmKe

Vm. (2)

Next we apply a set of common assumptions typically used in
cable theory. In particular, we suppose the electric field to be
polarized only in the longitudinal direction E(r,t) = E(x,t)x0.
Pickard [29] showed that the magnetic field is negligible
compared to the electric field in neurons due to the slow
motion of charges in the intracellular medium. Hence, the
electric field can be described by a scalar potential Vm(x,t), and
E(x,t) = −∂Vm(x,t)/∂x. It is assumed that the extracellular
medium can be lumped into a single isopotential compartment.
The intracellular medium is treated as homogeneous with
constant conductivity and the dendritic segment as being a
cylinder with radius r . To get the equation for the membrane
voltage, the continuity equation is applied:

πr2 ∂J (x,t)

∂x
+ 2πrIcap(x,t) + dchIe(x,t) = 0.

Here Ie(x,t) is the current flowing through each excess
charge area with coordinate x at time t , dch is the ion
channel density per unit length, Icap is the capacitive current
density per unit length. The total area of the channels within
the cable segment is negligible compared to the segments’
area (rm � rc). Defining ri = σ/πr2 and icap = 2πrIcap

we find

1

ri

∂2Vm(x,t)

∂x2
= cm

∂Vm

∂t
− dchCmKe

τρ

Ve. (3)

Combining Eqs. (2) and (3) and noticing that dchGch = gch is
the membrane conductivity per unit length, we may introduce
the membrane time constant, τm = cm/gch, and the membrane
length constant, λ = (

√
gchri)−1. In terms of dimensionless

variables X = x/λ and T = t/τm we can write the generalized
cable equation in the following form:

∂V

∂T
+ V = ∂2V

∂X2
+ γ

(
∂3V

∂T ∂X2
− ∂2V

∂T 2

)
, (4)

where γ = τρ/τm � 1 is a small parameter. Note that Eq. (4)
explicitly contains the wave operator �= γ ∂2/∂T 2−∂2/∂X2.

A similar equation arises if one considers a model of a
passive spiny dendrite [13]. Assume that spines are evenly
distributed across the dendrite’s length and let U (x,t) denote
the membrane potential of the spine head. The current from
the spines to the dendrite is included by adding the term
(U − V )λ2riρ/r to the classical cable equation (where ρ is the
spine density per unit length, r is the spine stem resistance).
The spine head potential evolves according to

Ĉ
∂U

∂t
= −U

r̂
+ V − U

r
,

where Ĉ and r̂ are the capacitance and resistance of the spine
head. Combining the equation for U and the cable equation
we get Eq. (4) where γ = τsp/τm is the ratio of the time
constants of dendritic and spine head membranes, and the
terms proportional to V and ∂T V are multiplied by factors
1 + λ2riρ/r(1 + r̂r) and 1 + γ λ2riρ/r , respectively. In this
model, γ is no longer a small parameter (for instance, γ = 1
when the dendritic and spine head membranes have the same
properties). This model qualitatively produces the same effects
as the model given by Eq. (4), so we will focus on the analysis
of Eq. (4).

III. DISPERTION RELATION IN DENDRITES

Performing the Laplace transform of V (X,T ) in both space
and time we can write

V̂ (k,ω) =
∫ +∞

−∞

∫ +∞

0
V (X,T ) exp(iωT − ikX)dXdT .

Substituting it into Eq. (4) we can express the dispertion
relation in the following form:

1 + iω = −k2 − iγ k2ω + γω2. (5)

For the case of charge relaxation, an estimate from the
Maxwell’s equations for typical biophysical parameters of
dendrites gives the value of γ of about 10−3. Note, however,
that larger values of γ can be also considered when finite
velocity of charge carriers is taken into account. Bédard
and Destexhe [18] phenomenologically modified the cable
equation to account for additional factors giving rise to inertia
in ion movement, such as friction due to complex molecular
structures attached to the membrane. If we consider these
effects of charge rearrangement with finite velocity for the
charge layer evenly covering the membrane, our model will
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FIG. 2. Dispertion curves of the modified cable equation. Shown
are the (a) real and (b) imaginary parts of ω (in units of 1/τm) for real
k (in units of 1/λ) and γ = 0.3. Traveling waves exist in a specific
frequency range due to nonlinear dispertion in dendrites.

turn into the one obtained in [18]. Bédard and Destexhe
have shown that the value of γ = 0.3 gave the best fitting
to the power spectral density of intracellular recordings of
background synaptic activity. These results suggest to consider
larger values of charge relaxation times up to the millisecond
range. We thus take γ = 0.3 in a numerical illustration.

Solutions of Eq. (5) for real wave numbers k and γ = 0.3
are presented in Fig. 2. The main difference from the classical
cable model is the emergence of interesting solutions with
Reω �= 0. This means that for a certain range of frequencies
there exist traveling waves which decay with characteristic
time given by 1/Imω. Note that for the value of γ = 0.3 the
real part of ω is nonzero as k → 0, which means that the
phase velocity of the wave tends to infinity. Let ω = ω′ + iω′′
(ω′,ω′′ ∈ R). The interval of wave numbers where ω′ �= 0 is
given by

k∗ =
√

1 − 2
√

γ√
γ

< k < k∗ =
√

1 + 2
√

γ√
γ

, γ < 0.25,

k∗ = 0 < k < k∗ =
√

1 + 2
√

γ√
γ

, γ > 0.25.

These conditions define the oscillatory zone, the size of which
is equal to �k = k∗ − k∗ = 2 + O(

√
γ ). If k belongs to the

oscillatory zone, the frequency ω is given by

ω′′ = 1

2γ
+ k2

2
, γω′2 = − 1

4γ
(1 − γ k2)2 + 1,

which implies that in the oscillatory zone the frequency ω′
varies from 0 to ω′

max = 1/
√

γ . Outside the oscillatory zone

FIG. 3. Comparison of propagation distances for the standard and
modified cable models. Shown are the propagation distances Lprop

of traveling wave solutions (solid line) and standard cable model
solutions (dotted line) in length constants λ vs signal frequency
(in Hz). The grey area shows the resonant zone, in which the
traveling waves propagate over larger distances than cable model
solutions. Propagation distance of cable model solutions is given
by Lcab = (Im

√−1 − iω′)−1. The membrane time constant is set to
τm = 5 ms.

we have the following two solutions:

ω′′
± = 1

2γ

(
(1 + γ k2) ±

√
(1 − γ k2)2 − 4γ

)
.

For traveling wave solutions the effective propagation distance,
e.g., the distance at which the signal amplitude decreases by
a factor 1/e, is Lprop = (1/k)Reω/Imω. The dependence of
Lprop on the signal frequency is presented in Fig. 3. It illustrates
that for γ > 0.25 there exist a range of frequencies defining
the resonant zone (25–35 Hz for τm = 5 ms and γ = 0.3,
4–6 Hz for τm = 30 ms and γ = 0.3), where the traveling waves
propagate over larger distances than the “diffusing” solutions
of the classical cable model (dotted curve in Fig. 3). Moreover,
there is a resonant frequency given by fcr = √

4γ − 1/4πγ τm

(Fig. 4) for which the propagation distance theoretically tends
to infinity as

Lprop ∼ ω′√γ√
ωcr (ω′ − ωcr )

.

IV. FINITE DENDRITE CASE

Next, we consider a finite dendrite of electrotonic length L.
Suppose that on the left end of the dendrite (X = 0) there is a
voltage oscillation with the frequency ω′. It is formulated by
the following boundary conditions:

V |X=0 = Vω exp(iω′T ),
∂V

∂X

∣∣∣∣
X=L

= IL(T ),

where the frequency ω′ is taken so that the traveling wave
solutions may exist, and IL(T ) is an arbitrary function. Let
V∼(X,T ) denote a traveling wave solution of Eq. (4). Any
solution of the standard cable equation V0(X,T ) will also be
an approximate solution to the generalized cable equation for

062718-3



IVAN A. LAZAREVICH AND VICTOR B. KAZANTSEV PHYSICAL REVIEW E 88, 062718 (2013)

FIG. 4. Resonant frequency fcr (in Hz) vs dimensionless parame-
ter γ for three different values of the membrane time constant τm = 5
ms (top), 10 ms, and 30 ms.

small γ :

γ

∣∣∣∣
(

∂3V0

∂T ∂X2
− ∂2V0

∂T 2

)∣∣∣∣ = γ

∣∣∣∣∂V0

∂T

∣∣∣∣ �
∣∣∣∣∂V0

∂T

∣∣∣∣ .
Consider the superposition of the solutions V (X,T ) = V∼ +
V0 which will also be a solution to Eq. (4) as long as
Eq. (4) is linear. We may then write the boundary conditions
for the unknown function V0(X,T ) and also set V0(X,0) =
−V∼(X,0). Thus, the function V0(X,T ) is now uniquely
defined by one initial and two boundary conditions. Rewriting
the cable equation for V0(X,T ) in terms of V (X,T ) we find

V + ∂V

∂T
= ∂2V

∂X2
+ ϕ(ω)V∼, (6)

where ϕ(ω′) = k2 + i(ω′ + iω′′) + 1. Thus, for a set of so-
lutions with particular initial conditions, Eq. (4) is reduced
to the standard cable equation with a definite source term.
The quantity Ieff = −ϕgchV∼ can be interpreted as an ef-
fective membrane current density arising due to oscillatory
properties of the dendritic tissue. Let us consider the zero
initial condition, V (X,0) = 0. Matching the initial condition
for VT with the boundary conditions we find A = iω′Vω/ϕ

and −ikϕA exp(−ikL) = IL
T (T = 0), which for small k � 1

implies |IL
T (T = 0)| � 1. In case of a sealed end [IL(T ) = 0,

and assuming A ∈ R] one can obtain the following constraint
on k to satisfy ReIL

T (0) = 0:

kL = Argϕ(k) + πn, n ∈ Z, (7)

which is a transcendental characteristic equation determining
the possible wave numbers k(L). Depending on the length
of the dendrite, L, solutions of (7) ensure the existence of

FIG. 5. Solutions, k (in 1/λ), of the characteristic equation (7)
for L = 4, γ = 0.3. The function Argϕ(k) is plotted in circles and
kL + πn is plotted in solid lines.

several wave modes with wavelengths λi,i = 1,2, . . . ,M(L)
(Fig. 5).

V. CONCLUSION

To summarize our results, we have derived a modified
cable equation taking into account the finite velocity of charge
carriers within the intracellular dendritic space. The model
accounts for the excess charge regions in the vicinity of
intracellular structures such as ion channels of the neuron
membrane. The modified equation represents a linear cable
equation with additional terms arising due to the overpotential
induced by the inhomogeneous distribution of charge carriers
in the dendrites. If the time of charge relaxation or the spine
head time constant exceeds a certain threshold, our model
predicts the existence of a resonance frequency band for which
electrical oscillations observed in dendrites may propagate
as traveling waves with relatively large wavelengths (several
length constants, i.e., hundreds of micrometers). The critical
resonant frequency depends only on the membrane time
constant and on the characteristic time of charge relaxation (or
the spine head time constant). In particular, it does not depend
on the radius of the dendritic segment. Our results also suggest
that purely passive dendrites may exhibit resonant properties
typically associated with the presence of active ion channels.
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