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We investigate the electrostatic contribution to the lipid membrane mechanical parameters: tension, bending
rigidity, spontaneous curvature, and flexocoefficient, using an approach where stress in the membrane is explicitly
balanced. Our model includes an applied electrostatic potential as well as a charge distribution in the membrane.
We apply our theory to membranes having surface charges and electric dipoles at the surface.
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I. INTRODUCTION

In nature various molecules have different charge distribu-
tions. For example, the main constituent of the membrane, the
lipids, can carry an effective charge, and even if they are not
charged the lipid head groups often carry a net dipole moment
[1]. In cells and artificial vesicles various proteins can be
included which can also bear charges or dipole moments. The
membrane can then have a very complex charge distribution.
These charge distributions will interact among themselves
and with the charges in the surrounding bulk fluids possibly
creating an osmotic pressure. Cells in particular often bear a
negative charge on the cytoplasmic side of the membrane as
well as maintaining a potential difference between the two
sides of the membrane [2,3].

A number of papers have treated various electrostatic
properties of the membrane including bending moduli [4–10],
free-energy contributions [7,11–14], interactions of the mem-
brane with macroions [15], and possible domain formation in
charged lipid membranes [16]. In this rich literature, however,
the electrostatic contribution to the membrane elastic param-
eters is usually calculated numerically and the few works that
do give analytical expressions do so for a specific symmetrical
charge distribution and/or an electrically decoupled bilayer.
The aim of this paper is hence to perform an analytical
calculation of the electrostatic contribution to the tension,
bending rigidity, and spontaneous curvature for a more general
charge distribution and including the possibility of a membrane
potential. Furthermore, we explicitly take into consideration
the local balancing of mechanical force in the membrane. In
doing so we expand on the work of [5], where this was done
globally. From the expression of the spontaneous curvature we
will deduce an expression for the membrane flexocoefficient.

We are interested in how the electrostatic interactions
renormalize the membrane mechanical parameters. In order
to describe the mechanical properties of the membrane we
will use the well-known Helfrich effective Hamiltonian [17]

H =
∫

dA

(
κb

2
(2H − C0)2 + κGK + σ

)
, (1)

where H is the local mean curvature, K is the local Gaussian
curvature, and the integral is over the membrane area. κb

is the bending rigidity. It measures the energy cost of
bending the membrane around its preferred curvature C0

also called spontaneous curvature. Lastly, σ is the tension
of the membrane, which can also be seen as minus the lateral
pressure in the membrane. We will not be concerned with the
electrostatic contribution to the Gaussian bending constant,
κG, since we assume that the membrane does not change
its topology so that the integral over the membrane area of
the local Gaussian curvature does not change (Gauss-Bonnet
theorem).

Our approach explicitly takes into account the electrical
coupling between the two sides of the membrane by explicitly
solving Poisson’s equation in the membrane. We also include
the possibility of having a charge distribution in the membrane
as this could give a significant contribution to the stress and
force in the membrane due to the low dielectric permittivity
of the membrane region. We are interested in the membrane
equilibrium properties and as such we have to make sure
that there is no excess force in the system due to the charge
distribution we introduced; we will therefore assume that the
normal electrostatic stress in the whole system is balanced by
a local pressure in the membrane and the surrounding bulk
fluids [18]. Note that the membrane could very well change its
thickness in response to a change of normal stress but we will
not consider this possibility here. The carbon tails of the lipids
actually account for most of the dielectric permittivity inside
the membrane; it is on the order of 2ε0. We will therefore model
the membrane as a dielectric slab of permittivity εm ≈ 2ε0

surrounded by two dielectrics media with the permittivity of
water ε ≈ 80ε0. In the region corresponding to the water we
will include free ions and we will assume them to be distributed
according to the Poisson-Boltzmann theory such that the
chemical potential change due to the electrostatic potential
is exactly compensated by the change due to the gradient of
the concentration of the charged species (taken as an ideal
solution). In particular, we will take the linearized form of the
Poisson-Boltzmann equation, the Debye-Hückel equation.

In Sec. II we set up and solve the model we sketched
in this Introduction and we then calculate the equilibrium
stress for a flat membrane as well as the restoring force on
a slightly bent membrane. In Sec. III we give the expressions
for the electrostatic contributions to the tension, spontaneous
curvature, and bending rigidity in terms of integrals of the
charge distribution in the membrane. We compare our results to
the literature in Sec. IV, where we also give order of magnitude
estimates. We finally conclude this work in Sec. V.
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FIG. 1. Theoretical model: An infinite flat membrane (region 2)
with a fixed charge distribution and a dielectric permittivity εm is
embedded between two symmetrical bulk fluids of permittivity ε

(regions 1 and 3) containing free Boltzmann distributed charges (see
text).

II. THEORY

We will first set up the equations for an infinite planar
membrane with an internal density of charge which is uniform
in the lateral direction but unspecified in the transverse
direction. We will present the potential in all space for this
setup. We will then calculate the equilibrium stress through
the whole system, including the interior of the membrane. We
will then proceed to calculate the restoring force for a slightly
deformed membrane.

A. Electrostatic potential of a flat membrane

The situation we consider is summarized in Fig. 1. We
model the membrane as a dielectric slab of finite thickness
2d and of dielectric permittivity εm. The membrane is normal
to the z axis of a Cartesian coordinate system (x,y,z) with
its center located at z = 0. The membrane contains a charge
distribution coming from its different constituents, e.g., the
lipid polar head groups or some charged proteins. The
charge distribution in the interior of the membrane, ρm(z),
is considered fixed and uniform on the lateral directions x

and y as if the charge distribution had been averaged in these
directions. The membrane is embedded in a fluid of dielectric
permittivity ε, e.g., water, which contains ions. The distribution
of the ions outside the membrane depends on the electric field
created by the charge inside the membrane as well as a possible
applied potential difference, Vm, between the two sides of the
membrane. We label the three regions of the system as region
1 (z < −d) and region 3 (z > d) for the bulk fluid regions and
region 2 (−d < z < d) for the membrane region.

The bulk fluid regions contain free Boltzmann distributed
ions. The charge distributions in the bulk fluids read [19]

ργ (z) =
∑

i

qiciexp
( − βqi

[
φγ (z) − φ0

γ

])
, (2)

where the γ = 1 or 3 indicate the region considered, qi and ci

are the charge and overall concentration of ionic species i in
the solution, the ci are taken to be identical in both bulk fluid
regions, φγ (z) is the potential in the region γ , φ0

γ is the potential

at infinity in the given region, and β = 1/(kBT ), with kB the
Boltzmann constant and T the temperature. The equation that
we have to solve in the bulk fluid regions is Poisson’s equation

ε
φγ = −ργ , (3)

where 
 is the Laplacian. If we use Eq. (2) directly in Eq. (3)
we get the Poisson-Boltzmann equation [20–22]. However, we
will assume the linear limit of this equation where the term in
the exponential of Eq. (2) is small. The resulting equation is
called the Debye-Hückel equation [23,24]. It reads

∂2φγ

∂z2
= κ2

D

(
φγ − φ0

γ

)
, γ = 1,3, (4)

where κD is the inverse Debye screening length for the two
bulk fluids and is defined as

κ2
D = β

ε

∑
i

[qi]2ci . (5)

In the membrane we have the charge distribution ρm(z) that
depends on the z coordinate but is laterally uniform. The
equation satisfied by the potential φ2 in the membrane is then

εm
∂2φ2

∂z2
= −ρm(z), (6)

which is just Poisson’s equation. The equation for the potential
Eqs. (4) and (6) must be supplemented by boundary conditions
[25,26]: the continuity of the potential at the dielectric
interfaces

φ1(−d) = φ2(−d), (7a)

φ3(d) = φ2(d), (7b)

and the continuity of the normal component of the electric
displacement field

ε
∂φ1

∂z

∣∣∣∣
z=−d

= εm
∂φ2

∂z

∣∣∣∣
z=−d

, (8a)

ε
∂φ3

∂z

∣∣∣∣
z=d

= εm
∂φ2

∂z

∣∣∣∣
z=d

. (8b)

Finally, we need the boundary conditions at infinity. We choose

φ1(−∞) = Vm

2
= φ0

1 and φ3(+∞) = −Vm

2
= φ0

2 , (9)

where Vm is the potential difference between the two sides of
our system.

We will now write down the solution for the equations,
Eqs. (4) and (6), using the boundary conditions, Eqs. (7), (8),
and (9).

The solutions for the potential in the regions 1 and 3 are

φ1(z) = A1e
κD(z+d) + Vm

2
, (10a)

φ3(z) = A3e
−κD(z−d) − Vm

2
, (10b)
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where the Aγ are integration constants. They read

A1 = 1

2εκD
M0 − 1

2

M1

εκDd + εm
− εm

εκDd + εm

Vm

2
, (11)

A3 = 1

2εκD
M0 + 1

2

M1

εκDd + εm
+ εm

εκDd + εm

Vm

2
, (12)

where we have introduced the moments of the charge distri-
bution inside the membrane

Mn ≡
∫ d

−d

znρm(z)dz. (13)

Equations (10) give the solutions for the potential in the bulk
fluid regions as a function of the membrane charge distribution
and the applied potential. We note that the solutions in the
bulk fluids depend only on the first two moments of the
charge distribution inside the membrane (and the applied
potential). This means that the solutions in the bulk fluids
are insensitive to the details of the charge distribution in the
membrane as expected from Gauss law. They are sensitive only
to the membrane total charge (M0) and its (electrical) dipole
moment (M1).

Inside the membrane the potential reads

φ2(z) = M0
εκDd + εm

2εmεκD
+ M1

1

2εm
− 1

εm

∫ d

z

z′ρm(z′)dz′

+ z

(
− κD

ε

εm
A3 + 1

εm

∫ d

z

ρm(z′)dz′
)

. (14)

The expression for the potential in the membrane depends on
the details of the charge distribution inside the membrane. For
an arbitrary charge distribution it cannot be expressed as a
function of the first few moments of the charge distribution
only. Hence the remaining integrals in Eq. (14).

B. Equilibrium stress

We first establish the conditions for the membrane to be
in mechanical equilibrium. In order to do so we introduce the
total force per unit volume acting at any point in the system,
f̃ el(x,y,z). In the following we will take the convention that
the tilde denotes a force per unit volume and a force without
the tilde denotes a force per unit area. The total stress tensor
of the system is related to f̃ el as

f̃ el(x,y,z) = ∇ · Teq(x,y,z), (15)

where Teq is the total equilibrium stress tensor of the system.
Its components are

Teq,ij (x,y,z) = �(−z − d)T1,ij + �(z − d)T3,ij

+ [�(z + d) − �(z − d)]T2,ij , (16)

where

�(z) =
{

0 if z < 0,

1 if z � 0
(17)

is the Heaviside step function and Tγ,ij are the ij component
of the stress tensor of region γ . Using Eq. (16) in Eq. (15)

we get

( f̃ el)i = ∂jTeq,ij = ∂jT1,ij�(−z − d) + ∂jT3,ij�(z − d)

+ ∂jT2,ij [�(z + d) − �(z − d)]

+ (T2,iz − T1,iz)δ(z + d) + (T3,iz − T2,iz)δ(z − d),

(18)

where a summation over repeated subscripts is implied. The
equilibrium condition f̃ el = 0 then implies the conservation
of stress in all regions γ of the system ∂jTγ,ij = 0 and the
balance of the force at the boundaries of the membrane

( f 1,2)i ≡ T2,iz(x,y, − d) − T1,iz(x,y, − d) = 0 (19)

and

( f 2,3)i ≡ T3,iz(x,y,d) − T2,iz(x,y,d) = 0. (20)

Note that f 1,2 and f 2,3 have the unit of force per unit area.
We will use these equations in the following in order to derive
the equilibrium stress tensor:

Tγ,ij = T Maxwell
γ,ij + T

pressure
γ,ij . (21)

T Maxwell
γ,ij is the electrical stress in region γ and can be calculated

from the potential of region γ as

T Maxwell
γ,ij = εγ

(
∂iφγ ∂jφγ − 1

2
δij

∑
k

∂kφγ ∂kφγ

)
, (22)

where we assumed ε1 = ε3 = ε and ε2 = εm.
T

pressure
γ,ij (x,y,z) ≡ −δijpγ (x,y,z), where pγ is the pressure of

region γ . We will calculate these pressures by assuming that
the membrane is at equilibrium. Or, said in other words, the
electrostatic stress due to the charges present in the system is
compensated by a local pressure such that the resulting force
is zero. In our model, which is translationally invariant in the
x and y direction, the total stress tensor is diagonal and its
components are

Tγ,zz = εγ
1
2 (∂zφγ )2 − pγ (z), (23)

Tγ,xx = Tγ,yy = −εγ
1
2 (∂zφγ )2 − pγ (z). (24)

The conservation of stress reads (using Poisson’s equation)

ργ ∇φγ + ∇pγ = (ργ ∂zφγ + ∂zpγ )ez = 0. (25)

In the bulk fluid regions we can deduce the equilibrium
pressures using Eq. (10) in Eq. (25) and integrating. We obtain

pγ (z) = εγ

κ2
D

2

(
φγ − φ0

γ

)2 + p0, γ = 1,3, (26)

where p0 is the pressure at infinity. This equation tells us that
there is an osmotic pressure due to the distribution of free
ions around the membrane. This osmotic pressure balances
the electrical stress normal to the membrane and the resulting
stress in the bulk fluid regions is

Tγ,zz(z) = −p0, γ = 1 or 3, (27)

T1,xx(z) = T1,yy(z) = −εκ2
DA2

1e
2κD(z+d) − p0, (28)

T3,xx(z) = T3,yy(z) = −εκ2
DA2

3e
−2κD(z−d) − p0. (29)
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To obtain the equilibrium pressure in the membrane we need a
boundary condition which can be obtained by calculating the
force on the membrane interfaces, Eqs. (19) and (20). We have

f 1,2 = [T2,zz(−d) − T1,zz(−d)]ez = [T2,zz(−d) + p0]ez, (30)

f 2,3 = [T3,zz(d) − T2,zz(d)]ez = [−p0 − T2,zz(d)]ez. (31)

At equilibrium, where f 2,3 = 0 and f 1,2 = 0, we get two
equations [using Eqs. (8)],

p2(d) = p0 + εm

2
κ2

DA2
3

(
ε

εm

)2

(32)

and

p2(−d) = p0 + εm

2
κ2

DA2
1

(
ε

εm

)2

. (33)

We can now calculate p2(z) from Eq. (25) as

∂p2

∂z

∣∣∣∣
z

= −ρm(z)
∂φ2

∂z

∣∣∣∣
z

. (34)

This equation can be integrated using either Eq. (32) or (33)
to give

p2(z) = p0 + εm

2
[∂zφ2(z)]2. (35)

Finally, the stress tensor in the membrane at equilibrium reads

T2,zz(z) = −p0, (36)

T2,xx(z) = T2,yy(z) = −εm[∂zφ2(z)]2 − p0. (37)

From the stress tensor we calculate both the electrostatic
contributions to the tension and the spontaneous curvature
in Sec. III.

C. Electrostatics of a weakly deformed membrane,
with a slightly nonuniform charge distribution

In order to calculate the renormalization of the bending
rigidity, κel, we can calculate the electrical force that is applied
on the membrane when it is slightly deformed. In order to do
so we choose a Monge representation where the center of the
membrane is characterized by a height field h(x,y). We then
calculate the first-order correction to the potential due to the
small deviation h(x,y). In addition, we will consider a slightly
nonuniform charge distribution inside the membrane which
could be due to the deformation of the membrane as it bends.

In this subsection we use a slightly different notation than
in the previous ones. We will denote the zeroth-order solution
for the planar case derived previously as φ(0)

γ ≡ φγ in order to
distinguish it from the potential to first order in the deviation
from a flat and laterally uniform case, φ(1)

γ . The total potential,
φtot

γ , is defined as

φtot
γ (x,y,z) ≡ φ(0)

γ [z − h(x,y)] + φ(1)
γ (x,y,z)

≈ φ(0)
γ (z) − h(x,y)∂zφ

(0)
γ (z) + φ(1)

γ (x,y,z). (38)

φtot
γ obeys the Debye-Hückel equation, Eq. (4), in the bulk fluid

regions of the system


φtot
γ − κ2

D

(
φtot

γ − φ0
γ

) = 0, γ = 1,3, (39)

and Poisson’s equation

εm
φtot
2 = −ρ(x,y,z) (40)

inside the membrane. ρ(x,y,z) is defined as

ρ(x,y,z) = ρ(0)(z) + ρ(1)(x,y,z), (41)

where ρ(0)(z) ≡ ρm(z) is the zeroth-order laterally uniform
charge density, while ρ(1)(x,y,z) is its first-order counterpart.
We will take

ρ(1)(x,y,z) = −h(x,y)
∂ρ(0)

∂z

∣∣∣∣
z

+ ρ
(1)
add(x,y,z). (42)

The first term is the contribution to the charge density
due to the displacement along the z coordinate of the
uniform charge distribution. The second term ρ

(1)
add(x,y,z) is

the additional first-order charge distribution which we leave
arbitrary for now. Using that the zeroth-order potential obeys
Eqs. (3) and (4) in Eqs. (39) and (40) we get the equations
for φ(1)

γ as


φ(1)
γ − κ2

Dφ(1)
γ = 0, γ = 1,3, (43)

εm
φ
(1)
2 = −ρ(1)(x,y,z). (44)

We define the Fourier transform of a function of (x,y), say
f (x,y,z), as

f̄ (qx,qy,z) =
∫

dx dy eixqx+iyqy f (x,y,z) (45)

and its inverse

f (x,y,z) = 1

(2π )2

∫
dqxdqye

−ixqx−iyqy f̄ (qx,qy,z). (46)

We then rewrite Eqs. (43) and (44) in Fourier space as

− q̄2φ̄(1)
γ + ∂2φ̄(1)

γ

∂z2
= 0, γ = 1,3, (47a)

εm

(
− q2φ̄

(1)
2 + ∂2φ̄

(1)
2

∂z2

)
= −ρ̄(1)(qx,qy,z), (47b)

where q =
√

q2
x + q2

y , q̄ =
√

q2
x + q2

y + κ2
D, and

ρ̄(1)(qx,qy,z) = −h̄(qx,qy)
∂ρ(0)

∂z

∣∣∣∣
z

+ ρ̄
(1)
add(qx,qy,z). (48)

Also the boundary conditions for φtot
γ are

φtot
1 (−∞) = Vm

2
, φtot

3 (+∞) = −Vm

2
, (49)

φtot
1 (−d) = φtot

2 (−d), φtot
3 (d) = φtot

2 (d), (50)

ε
∂φtot

1

∂z

∣∣∣∣
z=−d

= εm
∂φtot

2

∂z

∣∣∣∣
z=−d

, (51a)

ε
∂φtot

3

∂z

∣∣∣∣
z=d

= εm
∂φtot

2

∂z

∣∣∣∣
z=d

. (51b)
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For φ̄(1)
γ the boundary conditions of φ(0)

γ imply

φ̄
(1)
1 (qx,qy, − ∞) = 0, φ̄

(1)
3 (qx,qy, + ∞) = 0, (52)

h̄
∂φ

(0)
1

∂z

∣∣∣∣
−d

+ φ̄
(1)
1 (−d) = h̄

∂φ
(0)
2

∂z

∣∣∣∣
−d

+ φ̄
(1)
2 (−d), (53a)

h̄
∂φ

(0)
3

∂z

∣∣∣∣
d

+ φ̄
(1)
3 (d) = h̄

∂φ
(0)
2

∂z

∣∣∣∣
d

+ φ̄
(1)
2 (d), (53b)

ε

(
∂φ̄

(1)
1

∂z
+ h̄

∂2φ
(0)
1

∂z2

)∣∣∣∣∣
−d

= εm

(
∂φ̄

(1)
2

∂z
+ h̄

∂2φ
(0)
2

∂z2

)∣∣∣∣∣
−d

, (54a)

ε

(
∂φ̄

(1)
3

∂z
+ h̄

∂2φ
(0)
3

∂z2

)∣∣∣∣∣
d

= εm

(
∂φ̄

(1)
2

∂z
+ h̄

∂2φ
(0)
2

∂z2

)∣∣∣∣∣
d

. (54b)

Equation (47) with the boundary conditions, Eqs. (52), (53), and (54), can be solved to give

φ̄
(1)
2 (z,q) = 2

εmq(b2 − a2)

{
sinh[q(z + d)]

∫ d

−d

dz′ρ̄(1)(z′) sinh[q(d − z′)] − sinh[2qd]
∫ z

−d

dz′ρ̄(1)(z′) sinh[q(z − z′)]

+ εmq

εq̄

[∫ d

−d

dz′ρ̄(1)(z′) sinh[q(2d − z′ + z)] − 2 cosh[2dq]
∫ z

−d

dz′ρ̄(1)(z′) sinh[q(z − z′)]
]

+
(

εmq

εq̄

)2 [
cosh[q(z + d)]

∫ d

−d

dz′ρ̄(1)(z′) cosh[q(d − z′)] − sinh[2qd]
∫ z

−d

dz′ρ̄(1)(z′) sinh[q(z − z′)]
]}

+ 2h̄

εm(b2 − a2)

[
A sinh[q(d + z)] + B sinh[q(z − d)] + εmq

εq̄
{A cosh[q(d + z)] − B cosh[q(z − d)]}

]
, (55)

φ̄
(1)
1 (z,q) = eq̄(z+d) 2

εmq(b2 − a2)

{
εmq

εq̄

∫ d

−d

dz′ρ̄(1)(z′) sinh[q(d − z′)] +
(

εmq

εq̄

)2 ∫ d

−d

dz′ρ̄(1)(z′) cosh[q(z′ − d)]

}

+ h̄

εm
eq̄(z+d)

{
a1

(
1 − εm

ε

)
+ A

2

(b2 − a2)

εmq

εq̄
− B

2

(b2 − a2)

(
sinh[2qd] + εmq

εq̄
cosh[2qd]

)}
, (56)

φ̄
(1)
3 (z,q) = e−q̄(z−d) 2

εmq(b2 − a2)

{
εmq

εq̄

∫ d

−d

dz′ρ̄(1)(z′) sinh[q(d + z′)] +
(

εmq

εq̄

)2 ∫ d

−d

dz′ρ̄(1)(z′) cosh[q(d + z′)]

}

+ h̄

εm
e−q̄(z−d)

{
−a3

(
1 − εm

ε

)
− B

2

(b2 − a2)

εmq

εq̄
+ A

2

(b2 − a2)

(
sinh[2qd] + εmq

εq̄
cosh[2qd]

)}
, (57)

where we have introduced

a = e−qd

(
1 − εm

ε

q

q̄

)
, b = eqd

(
1 + εm

ε

q

q̄

)
, (58)

A = εm

εq̄

(
κDa3 + ρ(0)(d)

) +
(

1 − εm

ε

)
a3, (59)

B = εm

εq̄

(
κDa1 + ρ(0)(−d)

) +
(

1 − εm

ε

)
a1, (60)

and

a1 = κDεA1 = M0

2
− γ

M1

2d
− γ

εmVm

2d
, (61)

a3 = κDεA3 = M0

2
+ γ

M1

2d
+ γ

εmVm

2d
, (62)

γ = 1

1 + εm
ε

1
κDd

. (63)

Next we will calculate the force on the membrane.

D. Forces on a thin membrane sheet

When the membrane is bent a force will arise to restore the
planar (equilibrium) configuration. Note that in order to obtain
the electrostatic contribution to the bending rigidity (and the
tension) we only need to know the electrostatic part of this
restoring force. In this section we will therefore calculate the
electrostatic force on the membrane when it is bent. The free
energy of Eq. (1) is the free energy per unit area of an infinitely
thin surface. However, the model we developed so far takes
into account explicitly the thickness of the membrane. The
membrane is therefore a three-dimensional (3D) object. In
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order to find a relation between the two descriptions one should
integrate over the normal component of the 3D membrane in
such a way that the total physical quantities integrated over
a volume that span the membrane be the same in the 2D and
3D descriptions. The theory for this was developed in [27–29]
and we will use the results found in these papers in order to
relate the force we found in the 3D model, f̃ el, to the effective
force on the 2D surface, f el, which in this context is due to
electrostatic force. It reads

f el =
∫

dz̃(1 − 2z̃H + z̃2K) f̃ tot
el , (64)

where z̃ is the coordinate along the normal of the surface and
we recall that H and K are the mean and Gaussian curvature,
respectively. In this section we are searching for the force
to first order in h and ρ(1) such that f el = f (0)

el + f (1)
el and

f̃ tot
el = f̃ (0)

el + f̃ (1)
el . In our flat and uniform, zero-order case

this reduces to

f (0)
el =

∫
dz f̃ (0)

el = 0, (65)

where f̃ (0)
el is the total force for the flat laterally uniform case

as previously calculated. This implies that the term (−2z̃H +
z̃2K) f̃ tot

el in Eq. (64) is of second order in h and we have

f (1)
el =

∫ d

−d

dz f̃ (1)
el . (66)

Next we define the stress tensor T tot
γ,ij ≡ T

(0)
γ,ij + T

(1)
γ,ij , where

T
(0)
γ,ij = Tγ,ij as previously calculated in Sec. II B and T

(1)
γ,ij is

the first-order tensor resulting from replacing φγ by φtot
γ in

Eq. (21), and taking the first-order part. f̃ (1)
el then reads(

f̃ (1)
el

)
i
= ∂jT

(1)
1,ij�(−z − d) + ∂jT

(1)
3,ij�(z − d)

+ ∂jT
(1)

2,ij [�(z + d) − �(z − d)]

+
∑

j=x,y

−∂jh
[ − T

(0)
1,ij δ(−z − d) + T

(0)
3,ij δ(z − d)

+ T
(0)

2,ij [δ(z + d) − δ(z − d)]
] − T

(1)
1,izδ(−z − d)

+ T
(1)

3,izδ(z − d) + T
(1)

2,iz[δ(z + d) − δ(z − d)].

(67)

We are interested in the z component of the force Eq. (67).
Using that

∂jT
(1)

2,zj = −ρ(1)∂zφ
(0)
2 − ρ(0)∂zφ

(1)
2 − ∂zp

(1)
2 , (68)

and that

T
(1)

2,ij = T
Maxwell,(1)

2,ij − p
(1)
2 , (69)

where the superscript (1) in T
Maxwell,(1)

2,ij and p
(1)
2 denotes first-

order quantities, we calculate f(1)
el as

f (1)
el · ez = T

Maxwell,(1)
2,zz (x,y, − d) − T

(1)
1,zz(x,y, − d)

+ T
(1)

3,zz(x,y,d) − T
Maxwell,(1)

2,zz (x,y,d)

−
∫ d

−d

dz ρ(0)∂zφ
tot(1)
2 −

∫ d

−d

dz ρ(1)∂zφ
(0)
2 . (70)

The pressure p(1)
2 cancels in this expression. Finally, using the

boundary conditions for both φ(0) and φ(1), we calculate the
boundary forces

T
Maxwell,(1)

2,zz (x,y, − d) − T
(1)

1,zz(x,y, − d)

= −ε

(
1 − ε

εm

)
∂zφ

(0)
1

(
h∂2

z φ
(0)
1 + ∂zφ

(1)
1

)
+ εκ2

D

(
φ

(0)
1 − φ0

1

)(
φ

(1)
1 + h∂zφ

(0)
1

)
, (71)

T
(1)

3,zz(x,y,d) − T
Maxwell,(1)

2,zz (x,y,d)

= ε

(
1 − ε

εm

)
∂zφ

(0)
3

(
h∂2

z φ
(0)
3 + ∂zφ

(1)
3

)
− εκ2

D

(
φ

(0)
3 − φ0

3

)(
φ

(1)
3 + h∂zφ

(0)
3

)
, (72)

where the first equation is evaluated in z = −d and the second
one is evaluated in z = d. We will use Eq. (70) to derive an
expression of the bending rigidity in Sec. III.

III. RESULTS

In this section we apply the results of Sec. II in order to
give an expression for the tension and spontaneous curvature
from the equilibrium stress and for the bending rigidity from
the force calculation.

A. Tension

The tension can be written as the integral of the lateral
component of the stress tensor, see Eq. (A4),

σel =
∫ +∞

−∞
[Txx(z) − (−p0)]dz. (73)

By inserting Eqs. (28), (29), and (37) into Eq. (73) we obtain

σel = −ε

2
κDA2

1 − ε

2
κDA2

3 − εm

∫ d

−d

(
∂φ2

∂z

∣∣∣∣
z

)2

dz. (74)

This equation shows that σel is always negative. This can
be explained as follows. The Debye layers of ions can only
squeeze the membrane either because there is an applied
potential or because the ions are attracted by the charges
in the membrane. We have taken a charge distribution in
the membrane which is uniform over the lateral direction
which means that the lateral interactions in the membrane
are necessarily repulsive. Both contributions will then tend to
expand the membrane laterally and hence lower the tension.
The first two terms in Eq. (74) are the contributions to the
tension at the membrane boundaries while the last one is the
internal contribution. Using that

∂φ2

∂z

∣∣∣∣
z

= −κD

2
(A3 − A1)

ε

εm

+ 1

2εm

( ∫ d

z

ρm(z′)dz′ −
∫ z

−d

ρm(z′)dz′
)

, (75)
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we rewrite σel so that we get the terms dependent on Vm and
κD,

σel = 1

2d

u

(1 + u)2
M1Vm − εm

4d

2 + u

(1 + u)2
V 2

m

− 1

4εκD
M2

0 + 1

4εmd

2 + 3u

(1 + u)2
M2

1 − Ĩ [ρm]

4εm
, (76)

where u ≡ εm/(εκDd) is a dimensionless constant that quanti-
fies the coupling between the two sides of the membrane. This
parameter is equal to the one called H in [5]. Ĩ [ρm] depends
on the details of the charge distribution. It reads

Ĩ [ρm] =
∫ d

−d

dz

( ∫ d

z

ρm(z′)dz′ −
∫ z

−d

ρm(z′)dz′
)2

= 2dM2
0 + 4

∫ d

−d

dz′
∫ d

z′
dz′′(z′ − z′′)ρ(z′)ρ(z′′). (77)

The first two terms in Eq. (76) give the dependence of the
tension as a function of the applied potential. The first one
couples the applied potential to the total dipole moment
of the charge distribution inside the membrane, while the
second one is the contribution to the tension due to the Debye
layers of ions created by the applied potential. All the terms
in the tension must stay the same upon inversion of the z axis.
This means that terms which would be odd in the inversion
(i.e., change sign), like terms proportional to M0M1 or VmM0,
for example, are not present in the expression. The terms that
do not depend on Vm are the contributions to the membrane
tension of the interactions of the charges inside the membrane
with each other and with the charges in the Debye layers.
Ĩ [ρm] does not depend on the inverse Debye length and only
represents mutual interactions of the charges in the membrane.

B. Spontaneous curvature

The spontaneous curvature Cel can be calculated as the first
moment of the lateral stress tensor, see Eq. (A7),

κbCel =
∫ +∞

−∞
dz z

[
T 0

xx − (−p0)
]
, (78)

where κb is the total bending rigidity (including the electrical
contribution). Using Eqs. (28), (29), and (37), we get

κbCel = ε

4
(1 + 2dκD)

(
A2

1 − A2
3

) − εm

∫ d

−d

z

(
∂φ2

∂z

∣∣∣∣
z

)2

dz.

(79)

Cel can be positive or negative depending on the imbalance
of stress between the two sides of the membrane. Rewriting
this equation in order to make apparent the terms dependent
on Vm, we get

κbCel = 1

2d

1

1 + u

(
M1

εm
+ Vm

)

×
[

− M0d
2

(
u

2κDd
+ u + 1

)
+ M2

]
− Î [ρ]

4εm
, (80)

where

Î [ρm] =
∫ d

−d

dz z

( ∫ d

z

ρm(z′)dz′ −
∫ z

−d

ρm(z′)dz′
)2

. (81)

Under a reversal of both the applied potential and the charge
distribution the spontaneous curvature changes sign as it
should. Note that with respect to the spontaneous curvature
the total dipole moment of the membrane, M1, acts like an
applied potential. As an interesting application we can identify
the converse flexoelectric coefficient f as in [30],

Cel = f

κb
Em, (82)

where Em is the electric field applied on the membrane. If we
take Em to be the contribution of the applied potential alone
we get

Em = −φ2(d) − φ2(−d)

2d

∣∣∣∣
ρm(z)=0

= 1

1 + u

Vm

2d
. (83)

The identification of the flexocoefficient follows:

f = −M0d
2

(
u

2κDd
+ u + 1

)
+ M2. (84)

The flexocoefficient only depends on the total charge and
the quadrupole moment of the charge distribution inside the
membrane. Note that the choice of Em is somewhat arbitrary
and one could have defined it as Em = Vm/(2d), for example,
in which case the factor in front of Vm/(2d) in Eq. (83) enters
in the definition of the flexocoefficient.

C. Bending rigidity

At low Reynolds number where inertia can be discarded the
force on the membrane must vanish. The electrical force is then
compensated by an equal and opposite contribution coming
from the membrane mechanical free energy or/and from
membrane elastic force or friction force. One can then identify
the electrical tension and bending rigidity contributions by
looking at the electrical force after expanding to first order in
h̄ and to fourth order in q. More precisely, it reads

f̄ (1)
el · ez = −[σelq

2 + κelq
4]h̄, (85)

FIG. 2. Membrane bends and the charge distribution deforms.
The surface pictured as a dashed line is the neutral surface, for which
the area does not change upon bending. The region above this neutral
surface expands and the one below compresses. On the right the
charge distribution either follows the trend of the area (top) or it stays
constant (bottom).
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where σel and κel are the electrical contribution to the tension
and the bending rigidity, respectively. We then expand f̄el, from
Eq. (70), using the potentials Eqs. (55), (56), and (57) (assisted
by Mathematica). However, the final result will depend on
the q dependence of ρ̄

(1)
add, which accounts for the effect of

the deformation of the membrane on the charge distribution.
Indeed when the membrane bends outward the inner part of
the membrane contracts, while the outer part expands. One
can imagine that the charge distribution in the membrane will
follow the same trend; see Fig. 2. This is taken into account
by multiplying the charge density ρ(0)(z) by a factor (1 +
2zH ) to first order in the curvature; see Eq. (64). We then
take ρ̄

(1)
add = −αzq2h̄ρ(0)(z), where the neutral surface, i.e., the

surface that does not stretch when the membrane bends, is

considered to be in the middle of the membrane. This term is
parametrized by the unitless constant 0 � α � 1. When α = 0
the charge distribution does not stretch when the membrane
bends i.e., the charge density stays the same but it is still
translated vertically; see Eq. (42). The α = 0 case actually
corresponds to a membrane that conserves its area per lipid
and thickness to first order in the deviation h. When α = 1 the
charge distribution follows the deformation of the membrane.
An example of this term would be if the charges are carried by
lipids in the membrane. The case α = 0 could arise if there are
fast lipid exchanges between the two monolayers forming the
bilayer, also called flip-flop. Then α = 1 would correspond to
the absence of flip-flop. We finally get for the bending rigidity
contribution

κel = +Vm

(
M0

1

2dκD(3α − 2) + 3u
(
2dκD(3α − 2) + 2(α + 2) + 3

dκD

) + 6u2(α − 2)(2dκD + 1)

24κD(1 + u)2
− M0

3
3α − 2

12d(1 + u)

)

+V 2
m

εm

dκ2
D

8d2κ2
D + 3u

(
8d2κ2

D + 8dκD + 3
)

48(1 + u)2
+ (

M0
0

)2 d

εmκ2
D

2d2κ2
D + u

(
8d2κ2

D + 12dκD + 9
) + 3u2

48(1 + u)

+ (
M0

1

)2 d

εm

(8 + 3u
(
8 + 3

d2κ2
D

) + 24u2
(
1 − 1

dκD

) + 24u3

48(1 + u)2

)
− α

(
M0

1

)2 d

εm

(1 + u
(
2 − 1

dκD

) + 2u2

4(1 + u)

)

+ (
M0

2

)2 2α − 1

8dεm (1 + u)
+ M0

0 M0
2 (α − 1)

dκD + u(2dκD + 1)

4εmκD(1 + u)
− M0

1 M0
3

3α − 2

12dεm (1 + u)
+

˜̃I [ρ]

6εm
, (86)

where

˜̃I [ρ] =
∫ d

−d

dz

∫ z

−d

dz̃ ρ̄(0)(z)ρ̄(0)(z̃)(z − z̃)3

(
1 − 3

2
α

)
. (87)

We also recover the same expression for the tension as in
Eq. (74) for the term proportional to q2 by expanding the force
(not shown). The tension does not depend on the parameter
α. The bending rigidity does depend on α and is separated,
like the tension in Eq. (76), into terms that depend on the
applied potential, and terms that do not. There is also an
internal contribution that depends on the details of the charge
distribution inside the membrane and not on the Debye length
(the last term in the equation). The up-down symmetry is
respected such that the bending rigidity stays the same upon
inversion of the z axis. We note here that we do obtain the
same contribution to the tension as [31–33] for the potential
dependent part, but the bending rigidity we find has a few
numerical factors different from these references. However,
we recover the result of [18,34]. The difference between our
result and the result of [31–33] can be explained by their use of
the Robin type boundary conditions which are different from
the boundaries conditions we used, Eqs. (53) and (54), for a
slightly deformed membrane.

IV. DISCUSSION

A. Free energy and stress balance

In this subsection we comment on how our calculations
compare to previous calculations of the membrane bending
moduli through the calculation of the electrostatic free energy

for planar and curved geometry. This approach is in contrast
to the method employed here as we have calculated the force
and stress on a planar and a slightly deformed surface. It has
been shown that the two approaches should give the same
result for the bending moduli of a stack of membranes [35,36].
However, the additional condition of balance of the stress we
have enforced introduces a difference with previous works
[4,5,8,11,37].

In the literature [5] the usual way of handling the stress
balance in the membrane consists of adding a δ-function
contribution to the lateral stress such that its zeroth moment
vanishes. This relaxes the membrane to a state of zero tension.
The location of this balancing stress in the membrane is
somewhat arbitrary and is often chosen for convenience in
the calculation. The calculation based on the electrostatic free
energy of the membrane, including an osmotic contribution
from the mobile ions (see [38]) implicitly assumes that the
balancing stress is located at the monolayer interface [5].
Another choice would be to put the balancing force in the
midplane of the membrane; the stress balance then contributes
only to the zeroth moment of the stress profile. In our approach
we have locally balanced the stress in the membrane by a
continuous pressure tensor; see Sec. II B. Note that this idea
was already discussed in [5] as a better way to handle the stress
balance. However, we explicitly employ this balancing stress
with a fixed charge distribution in the membrane.

To what extent does the balance of the stress make our
results different from those previously published? If one
identifies the free energy per unit area calculated for a planar
membrane in [4,5,8,11,37] with the tension we calculated one
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has

σel − σub = −
∫

dz[p2(z) − p0] (88)

= −1

2
εm

∫ d

−d

dz[∂zφ2(z)]2, (89)

where σub is the tension when the stress is locally unbalanced
in the membrane and p2 is defined in Eq. (35). Similarly, the
contribution to the spontaneous curvature reads

κb(Cel − Cub) = −
∫

dz z[p2(z) − p0] (90)

= −1

2
εm

∫ d

−d

dz z[∂zφ2(z)]2. (91)

Next we give an explicit expression for σub and κbCub using
Eqs. (74), (79), (88), and (90),

σub = −ε

2
κDA2

1 − ε

2
κDA2

3 − 1

2
εm

∫ d

−d

(
∂φ2

∂z

∣∣∣∣
z

)2

dz (92)

and

κbCub = ε

4
(1 + 2dκD)

(
A2

1 − A2
3

) − 1

2
εm

∫ d

−d

z

(
∂φ2

∂z

∣∣∣∣
z

)2

dz.

(93)

The difference between Eqs. (74) and (92), and (79) and (93)
is only the 1/2 factor in front of the integral of the last terms,
the moments of the stress in the membrane. For completeness
we give the expression for the flexocoefficient without stress
balance in the membrane, fub,

fub = −M0d
2

(
u

2κDd
+ u + 1

2

)
+ 1

2
M2, (94)

where u ≡ εm/(εκDd). The strength of the effect of the detailed
balance of stress depends on the strength of the electric field
inside the membrane. If there is no field inside the membrane,
there is no electrostatic stress and there is no need to balance the
stress inside the membrane. The effect will therefore be more
apparent for a highly asymmetric charge distribution or with
a strong applied electric field. It is interesting to note that this
is the case for the plasma membrane where a negative surface
charge is present on the intracellular side of the membrane and
there is a negative potential (with respect to the extracellular
side): the two effects add to each other and to the electric
field inside the membrane. However, we will show in the
next section that for a realistic estimate the relative difference
between σub and σel is small in this case. For a decoupled
membrane, where the electric field in the membrane vanishes
(taking Vm = 0 and the limit u → 0 such that d → ∞, for
example), the correction due to the stress balance vanishes.
The detailed balance of the stress will change the expression
of the bending rigidity because it changes the force in the
membrane. Note that we did not explicitly calculate this effect.
However, we still expect the bending rigidity to be the same
as the one calculated from the free energy of a bent surface
(sphere or cylinder) in the decoupled-membrane limit.

B. Surface charges

In this section we investigate the case of surface charges
present at the dielectric interfaces between the membrane and
the bulk fluids. This case is an important case as it is believed
that the charges present in the bulk fluid adsorb on the surface
of the membrane and that the head group of some lipids can
be charged, creating a surface charge in addition to the Debye
layers of ions. For surface charges at the boundaries between
the dielectrics the boundary conditions of Eq. (8) should, in
principle, be changed to

ε
∂φ1

∂z

∣∣∣∣
z=−d

= εm
∂φ2

∂z

∣∣∣∣
z=−d

+ σ−, (95a)

ε
∂φ3

∂z

∣∣∣∣
z=d

= εm
∂φ2

∂z

∣∣∣∣
z=d

− σ+. (95b)

σ+ and σ− are the charges per area of the outer and the
inner surface, respectively. An alternative and easier way of
calculating this contribution from our Eqs. (76), (80), and (86)
is by taking a charge distribution ρm(z) = σ+δ[z − (d − l)] +
σ−δ[z − (−d + l)] and then taking the limit l → 0. Note that
for all the results of this subsection we have checked explicitly
that we obtain the same results in both approaches. We first give
our results for the case of prescribed surface charges, giving
results for the tension, spontaneous curvature, and bending
rigidity. Then we will comment on them. For the tension,
using Eq. (76), we find

σel = u

(1 + u)2

Vm

2
(σ+ − σ−) − V 2

m
εm

4d

2 + u

(1 + u)2

− (σ− + σ+)2

4εκD
− (σ+ − σ−)2

4εκD

1 + 2u

(1 + u)2
. (96)

From Eq. (80) we get for the spontaneous curvature, with
no applied potential,

κbCel = − d2

2εm
(σ 2

+ − σ 2
−)

u

1 + u

(
1

2κDd
+ 1

)
. (97)

The contribution from the potential is included in the flexoco-
efficient Eq. (84),

f = −ud2(σ+ + σ−)

(
1

2κDd
+ 1

)
. (98)

We found the bending rigidity from Eq. (86) as

κel =V 2
m

εm

dκ2
D

8d2κ2
D + 3u

(
8d2κ2

D + 8dκD + 3
)

48(1 + u)2

+Vm(σ+ − σ−)
εm

εκ2
D

9
dκD

+ 12 − 8κDd − 12u(1 + 2κDd)

24(1 + u)2

+αVm(σ+ − σ−)
εm

εκ2
D

1 + 2κDd

4(1 + u)

+ (σ− + σ+)2 1

κ3
Dε

3 + 4ακDd + u

16(1 + u)
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+ d2

εκD
(σ+ − σ−)2

9
(dκD)2 + 8u(1 − 3

dκD
) + 24u2

48(1 + u)2

+α
d2

εκD
(σ+ − σ−)2

1
dκD

− 2u

4(1 + u)
. (99)

As explained in the previous section, there are some simi-
larities and differences between the expressions we give and
the expressions given previously in the literature [5,8,11,37].

The expression given in the Debye-Hückel regime for
the bending rigidity in [5,8] agrees with our results to first
order in the coupling parameter between the two sides of
the membrane, u. This is due to the approximate handling
of the coupling, specifically Eq. (2) in [5]. They also give an
expression for the spontaneous curvature to zeroth order in
u, i.e., for no coupling, which agrees with the corresponding
expansion of Eq. (97).

In [11] another calculation has been performed for which
the coupling between the two leaflets of the membrane has
been taken care of explicitly, at least to the lowest order in the
curvature expansion. However, in this reference the stress is
not balanced and our results only agree to zeroth order in u

for the tension and bending rigidity and do not agree for the
spontaneous curvature.

The electrostatic contribution to the bending rigidity was
calculated taking into account explicitly the coupling between
the two sides of the bilayer as well as a different surface

charge distribution for the two sides of the membrane in [37].
For the bending rigidity our calculations agree with theirs for
a symmetrical surface charge and for a decoupled membrane,
i.e., for u = 0. However, we have a different numerical factor
in front of the terms proportional to the square of the surface
charge difference in the coupled case.

In [39] the flexocoefficient was calculated without taking
into account the dielectric difference between the membrane
and the water (εm = ε). In this limit we obtain the same
analytical expression for the flexocoefficient. Note that for
the case of having surface charge only it is important to take
into account the coupling between the two bilayer sides to have
a nonzero flexocoefficient.

In Fig. 3 we plotted the contributions we have obtained
for surface charge σ+ = 0 and σ− ranging from 0 to
−120 mC m−2, which corresponds roughly to half a charge per
lipid. The bending rigidity we obtain is on the order of kBT in
an appreciable range of the charge density and is substantially
larger if we take into account the deformation of the charge
by setting α = 1. Electrostatic renormalization of the bending
rigidity on the order of kBT has indeed been observed [40] and
predicted before. On the same figure we can see that a negative
electrostatic tension contribution on the order of 1 mN m−1 is
possible. Note that the actual total membrane tension (the
electrostatic contribution plus the elastic one) can be moder-
ated if the membrane slightly changes its area, as proposed by
two of us in [41]. The spontaneous curvature we obtained is
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FIG. 3. (Color online) Electrostatic contribution to the bending rigidity, tension, spontaneous curvature, and flexocoefficient with no applied
potential. For the bending rigidity we have plotted both the case with no charge deformation (α = 0 circle) and the case with full deformation
(α = 1 continuous line). The parameters we used are d = 2.5 nm, ε = 80ε0, εm = 2ε0, Vm = 0, a salt concentration of 100 mM, which
corresponds to κD � 1 nm−1, and κb = 50kBT .
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qualitatively and quantitatively very close to the ones obtained
from a recent study [42,43] in which a numerical calculation
of the membrane stress due to a surface charge density was
performed. Note that in those papers the electrostatic stress
normal to the membrane is automatically balanced by the
elastic properties of the membrane and is found to be very small
compared to the lateral contribution. This justifies our zero
normal stress and constant thickness approach. Finally, the
value of the flexocoefficient we obtained with surface charges
only is lower than the experimental values obtained in [30,44],
which are on the order of 10−19–10−18 C. Only for σ− �
−0.25 C m−2 does the flexocoefficient reach −1.9 × 10−20 C,
which corresponds roughly to a membrane with one charge per
lipid. The bending rigidity, tension, and spontaneous curvature
contributions we find all have a quadratic dependence on the
charge distribution without an applied potential. If in addition
to the surface charge a potential is applied, then a term
quadratic in the potential will be added but also a coupling
term linear in both the potential and the charge distribution will
appear. With the approach we used we were unable to obtain
the analytical expressions of the spontaneous curvature and
the flexocoefficient from a deformation of the charge density,
but this contribution (a nonzero α) is likely to change both the
spontaneous curvature and the flexocoefficient. Finally, let us
discuss the quantitative difference due to the detailed balance
of the stress we imposed induces on the quantities we calculate.
If we take the parameters of Fig. 3 and σ− � −0.12 C m−2 as
well as an applied potential of 500 mV we get, using Eqs. (74)
and (92), σel � −3.3 mN/m and σel − σub � −0.3 mN/m.
There is no difference between Cub, Eq. (93), and Cel, Eq. (79),
in the surface charge case.

C. Dipole moment

In this section we will consider the impact of the electro-
static contribution coming from the dipolar lipid head groups.
We take the charge density

ρm(z) = μ+
2l

[δ(z − d + j − l) − δ(z − d + j + l)]

+ μ−
2l

[δ(z + d − j − l) − δ(z + d − j + l)], (100)

where μ+ (μ−) are the dipole moments per area associated
with the head groups in the upper (lower) monolayer, ±d̃ =
±(d − j ) is the distance between the center of the membrane
and the dipoles center, and 2l is the spacing between the two
charges of the dipole. From this charge distribution we can
calculate the moments and integrals we introduced in Sec. III:

M0 = 0, (101)

M1 = μ+ + μ−, (102)

M2 = 2d̃(μ+ − μ−), (103)

M3 = 3d̃2(μ+ + μ−), (104)

Ĩ [ρm] = 2
1

l
(μ2

+ + μ2
−), (105)

Î [ρm] = 2
d

l
(μ2

+ − μ2
−), (106)

˜̃I [ρm] = −2l(μ2
+ + μ2

−) − 12d̃μ+μ−. (107)

In order to give a numerical estimate of the electrostatic
contribution to the dipole moment of lipids one could simply
evaluate the dipole moments as μ ∼ 2le/a, where e is the
elementary charge and a is the area occupied by one lipid.
However, this would be neglecting the contribution of water
which actually overcompensates for the dipole moment of the
lipids [45,46]. Based on the total charge distribution obtained
from various numerical simulations [47,48], we will take
2l ∼ 0.5 nm, j ∼ 0.25 nm, and μ− = −μ+ ∼ 3 D nm−2. We
do not take the limit l → 0 as our Debye length is on the
order of 1 nm in our system. Note that here the internal
charge ρm is seen to represent the charge of the lipid head
groups as well as the polarized water molecules close to them.
The dipole moment we take has contributions from the water
molecules in the interfacial region and the lipid head groups.
The dipole moment we use gives a potential in the middle
of the membrane, without an applied potential, of 60 mV
(the so-called dipole potential). Using these numbers and the
same parameters as in Fig. 3 we obtain the following values:
σel ∼ −2.2 × 10−2 N m−1, Cel = 0, κel(α = 0) ∼ 0.1 kBT ,
κel(α = 1) ∼ 3.3 kBT , and f ∼ −0.9 × 10−20 C. We obtained
a very high value for the electrostatic contribution to the
tension but one has to keep in mind that this is the contribution
from the electrostatics only; the total tension of the membrane
includes the contribution from all the other interactions.
Because we choose to have a symmetrical dipole distribution
(by choosing μ+ = −μ−) the spontaneous curvature is zero
due to symmetry. We can see that, at least in the case where
the charge density stretches with the membrane, the dipole
moment should contribute a few kBT to the bending rigidity.
Finally, we obtain a flexocoefficient 10 times higher than in the
surface charge case, which accounts better for the experimental
data [30,44]. Note that the charge distribution we use in this
section could be modified to take into account adsorption of
the ions on the membrane surface, by modifying the charge
density we used.

V. CONCLUSION

In this paper we have given the electrostatic contribution
to the membrane mechanical parameters explicitly taking into
account the electrostatic coupling between the two sides of the
membrane in the Debye-Hückel regime including an applied
potential. This potential could either be applied by electrodes
or generated as a result of pumping activity imposing a charge
imbalance across the membrane. In addition, we explicitly
treated the balance of stress in the membrane by applying
a local pressure tensor. The contributions from any laterally
uniform charge distribution in the membrane can be deduced
from our calculations. This is useful as an analytical tool
as one can use it to easily calculate the contributions by
plugging in a specific charge distribution, but it can also be
useful in numerical simulations where the average charge
distribution is readily available. Note that our equations
use the Poisson-Boltzmann approach, which is a mean-field
approximation and as such does not take into account ion
correlations. In addition, we have used its linear counterpart,
the Debye-Hückel equations, which limits the maximum
difference of potential between the bilayer and the surrounding
fluid. However, we have solved Poisson’s equation in the
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membrane region for any laterally uniform charge distribution.
This extends the validity of our calculation to the case where
the contribution of the Debye layer is small (i.e., a small Debye
length); then the main electrostatic contribution to the bending
moduli should come from the force and stress in the membrane
that we calculated explicitly. We believe our approach to be
a good starting point to evaluate what would be the impact
of changing the membrane charge distribution, for example,
by changing the membrane composition, and we have shown
that a semiquantitative agreement with experimental results is
possible.

APPENDIX: LATERAL STRESS INTEGRAL, TENSION,
AND SPONTANEOUS CURVATURE

In this Appendix we derive the relation between the
moments of the stress profile and the tension and the
spontaneous curvature. The derivation we use is based on
the approach of [29]. In this reference the relations between
an ideal infinitely thin membrane and its equivalent three-
dimensional description are derived in terms of integrals of
excess quantities. These excess quantities represent the “real”
3D quantities minus the values of the quantities far from the
membrane. The integral of the excess quantities are associated
with the ideal 2D membrane. According to [29], Eq. (24) in this
reference, the relation between the 2D linear stress associated
with the ideal membrane, T α , and its excess quantities T̄excess is

tβ · T α =
∫

dh[gαγ − h(2Hgαγ − Kαγ )]tβ · (T̄excess · tγ ),

(A1)

and h is the normal coordinate to the surface. tβ are the two
tangential vectors entering the definition of the metric g. The
· denotes the operation between a 3D vector vi and a 3 × 3
tensor Tij such that (v · T )i = vjTij ; between two vectors the
· denotes the scalar product. The stress tensor T α can also
be calculated from a free energy f associated with the 2D

membrane; see [29]. If we take the free energy to be

f = 2κbH
2 − 2κbC0H + σ + κGK, (A2)

we get, from Eq. (111) of [29],

tβ · T α = gα
β (2κbH

2 − 2κbC0H + σ ) − κb(2H − C0)Kα
β .

(A3)

Combining Eqs. (A1) and (A3) for a planar case (gαβ = δαβ ,
H = 0, and Kαβ = 0), we get

σ =
∫

dz tγ (tγ · T̄excess), (A4)

without sum over γ and in the planar case tγ = tγ , or ex-
pressed in words: the integral of the lateral stress is equal to the
tension, in the planar case. This is the equation used in the text.

The spontaneous curvature is related to another quantity,
the internal excess angular stress or bending moment Nα of
[29], but the demonstration follows the same way as the one
for the tension. We express Nα in the function of the excess
stress tensor, Eq. (40) of [29],

Nα = −
∫

dh h[gαβ − h(2Hgαβ − Kαβ)]

× tγ εγ δ(tβ · T̄excess · tδ), (A5)

where εαβ is the second-order Levi-Civita symbol. Then we
express it using the free energy Eq. (A2) from Eq. (117) of
[29],

Nα = −[κb(2H − C0)gαβ + κG(2Hgαβ − Kαβ)]εβγ tγ . (A6)

Putting these two equations together for the planar case we get
the desired equation:

κbC0 =
∫

dz ztγ · (tγ · T̄excess), (A7)

without sum over γ . Both derivations are based on the
assumption that there is no deformation of the membrane and
no internal torque.
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