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The dynamical evolution of complex systems is often intrinsically stochastic and subject to external random
forces. In order to study the resulting variability in dynamics, it is essential to make measurements on replicate
systems and to separate arbitrary variation of the average dynamics of these replicates from fluctuations around the
average dynamics. Here we do so for population time-series data from replicate ecosystems sharing a common
average dynamics or common trend. We explain how model parameters, including the effective interactions
between species and dynamical noise, can be estimated from the data and how replication reduces errors in these
estimates. For this, it is essential that the model can fit a variety of average dynamics. We then show how one
can judge the quality of a model, compare alternate models, and determine which combinations of parameters
are poorly determined by the data. In addition we show how replicate population dynamics experiments could
be designed to optimize the acquired information of interest about the systems. Our approach is illustrated on a
set of time series gathered from replicate microbial closed ecosystems.
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I. INTRODUCTION

Complex systems in physics and other fields, such as
biology and sociology, are often characterized by intrinsically
stochastic dynamics and subject to external random forces.
At the same time, nontrivial trends are pervasive in those
systems, be it in the laboratory, society, or nature. This
raises a basic question when studying the variations in the
activities or numbers of the system components. How can one
separate the contribution of the trend to the observed dynamical
evolution from the contribution of the various sources of
noise? Traditionally, and mostly for unique time series, such
a separation is “achieved” by using models with constant
coefficients, which allow for only a few types of trends,
such as constant average, logistic or exponential growth, or
oscillations.

In reality, however, trends can have much more sophis-
ticated time dependence, and deviations between the true
average dynamics and the average dynamics imposed by
constant-coefficient trend models will have the appearance
of fluctuations around the inferred average dynamics. This
will confound the analysis of true variability of the dynamics.
The most direct approach to answering the question above is
to replicate the experiment many times, with identical initial
and experimental conditions. The average over the different
replicate dynamics naturally defines the common trend of the
system, while replicate-dependent deviations correspond to
specific realizations of the stochastic fluctuations. Obviously,
in practice, this approach is hindered by various limitations,
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such as the errors in the measurements, the limited number of
available replicates, and limited sampling. To which extent
those limitations affect the determination of the common
trend and the characterization of the statistical features of the
fluctuations is a matter of concern.

The purpose of this paper is to address this general question,
with a focus on the specific case of ecological systems. The
dynamics of ecological systems are by their very nature
stochastic, as a result of, for instance, random genetic and
phenotypic changes and randomness in the timing of birth and
death. External forces, such as the weather and the random
immigration of other species, play crucial roles, too. Factors
such as seasonal variation, depletion of nutrients, detailed
chemistry, and any other factor not explicitly modeled may
affect the average dynamics in various idiosyncratic ways,
and their interplay can produce nontrivial average dynamics
(a common trend). While replication of ecosystems is al-
ready fairly common, model ecosystems permitting excellent
control of starting and experimental conditions are becoming
increasingly available. Examples include the development of
replicate closed ecosystems [1–3], multispecies chemostats
[4–6], and gnotobiotic mouse experiments [7,8], which have
been revolutionized by modern sequencing methods.

By providing multiple time series, experimental replication
allows one to better separate temporal variation of the average
density dynamics from density fluctuations around the average.
However, to realize this advantage, one needs to be able to
fit simple models to the data which are flexible enough to
accommodate arbitrary average dynamics.

Here, we develop a method for the statistical analysis of
population dynamics measurements for replicate ecosystems.
Our approach is based on a combination of methods and ideas
coming from the study of stochastic processes in statistical
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physics and probability theory, as well as from statistical
Bayesian inference. A crucial point in our approach is the dis-
tinction between “measurement error” and “dynamical noise,”
which both contribute to the observed density fluctuations
around the average dynamics. Measurement error comprises
both the effects of limited sampling and the possibility that the
measured populations do not coincide with the dynamically
relevant ones [9]. For example, one might observe individuals
in only one life-cycle stage (e.g., adults) or in only one
part of their habitat. Dynamical noise affects the population
dynamics itself and can arise from endogenous sources, such
as randomness in the number and timing of births and deaths
or in behavior, and exogenous sources, such as fluctuations in
the weather or the timing and nature of individuals entering
the system of interest. Apparent dynamical noise can also
result from more complex dynamics (e.g., chaos or interactions
with unobserved species) not adequately captured by the
deterministic part of a chosen model. Collectively, we will
refer to measurement error and dynamical noise as “noise
sources.”

To separate the effects of measurement error and dynamical
noise, our approach is based on a state space model [10],
described by two types of equations: (1) one or more so-called
state equations which describe the system dynamics in terms
of its true, underlying variables, say, x = (x1, . . . ,xN ) (bold
symbols denote vectors and matrices), model parameters, say,
θ , and dynamical noise, say, η, and (2) an “observation equa-
tion” describing the relation between the observed variables,
say, y, the underlying variables, x, and measurement error, ξ .
State space models have indeed become fairly commonplace
in ecology [11–14].

Such a model defines the probability P ( y|θ) of the data
given the model parameters. To infer the values of the
parameters from the observed data we introduce the posterior
probability distribution of the model parameters given the
data, P (θ | y) = P ( y|θ) · P (θ )/P ( y) by Bayes’s theorem. Here
P (θ ) is the so-called prior probability distribution of the model
parameters, which specifies what is known a priori about
the model parameters. P ( y) is the probability of the data
under the model integrated over all possible values of the
model parameters. Maximizing the unnormalized posterior
probability, P ( y|θ) · P (θ), is thus equivalent to finding the
most likely set of parameters given the data.

The use of state space models poses, however, a difficulty,
since one needs to integrate over the possible values of the
underlying (unobserved) variables, x, to evaluate P ( y|θ ) =∫
dx (P ( y|x,θ )P (x|θ)). This integration is commonly done

by so-called Markov-chain Monte Carlo methods (e.g., in
WINBUGS [15]). Such methods essentially explore the “product
space” of underlying variables and model parameters, X × �,
by artificial Monte Carlo dynamics dependent on P (x, y|θ) ·
P (θ ), and obtain estimates of the posterior distribution,
P (θ | y). Alternatively, such integration can be performed using
forward and backward recursion relations, known as filters
and smoothers, which propagate estimates of the probability
distribution of the underlying variables, x, as a function of
the data. This integration is then alternated with optimization
over the model parameters. A rigorous example of such an
approach is expectation maximization (see Ref. [16] for a
nice introduction). For linear, Gaussian, discrete-time models,

the forward and backward recursions reduce to the so-called
Kalman filter (for forward recursion only [17]) or Kalman
smoother (forward and backward recursion, also known as the
Rauch-Tung-Striebel smoother [18]). In ecology, approximate
methods are more common, in which the likelihood function is
simplified and, most commonly, the Kalman filter is used (for
example, restricted maximum likelihood [14] and conditional
maximum likelihood [19]).

Hereafter, we choose to study a model that is linear in (the
logarithms of) the underlying variables and has a Gaussian
stochastic structure. This permits explicit integration over
underlying variables and an analytical expression for the
posterior density of the model parameters. Because of the
availability of the methods mentioned, explicit calculation of
the likelihood function is not often used. However, much like
a partition function in statistical mechanics, a likelihood func-
tion provides a complete description of a statistical problem
and can be used to illuminate any aspect of data analysis
and experimental design. We show that explicit calculation
of the posterior distribution is feasible for the common trend
problem, which contains two layers of underlying variables:
the true population densities in each replicate ecosystem and
the common trend.

While there are arguably many nonlinearities in ecology, a
linear model often provides a reasonable starting point. First,
many of the questions addressed here in fitting a linear model
to the data will be encountered a fortiori for nonlinear models.
Second, a linear model can often be considered a linearization
of a nonlinear model [19] and as such as a reasonable
“null hypothesis” for the importance of nonlinear effects.
Often, for complex systems, there is conceptual support for
one kind or another of nonlinear effect contributing to the
dynamics. The heterogeneity and multitude of scales present
in complex systems can easily make a judgment of their relative
importance impossible. Polansky et al. [20], for example,
found no statistical support for the inclusion of nonlinearities
in the dependence of per capita growth rate on density in any
of 25 data sets examined. Third, for our data (below), a linear,
Gaussian model with a time-dependent coefficient describes
the data well, as we anticipated based on previous work [1].

Linear state space models with constant coefficients have
received considerable attention both within and outside of
ecology. An ecological example is the “stochastic exponen-
tial,” or “random-walk,” model, which does not contain a
density-dependent term in its dynamics (Refs. [9,11,21,22]
for discrete time and Ref. [23] for the continuous time case).
Another common linear, Gaussian model is the so-called
Gompertz model, which accommodates density dependence.
The discrete-time, constant-coefficient Gompertz model often
has been used to study ecology (Refs. [14,24,25] for single
species and Ref. [19] for multiple species). Here we will
examine a continuous-time Gompertz model with a time-
dependent per-species term and a time-independent species-
species interaction matrix.

The paper is organized as follows. To allow quick perusal,
we begin both the Methods and Results sections with a brief
overview. Readers not interested in the mathematical details of
our methods can restrict themselves to reading the overview of
the Methods section. In the Methods section, we formulate the
likelihood function in detail for replicate time series modeled
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using the continuous-time Gompertz model and describe the
integration over underlying variables and maximization over
model parameters. This allows us to determine maximum
likelihood parameter estimates and the joint (multivariate)
posterior distribution of the model parameters. We will apply
our methods to time series we recently acquired from replicate
closed ecosystems (CES, Ref. [1]). These experiments are
briefly summarized at the end of the Methods section.

In the Results section we validate our method and discuss
how one can estimate parameters, determine which parameter
combinations are hard to estimate, compare models, and
optimize experimental design.

Applied to our closed ecosystem data, we show that (1) a
model with a time-dependent term is more suitable to describe
variability in ecological dynamics than is a constant-coefficient
approach; (2) the covariation between species in these closed
ecosystems does not reflect the structure of instantaneous
fluctuations in densities but rather the collective response of
the interacting species to such fluctuations; (3) the net effective
interactions between species nearly vanish for one linear
combination of densities, that is, for one system dimension, or
“ecomode,” the ecosystems lack a significant “restoring force”;
and (4) this, in turn, causes the dynamics of each species in
individual ecosystems to resemble a random walk around the
common trend.

II. METHODS

A. Overview

In the Methods section, we will describe the first step in
the statistical analysis of replicate time series from stochastic
systems subject to a common trend: calculation of the likeli-
hood function. We will do so in the language of ecosystems
with interacting species, but similar equations likely apply to
many classes of complex systems. The approach is very similar
whether one uses frequentist or Bayesian statistics. We will use
the Gompertz model, a linear model of population dynamics.
We will formulate the dynamical model and assumptions about
measurement error and provide a physical intuition for the way
the common trend is described (Sec. II B). We formulate the
likelihood function and describe how we will address the two
layers of unobserved values: of the dynamics in each individual
ecosystem and of the common trend shared by the replicate
systems (Sec. II C). To control the degree to which the common
trend description can vary with time, we introduce a smoothing
parameter, μ. The structure of the likelihood function allows
us to integrate over the unobserved variables: that is, we can
consider all possible values at once (Sec. II D). This greatly
reduces the number of parameters that need to estimated.
Calculation of the likelihood function over the remaining
parameters exploits a number of parameter transformations
(Sec. II E) to make the likelihood function close to Gaussian.
This final likelihood surface can be described by the location
of its maximum and the Hessian matrix, which describes how
steeply the likelihood function is peaked around the maximum
in each direction. We will examine this matrix in detail in
the Results section. Finally (Sec. II F), we briefly summarize
closed ecosystem experiments.

1. Notation

We consider a general experiment of duration T , in
which population densities (or numbers) Nobs are observed
for K species, with index k = 1,2, . . . ,K . These densities
are observed in S systems with index s = 1,2, . . . ,S, at N

time points, tn ∈ [0,T ], with n = 1,2, . . . ,N the index over
time points. The time points do not need to be regularly
spaced. We start by transforming to logarithmic densities:
ykns = log Nobs

ks (tn), indexed by species k, system s, and time
point n. The general case in which densities may have been
measured in different ecosystems at different times is described
in the Supplemental Material [26], Sec. S3.

For simplicity, we will suppress indices that are implied.
For example, yk refers to all observations of log Nobs for a
given species k, an NS × 1 vector; ys refers to all observations
for a given system, s, a KN × 1 vector; and yn refers to all
observations at a given time point, tn, a KS × 1 vector. Unless
specified otherwise, sums run over their entire possible range.

B. A state space model

We will make a few basic assumptions. First, we assume
that the measurements do not affect the dynamics. Second, we
assume that the dynamics are Markovian. That is, we assume
that population density changes are a function of the present
state of the ecosystem and not (also) of past states.

These assumptions lead to a state space approach in
which the dynamics are separated into two parts: a state
equation describing the (stochastic) dynamics of the system
itself in terms of “true” underlying logarithmic densities,
x(t) = log Ndyn(t) [Eq. (1a)], and an observation equation
describing the relation between observed and true logarithmic
densities [Eq. (1b)],

ẋs = g(xs) + ηs , (1a)

yns = h(xs(tn)) + ξns . (1b)

Here g(x) represents the system dynamics and ηs additive
dynamical noise with (instantaneous) covariance matrix Sd dt .
We further assume that the dynamical noise is Gaussian
and uncorrelated over time. Such dynamical noise in the
dynamics is a realistic assumption for our data [1]. For the
description of measurements, we will assume h(x) = x and
additive Gaussian measurement error, ξ . This corresponds to
log-normal measurement error in the observed densities, which
seems appropriate for experiments in which one likely makes
proportional errors in estimating the underlying density. We
treat the variance of measurement error of each species, Sm

k ,
as an unknown model parameter and assume measurement
errors are independent between species. That is, we assume
the covariance matrix for measurement errors, Sm, to be a
diagonal matrix. It is straightforward to derive the general
case instead.

As an example of linear dynamics, g(x), we consider a
Gompertz model [27], in which

g(x) = f (t) − A · x, (2)

where we assume f (t) to depend on time but A to be time
independent.
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The dynamical model in Eqs. (1a) and (2) is a “driven”
version of the Ornstein-Uhlenbeck process [28] and is formally
analogous to that of a set of S particles (with indices s) moving
in K dimensions in the presence of a harmonic (quadratic)
potential energy well with multivariate spring constant A and
center position x∗(t) = A−1 f (t) under overdamped condi-
tions (that is, viscous forces instantaneously oppose any other
forces). In this analogy, each particle represents an ecosystem.
Each particle will tend to track the well (which itself can
move with time) and experiences thermal fluctuations, ηs .
If the eigenvalues of A are large and positive, the average
position of each particle will closely match that of the well, i.e.,
〈x(t)〉 ≈ x∗(t) = A−1 f (t). If, in contrast, the eigenvalues of A
are small (a shallow well), the well position x∗(t) at any instant
becomes unimportant. Instead, 〈x(t)〉 ≈ 〈x(0)〉 + ∫ t

0 dt ′ f (t ′),
and individual time series are approximately random walks
around 〈x(t)〉.

The analogy has its limitations, since the eigenvalues of A
can be complex and its eigenvectors need not be orthogonal. An
extensive ecological interpretation of this “particle in a well”
picture of ecological dynamics is given by Ives et al. [19,29]
for the case of the function f being constant.

To fix terminology, we will call the matrix A the “effective
interaction matrix” because it describes the net effects that
species densities exert on their own and other species’ growth
rates. We call the expected replicate-average dynamics, 〈x(t)〉,
the “common trend.” As outlined above, the function f (t)
can dictate the course of this common trend, in principle, in
arbitrary ways. The time dependence of f (t) gives the model
its flexibility. Because of this, we will call f (t) the “trend
function.” Since population density measurements mostly
occur at discrete time points, we will switch to a representation
of f (t) by a discrete set of “trend variables.” We refer to these
as trend variables rather than as trend parameters because we
will treat the trend and the dynamics of individual replicates
as two layers of unobserved dynamic quantities (variables).
Fluctuations, then, are the deviations of the dynamics of
individual replicates from the common trend.

C. Formulation of the likelihood function

Our first aim is to estimate the model parameters, θ =
(A,Sd ,Sm), from the data, y. From a classical perspective, one
typically seeks to derive an estimator, such as a maximum
likelihood (ML) estimator, for the model parameters. The
likelihood is simply defined as

l y(θ ) ≡ P ( y|θ ), (3)

that is, the probability of the data given the model parame-
ters. The maximum likelihood estimate maximizes l y(θ ). In
Bayesian statistics, ones estimates P (θ |y ), the conditional
probability of the model parameters given the data, also known
as the posterior distribution of θ . By Bayes’s theorem,

P (θ | y) = P ( y|θ) · P (θ )/P ( y) ∝ P ( y|θ ) · P (θ ), (4)

where P (θ ) is the so-called prior distribution of the model
parameters and contains any constraints we put on our estima-
tion a priori, based on prior knowledge or limitations imposed
by the experimental design. P ( y) is a model-dependent, but
parameter-independent, normalization factor. We will refer

to the product P ( y |θ ) · P (θ ) as the unnormalized posterior
distribution of θ .

It is obvious that the likelihood function, l y(θ ) ≡ P ( y |θ ),
plays a central role in parameter estimation in either perspec-
tive. To develop the likelihood function, however, one needs to
account not just for the data, y, and the model parameters, θ ,
but also for the two types of underlying variables, the true
logarithmic densities, x, and the unknown common trend,
described by f . Central to our approach is that we explicitly
integrate l y(θ) over the underlying variables. That is,

l y(θ ) =
∫

d f
∫

dx(P ( y|x,θ ) · P (x| f ,θ ) · P ( f |θ)). (5)

We will first obtain expressions for each of the three factors
in the integrand of this expression. Then we integrate over the
two types of underlying variables, x and f , successively.

First, P ( y |x,θ ) = ∏
n,s P ( yns |xns,θ ), with each

P ( yns |xns,θ ) ∼ N (xns,Sm), a multivariate normal
distribution. We consider dynamics without memory
in ẋ(t), as mentioned above. Hence, P (x| f ,θ ) =∏

s,n<N P (xn+1,s |xns, f ,θ ). We obtain these dynamical
transition probabilities, P (xn+1,s |xns, f ,θ ), by integration of
Eq. (1a) over a time interval �tn = (tn+1 − tn) [30]. (Note
that we omit a prior distribution on x1, although this would
be trivial to include.) For the Gompertz model the transition
probabilities are Gaussian, with expectation value as follows:

〈xn+1,s |xns, f ,θ〉 = Bn · xns + φn�tn with

Bn = e−A�tn and (6)

φn = 1

�tn

∫ tn+1

tn

e−A(tn+1−t ′) f (t ′)dt ′

and covariance matrix

�n ≡ Cov(xn+1,s |xns,θ ) =
∫ tn+1

tn

e−A(tn+1−t ′)Sde−A�(tn+1−t ′)dt ′.

(7)

�n can be calculated analytically by so-called matrix fraction
decomposition ([31], summarized in the Supplemental Mate-
rial [26], Sec. S1.) Note that, in the limit of weak effective
interactions (Akl → 0 for all k,l), one obtains �n → Sd�tn
and φn → f n = 1

�t

∫ tn+1

tn
f (t)dt . From this point onward, we

will take the φn, rather than f (t), as the variables describing
the common trend.

A description of the common trend can take up many
variables. To control the effective number of variables used, we
introduce a smoothness condition in P (φ|θ) ≡ P ( f |θ), which
penalizes curvature (“flexibility”) in the common trend [32]
(this is also known as “regularization”),

P (φ|θ) ∝ exp

(
−μ2

2

∑
k,n<N

(
φk,n+1 − φkn

)2

�tn+1 + �tn

)
, (8)

where μ is a smoothing parameter that determines the
smoothness of the inferred common trend of each species.
From a Bayesian perspective the smoothness condition can
instead be considered a prior distribution for the unknown
common trend. We examine the choice of μ in Sec. III D. A
complete specification of the Bayesian unnormalized posterior
distribution requires formulating prior distributions for the
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TABLE I. Integration over x. Q(s), us , C(s), and C(0) are defined in the description of Eq. (10) and � in Eq. (7). Here, we suppressed species
indices. For example, Q(s)

nn′ , αn, and βn are K × K (sub-)matrices, while each uns is a K × 1 vector. In addition, any transposes or inverses of
single-index variables imply transposition or inversion of the indexed variable, not vice versa. That is, �−1

n = (�n)−1, and not (�−1)n. Also,
y�

ns = ( yns)�. Note that δnn′ = 1 for n = n′ and 0 otherwise. Likewise, 1(condition) = 1 if the condition is satified, and 0 otherwise.

Q(s)
nn′ = δnn′1(n>1)�

−1
n−1 − δn−1,n′1(n>1)βn−1 − δn+1,n′1(n<N)β

�
n + δnn′1(n<N)αn + δnn′ (Sm)−1

uns = 1(n>1)�
−1
n−1φn−1�tn−1 − 1(n<N)β

�
n φn�tn + (Sm)−1 yns

C(s) = ∑N−1
n=1 �tnφ

�
n �−1

n φn�tn + ∑N

n=1 y�
ns(S

m)−1 yns + ∑N−1
n=1 log |�n| + N log |Sm| + K(2N − 1) log(2π )

C(0) = μ2
∑N−1

n=1

∑N−1
n′=1((φn − φ0

n)�Dnn′ (φn′ − φ0
n′ )) − log |μ2D| + K(N − 1) log(2π )

αn = B�
n �−1

n Bn

βn = �−1
n Bn

model parameters, θ . We discuss the specification of prior
distributions in detail in the Supplemental Material [26],
Sec. S2.

The full expression for the likelihood function is compli-
cated, but both x and φ appear solely as at most quadratic
terms in exponential factors. One can thus integrate over the
underlying variables and eliminate them from the likelihood
function.

D. Integrating out underlying variables

We can now integrate the likelihood over the variables x
and φ, slightly modifying the proposal in Eq. (5) as follows:

l y(θ ; μ) =
∫

dφ

∫
dx(P ( y|x,θ )P (x|φ,θ )P (φ|θ,μ)). (9)

To do so, we put P ( y|x,θ )P (x|φ,θ )P (φ|θ,μ) in the form

exp

{
−1

2

∑
s

(x�
s Q(s)xs − u�

s xs − x�
s us + C(s)) − 1

2
C(0)

}
,

(10)

by collecting terms proportional to xnsxn′s into Q(s)
nn′ , pro-

portional to xns into uns , and constant terms into C(s) and
C(0), respectively (each defined in Table I). As long as
the measurement schedule is the same for all ecosystems,
Q(s) = Q for all s. One can rewrite the term (10) as

exp

{
− 1

2

∑
s

((xs − Q−1us)
�Q(xs − Q−1us)

− us
�Q−1us + C(s)) − 1

2
C(0)

}
. (11)

We will repeatedly encounter such Gaussian inte-
grals. We remind the reader that (for general z and A)∫ ∞
−∞ d ze− 1

2 z�A−1 z = √|A|(2π )p, with |A| the determinant of
A and p the number of elements in z. We perform the Gaussian
integration over x in Eq. (9). This leaves an integral over φ,

l y(θ ; μ) =
∫

dφ exp

{
− 1

2
S(log |Q| − KN log 2π )

− 1

2

(
C(0) +

∑
s

(C(s) − us
�Q−1us)

)}
. (12)

To perform the integration over the φ, we note that us , C(s),
and C(0) all depend on φ (see Table I). One can expand the
exponent in Eq. (12) and collect terms proportional to φnφn′

in Rnn′ , to φn in vn, and constants into a term C ′, completely
analogously to the integration over x (we summarize R, v, and
C ′ in Table II). Integration of φ is Gaussian as well and yields
the following:

l y(θ ; μ) = exp
{ − 1

2 (C ′ − v�R−1v + log |R|
−K(N − 1) log(2π ))

}
. (13)

For a Bayesian analysis, we simply multiply the likelihood
function in Eq. (13) by the expressions for the prior distri-
butions (see the Supplemental Material [26], Sec. S2, for a
detailed description).

E. Likelihood maximization, parameter transformation, and
the posterior distribution

We obtained maximum likelihood estimates of the model
parameters by numerical optimization of the likelihood func-

TABLE II. Integration over φ. R, v, and C ′ are defined in the description of Eq. (13). The conventions used are the same as in Table I.
Note that Q−1

nn′ = (Q−1)nn′ . Since φ is a K(N − 1) × 1 vector, v is also a K(N − 1) × 1 vector and D and R are K(N − 1) × K(N − 1)
matrices.

Rnn′ = μ2Dnn′ + 1(n<N)�t2
nS�−1

n δnn′ − 1(n<N)1(n′<N)S�tn�tn′ × {
�−1

n Q−1
n+1,n′+1�

−1
n′ − �−1

n Q−1
n+1,n′β�

n′ − βnQ−1
n,n′+1�

−1
n′ + βnQ−1

nn′β�
n′
}

vn = μ2
∑N−1

n′=1 Dnn′φ0
n′ + 1(n<N)�tn

∑
n′,s

(
�−1

n Q−1
n+1,n′ − βnQ−1

nn′
)

(Sm)−1 yn′s

C ′ = μ2
∑N−1

n=1

∑N−1
n′=1 φ0

n

�Dnn′φ0
n′ + S

∑N−1
n=1 log |�n| + SN log |Sm| + S log |Q| + ∑S

s=1

∑N

n=1 y�
ns(S

m)−1 yns

−∑S

s=1

∑N,N

n,n′=1 y�
ns(S

m)−1Q−1
nn′ (Sm)−1 yn′s − log |μ2D| + K(S + 1)(N − 1) log(2π )

L = −2 log P ( y|θ ) = C ′ + log |R| − v�R−1v − K(N − 1) log(2π )
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tion [Eq. (13)] over the parameters θ . To be precise, we
minimized Ly(θ ; μ) ≡ −2 log l y(θ ; μ) over a set of trans-
formed model parameters, ϑ = w (θ), with w a parameter
transformation (see below). For simplicity, we will sometimes
refer to L itself as the log-likelihood. Minimization was
performed using the Nelder-Mead algorithm (MATLAB 6.1,
Mathworks, Inc.) and a conjugate gradient algorithm [33],
with similar results (cf. Ref. [13]). We recommend examining
the likelihood surface to verify a convex shape around the
found minimum (as in Fig. S-4). For small data sets it may
be helpful to use a stochastic minimization routine such as
simulated annealing and/or multiple initial parameter guesses
to avoid convergence to local minima.

Parameter transformations play two roles in this work. First,
they allow unconstrained minimization. That is, while, for
example, Sm

k would need to be constrained to be positive, this
is not necessary for log Sm

k . In addition to logarithmic trans-
formation for the Sm

k , we used the so-called log-Cholesky
transformation for the matrix Sd to guarantee the constraint
that it be positive definite [34].

The second purpose of parameter transformation is to
guarantee a nearly parabolic log-likelihood surface around the
likelihood maximum. A suitable choice of w (θ ) can often yield
a nearly quadratic structure of L y(ϑ ; μ) around its minimum,
ϑ̂ [35] (for our data, this is illustrated in Fig. S-4). Such a
condition facilitates integration over model parameter space
and allows maximum likelihood estimates to be as accurate
as possible (by the Cramér-Rao inequality [36]). Such a
transformation can be done after the optimal parameters have
been found to make Gaussian approximations in subsequent
analysis more accurate. For this purpose, we instead described
Sd by the set {log(Sd

kk),Sd
kl}.

Alternative parameter transformations for this purpose have
been proposed in Ref. [35]. More generally, classes of so-called
normalizing transformations have been proposed [37], as
well as closely related “variance-stabilizing transformations”
[37,38].

1. Bayesian approach

In Bayesian statistics one can obtain a full description of
the joint posterior probability of the model parameters. To do
so, we first sought the minimum of

LB
y (ϑ ; μ) ≡ Ly(ϑ ; μ) − 2 log P (ϑ)

as we did for Ly(ϑ ; μ). Provided LB
y (ϑ ; μ) is approximately

parabolic around its minimum, ϑ̂ , one can approximate the
unnormalized posterior probability of the parameters around
ϑ̂ as

P ( y|ϑ)P (ϑ)

� exp
( − 1

2LB
y (ϑ̂ ; μ) − 1

2 (ϑ − ϑ̂)�H̃(ϑ − ϑ̂)
)
, (14)

where H̃ is the “Hessian matrix” of the log-likelihood function,
describing how sharply LB

y is peaked around the optimal
estimate. That is,

H̃ij = ∂2LB
y

∂ϑi∂ϑj

∣∣∣∣
ϑ̂

. (15)

In this approximation [Eq. (14)], it is also trivial to
normalize the joint posterior distribution by Gaussian in-
tegration (which we will do explicitly in Sec. III F). We
now obtain the posterior distribution for our original model
parameters θ by transforming P (θ |y ) dθ = P (ϑ |y ) dϑ =
P (w(θ) | y ) dw(θ ) or by constructing a histogram computa-
tionally by applying the inverse transformation w−1(ϑ) to
samples drawn from P (ϑ | y ). The Hessian matrices before
and after model parameter transformation are related by

H = J�H̃J, with Jij = ∂ϑi

∂θj

. (16)

We want to make a number of observations about these
results. First, provided LB

y is nearly parabolic around ϑ̂ , H̃−1

is an excellent approximation of the covariance matrix of the
posterior distribution of ϑ , that is, the posterior covariance
matrix (Sec. III E). In addition, the expected value of H̃ is the
so-called Fisher information matrix, which places a bound
on how well any estimator can perform (see Sec. III G).
In practice, we calculate the Hessian matrix using finite
difference derivatives of the log-likelihood function, Ly(ϑ ; μ)
or LB

y (ϑ ; μ). Given the likelihood function in Table II, it is,
in principle, possible to calculate the Hessian matrix exactly
instead.

F. Closed ecosystem experiments

These experiments are described in detail in Ref. [1].
Our CESs contained three motile, unicellular organisms:
the green alga Chlamydomonas reinhardtii, the bacterium
Escherichia coli, and the ciliate Tetrahymena thermophila.
Briefly, replicate CESs were constructed by inoculating the
three species in 3 ml of a minimal medium with 0.03%
proteose peptone (as the only source of carbon and nitrogen)
and kept in small (∼5-ml) cuvettes. We kept these CESs under
constant light and temperature. We noninvasively measured
densities in a small subvolume (∼10 nl) in each cuvette by
in situ fluorescence microscopy, acquiring a few thousand
images per time point on measurement days. Measured local
densities were proportional to the observed average number
of individuals per image. We performed two independent
experiments, in which densities were measured in sets of eight
to nine replicate ecosystems at frequencies of 4–7 times per
week (experiment 1) and 2, 1, 1

2 , 1
4 , and 1

8 times per week
(experiment 2) for each set of ecosystems. Sets of systems
measured less frequently than once per 2 weeks were not
included in the analysis presented here (retaining 35 replicate
systems for the analysis presented here).

III. RESULTS

A. Overview

In this section, we outline the challenge posed by the
statistical analysis and experimental design of time-series
measurements on replicate stochastic systems (Sec. III B). We
study the likelihood function derived in Eq. (13) and Tables I
and II to address several aspects: First, we characterize the
scaling of bias and variance of parameter estimates using
simulated time series (Sec. III C). This analysis emphasizes
that replication is especially valuable when one needs to
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disentangle a common trend and fluctuations. We discuss
how one should smoothen the trend: There is a basic
tension between smoothing the average dynamics too much
(essentially into a straight line) and too little (Sec. III D). Too
much smoothing results in mistaking true temporal variations
of the average dynamics for fluctuations. Too little results
in interpretation of measurement errors as fluctuations. We
propose and discuss results for two choices of intermediate
smoothing. Measurements typically give different amounts
of information on different parameters and parameter com-
binations (Sec. III E). We show how one can detect poorly
constrained parameter combinations. We then address how
one can judge the quality of models both in comparative terms
(against other models) and in absolute terms (in terms of data
fit) in Sec. III F. Doing so, we clarify a remarkably common
situation in which parameter estimates and model comparison
suggest conflicting interpretations of the data, the Lindley
paradox. We then describe how one can improve experimental
design with a focus on particular (combinations of) parameters
(Sec. III G). Surprisingly, nonstandard experimental designs
can in some cases lead to substantial improvement in parameter
estimates.

B. The basic problem

Whenever one has noisy time series for one or more
instances of a system with stochastic dynamics, one is faced
with questions about how to assign any variation in the data: Do
variations from one time point to the next represent a change in
the common trend, a fluctuation of the dynamics with respect
to the common trend, or simply measurement error? For unique
time series one cannot answer this question without making
strong assumptions about the average dynamics. The situation
differs when time series are available for replicate systems, as
illustrated in Fig. 1 for our set of replicate closed ecosystems.
The measurements, in our notation the ykns , are shown for 2
of 35 systems as circles and squares, respectively.

Crucially, one can estimate both the average dynamics or
common trend 〈xkn〉 (estimates with associated uncertainty
shown as broad bands in Fig. 1) and the fluctuations in each
system around the common trend [shown are bands of inferred
xks(t) ± 2σ (xks(t)) tracking the measurement points]. Since
we integrate over the underlying variables, we estimate the av-
erage dynamics and densities in individual replicates implicitly
while estimating the model parameters. Whether implicit or
explicit, however, this ability to separate fluctuations around
the average dynamics from the average dynamics is crucial
for model parameter estimation and the accurate analysis of
variability in system dynamics. (We discuss how one can
extract the posterior distribution of the underlying variables
in detail in the Supplemental Material [26]).

C. Variance and bias of estimates

To validate our statistical method, we examined inference
for a number of artificial data sets. In Fig. 2 we show results
for artificial data generated by a three-species model following
the dynamical and measurement equations used for inference
[Eq. (1); for details of the simulations, see the Supplemental
Material [26], Sec. S6] and sampled at regular intervals
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FIG. 1. (Color online) Outline of the statistical problem. Density
time series for 2 of 35 replicate closed ecosystems are shown here
as circles and squares, respectively (see Ref. [1]). Fitting a model
implies that we estimate the true density dynamics per species for each
ecosystem (shown as the posterior mode xks(t) ±2 posterior standard
deviations with the thin bands tracking the data points). In addition,
we implicitly estimate the common trend shared between replicate
systems, shown here for each species as a broader, less variable
band ±2 posterior standard deviations. (Green) Chlamydomonas
reinhardtii, (red) E. coli, and (blue) T. thermophila. Densities of C.
reinhardtii according to the scale on the right. Data before day 5 were
not used in analysis because mean dynamics were fast relative to the
time between measurements of different replicates.

�t = T/N . Specifically, we examine scaling of the posterior
variance of the model parameters (shown here is the largest
eigenvalue of the posterior covariance matrix for each group
of parameters, see Ref. [39]) and bias (the average difference
between the estimated and true value) as a function of the
number of data points per species, NS. The number of data
points can be varied in a number of ways: One can (i) vary the
number of systems S at constant number of time points, N ,
total duration, T , and measurement interval, �t (the crosses
in Fig. 2); (ii) vary N at constant S and T (that is, �t varies as
well, filled circles); or (iii) vary N at constant S and �t (that
is, T varies as well, open circles).

By and large, the posterior variances of the model param-
eters scale as 1/NS as expected [solid lines, Figs. 2(a)–2(c)].
However, at small NS these variances were in some cases
much larger than expected from extrapolation, especially for
variable �t (dashed lines, Figs. 2(a)–2(c)]. Close inspection
revealed that this happens as the global minimum of L
starts to merge with local minima assigning all the noise in
the data to either measurement error alone or to dynamical
noise alone (cf. Refs. [14,40]). Cases in which one can no
longer separate the different parameters (here the relative
contributions of dynamical noise and measurement error at
large �t) are called “identifiability problems” (see Sec. III E).
As the difference between the solid and dashed curves in
Figs. 2(a)–2(c) suggests, however, one can attain much more
precise estimates at the same overall effort by designing
the measurement schedule differently. We consider “optimal
sampling” in Sec. III G.
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FIG. 2. Validation of the Bayesian inference method for artificial data. Shown are posterior variance [(a), (b), and (c)] and bias [(d), (e),
and (f)] as a function of N · S, the number of time points per species. (Open circles) For S = 24 systems the number of time points, N , was
varied at constant measurement interval, �t (that is, total duration, T , varies, too, for these time series). (Filled circles) For S = 24 systems the
number of time points was varied at constant total duration (�t varies, too). (Crosses) At constant N , T , and �t the number of systems was
varied. Different symbols represent different artificial data sets. (a) Scaling of the largest eigenvalue of the posterior covariance matrix of the
Aij (the largest-uncertainty direction). [(b) and (c)] Scaling of the largest eigenvalue of the posterior covariance matrix of the log Sd

ii (b) and
log Sm

ii (c). Simple power-law fits for each case are shown as solid lines and have exponents, within error, of −1. For variation of N at constant
T (filled circles), linear fits were inadequate. Instead, quadratic fits are shown as dashed curves. Scaling of the observed bias (maximum a
posteriori estimate=true value) for (d) the diagonal elements of A, (e) log Sd , and (f) log Sm (each averaged over species) together with fits
proportional to 1/(NS). Offsets are not included in any of the fits since they did not significantly differ from 0 for any curve. Results calculated
using the unit information prior (see Sec. III D). Note that vertical scales are logarithmic in (a)–(c) and linear in (d)–(f).

Parameter estimates can be biased: methods can system-
atically under- or overestimate parameter values. To examine
bias inherent in our method, we show the average bias in
the Aii [Fig. 2(d)], log Sd

ii [Fig. 2(e)] and log Sm
i [Fig. 2(f)].

These biases vanish as NS → ∞. Bias in each panel is
most pronounced for scaling with variable S (crosses). For
the Aii , this is a well-documented effect in the econometrics
literature and analytical results are available [41]. Bias of the
Aii estimates is expected to scale as ∼1/ST . In essence, the
estimated common trend will resemble the data more closely
than the true common trend because it is inferred from the same
data. Since the Aii measure the time scales at which each time
series tends to return to the common trend, each time series
will seem to have a stronger tendency to return to the common
trend (and thus have a larger Aii) than is true. At smaller values
of μ, this effect may be enhanced. The bias in log Sd

ii [Fig. 2(e)]
and log Sm

i [Fig. 2(f)] occurs for much the same reason: the
difference between the true and estimated common trends is
due to both measurement error and dynamical noise. The dif-
ference between the true and the estimated common trend will
thus contain some unobserved variance. On average, one thus
underestimates the strength of both sources of noise by about a
factor 1/S.

These biases highlight an important advantage of having
replicate time series available: The common trend and the
dynamics of individual replicate systems can be separated
more reliably and, hence, effective interactions determined
with less bias. We note that results are similar for Bayesian
and maximum likelihood approaches since our priors have
little effect on parameter estimation (see the Supplemental
Material, [26] Fig. S-4).

D. Parameter estimation and the common trend

1. Choice of smoothing parameter

Often in ecology the common trend is assumed to be
a simple exponential function, either by using a constant-
coefficient “stochastic exponential” model (in our formulation
A = 0 and μ → ∞, that is, f constant; cf. Refs. [9,11,21,23])
or by adding an explicit linear time dependence to x(t) [42,43].
More generally, the constant-coefficient stochastic Gompertz
model corresponds to μ → ∞ for general A. Unfortunately,
such constant-coefficient models can describe only a few
types of average dynamics, and any idiosyncratic variation of

the average will be confounded with fluctuations around the
average dynamics. Thus constant-coefficient approaches are
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FIG. 3. (Color online) Choice of smoothing parameter. (a) De-
pendence of the log-likelihood function [Ly(θ ) = −2 log l y(θ )] on
the smoothing parameter μ. Dotted lines represent μ = 25 and the
maximum likelihood (ML) estimate of μ. (b) Maximum a posteriori
estimates of interaction coefficients Aij as a function of the smoothing
parameter μ. Dotted lines represent μ for the unit information prior
(UIP), the ML estimate for μ, and μ = 25, a value used throughout
the remainder of the text. Symbols and labels marking each Aij cor-
respond to those in Fig. 4(a). Panels (a) and (b) share the same x axis.

particularly ill suited for time series of replicate ecosystems.
For such data the average dynamics can—to some extent—
be separated from the dynamics of each individual repli-
cate ecosystem. Thus, one needs models like Eq. (1a), with
flexible average dynamics, that is, μ < ∞. We examine two
alternative perspectives on the choice of smoothing parameter:
treatment as a model parameter and treatment as a Bayesian
prior.

From a maximum likelihood perspective, one could treat μ

as an additional model parameter characterizing the dynamics
of the common trend. For our data set, such straightforward
optimization yielded an optimal value of μ, μML � 100
[Fig. 3(a)]. In general, however, such an approach can have
surprising consequences. We noticed that for some test data
μ kept rising during optimization of the likelihood function.
Indeed, even a set of multiple replicate time series displaying
some curvature in the common trend can yield μML → ∞. We
investigate this in detail in the Supplemental Material [26],
Sec. S3. For example, for a single species, for A = 0 and
Sm = 0, a critical number of replicates Sc exists below which
μML → ∞,

Sc ≈ NSd�t∑
n,n′ �ȳn�ȳn′

∼ “noise”

“structure”
, (17)

where ȳ is the average dynamics over replicate ecosystems
and �ȳn = ȳn+1 − ȳn. In the Supplemental Material [26], Sec.
S3, we derive a form of Eq. (17) valid for the full model. The
result retains the same trade-off between the cost of complexity
of the trend description and improvement of the fit to the

data, yielding large, sometimes infinite, μML for small, noisy
data sets with few features in the average dynamics and small
μML for large, accurate data sets with detailed features in
their average dynamics. Using the result for the full model
[Eq. (A3-28) of the Supplemental Material], we estimate that
for our experiments one would need at least ∼12 time points
per species (that is, N × S) to obtain a finite μML in direct
optimization.

From a Bayesian perspective, one can consider μ a
“hyperparameter” determining the relative role of the prior
distribution of the φnk . Specifically, we test giving the prior
distribution a weight equal to that of a single additional time
series (a concept known as the “unit information prior” (UIP)
[44]). Following Ref. [44], this implies that the eigenvalues,
μ2λD , of the matrix μ2D should on average be S times smaller
(and the variance S times larger) than the eigenvalues of the
data-derived matrix (R′ = R − μ2D), λR′ . (The matrices μ2D
and R can be considered inverse covariance matrices of the
prior and posterior distribution on φ, respectively, so R′ is the
data-derived part.) This constraint yields

μ2
UIP = λ̄R′

Sλ̄D

, (18)

where the bars indicate geometric means. In practice, we first
calculate R′ and D and then set μ. For our data, the unit
information prior yields μUIP = 0.8. Of course, in a Bayesian
approach one can introduce other prior “beliefs” about μ

instead.
To examine the consequences of each choice of μ, we

examine their effects on inference for our experimental data.
It is important to keep in mind that, in principle, our method
fits all the observed dynamics, not just the average dynamics
or the fluctuations around it. At low μ, the inferred common
trend is described by a large number of trend variables (here up
to 188 variables, {φnk}, per species as μ → 0) and effectively
traces the sample average dynamics. Since many variables
{φnk} are available to fit the average dynamics, estimates of
the (other) model parameters are dominated by the properties
of the observed fluctuations around the average dynamics.
However, some variation among the {φnk} is likely due to
limited sampling and measurement error. As μ increases, this
variation is progressively filtered out. This noise-suppression
effect should become relevant around μUIP. The accompanying
large decrease in Ly(θ ; μ) [Fig. 3(a)] implies that many of the
{φnk} are not well determined at low μ.

As shown in Fig. 3, as we further increase μ up to about the
maximum likelihood estimate for μ, μML, parameter estimates
are fairly insensitive to the precise value of μ. For example,
estimates for Aij based on the unit information prior, μUIP, are
quite similar to those at μML. The same is true for estimates
of the Sm

i and Sd
ij (data not shown). However, beyond μML

few effective degrees of freedom remain in the common trend
(see the Supplemental Material [26], Sec. S3 and Fig. S-2,
for a quantification). Since the parameters Aij do appear
in the description of the common trend (see, for example,
the Supplemental Material [26], Sec. S3), a decrease in the
number of effective degrees of freedom in the common trend
description implies that estimates of the Aij are now also
affected by the average dynamics. As a consequence, any
systematic deviations between the observed common trend and
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any trend the model can describe will introduce idiosyncratic,
and possibly large, biases in the Aij . At small μ, on the
other hand, the φnk will describe the average dynamics, and
the estimates of Aij will be dominated by the properties of
the fluctuations around the common trend. If one, thus, is
interested in the statistical structure of the fluctuations around
the average dynamics, high values of μ should be avoided, even
if this is not immediately apparent from the log-likelihood.

This analysis should be disconcerting to anyone analyzing
unique time series. Even though our common trend does not
display any pronounced features (Fig. 1), the assumption of
constant f (or large μ) would lead to incorrect inferences
about the statistical structure of fluctuations around the average
dynamics. For example, while the change in log-likelihood is
modest, three of nine coefficients, involving all species, clearly
switch sign as μ is increased beyond μML.

2. Estimates of interaction coefficients

Once the smoothing parameter has been set, one can
examine the posterior distribution of the model parameters. To
do so, we note that the parameter transformations discussed in
Sec. II E allow us to normalize the posterior distribution and
calculate the posterior covariance and correlation matrices of
the inverse parameters.

Of direct ecological interest are the estimates of the effective
interaction coefficients Aij . We will analyze these interaction
coefficients for μ = 25. As shown in Fig. 4(a), estimates of
eight of nine interaction coefficients significantly differ from 0
(the exception, A32, is the effect of E. coli on T. thermophila).

Besides the statistical validation of our method above, we
sought to provide some biological validation for these esti-
mates. That is, do we estimate effective interaction coefficients
that are reasonable? To do so, we analyzed an additional set
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FIG. 4. (Color online) Inference for data obtained for replicate closed microbial ecosystems. Throughout, we indicate C. reinhardtii by 1
and the color green (light gray), E. coli by 2 and red (gray), and T. thermophila by 3 and blue (dark gray). (a) Marginal posterior distributions
for the interaction coefficients Aij . (b) Schematic display of estimated interactions between the three species (maximum a posteriori estimates).
Arrows: −Aij . Undirected “blocks” between species: Sd

ij (off-diagonal elements only). Left diagram: Estimates for our three-species data set.
Right diagram: Estimates for “coarse” one- and two-species data. We use −Aij , since −Aij appear in the state equation [Eq. (2)]. That is,
−Aij < 0 indicates a negative effect of species j on the density of species i. In both cases all self-interactions are negative and all interspecies
interactions are positive, except for the undirected term due to correlations in dynamical noise between C. reinhardtii and E. coli in the left
diagram and effects of C. reinhardtii and T. thermophila on E. coli in the right diagram. (c) Posterior distributions for the three eigenvalues of
A, sorted by size. Imaginary components were small or nonexistent. Labels L, M, and S are indicated to match panel d. (d) Observed dynamics
(open circles) of the eigenvectors of CS (“ecomodes”), compared to the dynamics of these ecomodes predicted by the model (for x), shown as
posterior mean and 90% confidence interval for the mean. Ecomodes are labeled according to the corresponding eigenvalues of CS as L (large),
M (middle), and S (small), respectively. Predictions were obtained by drawing from the joint posterior distribution of (A,Sd ) and propagating
the dynamics of CS according to Supplemental Material [26], Sec. S1. Filled circles at t = 0 indicate the eigenvectors of Sd , to which CS should
reduce as t → 0. At t = 100 days, filled circles indicate the eigenvectors of A. Comparison of panels (c) and (d) shows, for example, that the
largest ecomode (d) is similar to the eigenvector of the matrix A (c) with the smallest eigenvalue. Observed ecomodes are poorly defined over
the first 20 days.
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of “coarse” measurements on duplicate one- and two-species
closed ecosystems described in the Supplemental Material
[26], Sec. S4. In these experiments, ecosystems were sampled
manually after gentle mixing every 7–10 days for 9 weeks and
densities determined by haemocytometry (T. thermophila and
C. reinhardtii) and plate counts (E. coli).

The level of sampling and replication of this coarse data
set precludes separate identification of the two sources of
noise, measurement error, and dynamical noise. A schematic
comparison of the obtained effective interaction coefficients
is shown in Fig. 4(b). For most interactions, we obtain the
same sign for both types of experiment, but the estimated
effective interactions tend to be stronger in the coarse mea-
surements. This could be a result of increased bias in the
analysis of this small data set. For two of the interactions,
the effects of both T. thermophila and C. reinhardtii on
E. coli, the estimated sign differs between the two types
of experiments. We do note, however, that a corresponding
discrepancy can be seen between the effective interactions
in the coarse one- and two-species experiments and a coarse
three-species experiment conducted at the same time (see also
the Supplemental Material [26], Sec. S4 and Fig. S-3). This
suggests that E. coli consistently achieves higher densities in
the presence of both other species than expected from the
effective interactions with either species alone, suggesting
a possible three-species interaction term. We detail these
observations in the Supplemental Material [26], Sec. S4. It
is noteworthy that the interactions obtained from fluctuations
in a three-species system resemble those found in response to
very strong perturbations (that is, the presence or absence of
one or more species).

3. Fluctuations in closed ecosystems

The availability of the joint posterior distribution of the
model parameters allows us to ask more intricate questions,
too. For example, one can determine the posterior probability
distribution for each of the eigenvalues of A, λA. The posterior
probability distribution of the real parts of the λA, sorted by
size, is shown in Fig. 4(c). From a biological point of view,
these results are remarkable: The smallest eigenvalue of A is
indistinguishable from 0 (suggesting random-walk dynamics
along its corresponding eigenvector [1]), even though the
growth of each species, directly, is self-limiting (Aii > 0). That
is, mutually “stimulating” interspecies interactions appear
to largely cancel out intraspecies density dependence at
the measured densities and time scales. We caution that
the obtained interaction coefficients are effective ones and
can reflect correlated changes in fitness during evolutionary
change or spatial interactions as much as, e.g., predator-prey
interactions or direct resource competition.

We further illustrate the utility of having the joint posterior
distribution of model parameters by addressing how species-
species interactions structure the variation arising between
replicate ecosystems. This question was raised by our previous
work [1], in which we studied the structure of variability
in populations in replicate closed ecosystem experiments. To
examine the variability across the set of replicate ecosystems
(S), we estimated the logarithmic density correlation matrix

CS as follows:

CSkl(tn) = Cov( ykn, yln)

σ ( ykn)σ ( yln)
. (19)

That is, this matrix describes how different realizations of
replicate ecosystems at a particular time point are distributed
in the space of species densities (log n1, log n2, . . .). We
observed, first, that the eigenvectors and eigenvalues of
CS were distinct and stabilized after about 20 days in a
reproducible way [see also Fig. 4(d), open circles]. Because of
these properties, we call these eigenvectors “ecomodes.”

Second, we observed that these ecomodes were similar to
the eigenvectors of the “species interaction matrix” [1,19],
which measures the structure of short-term (weekly) fluc-
tuations in species densities within individual ecosystems,
suggesting that species interactions determine the long-term
structure of variation between replicates. We obtained this
species interaction matrix by simple linear regression of
measured deviations of the logarithmic densities from the
replicate average 1 week apart.

Within the Gompertz model, one can examine the relation-
ship between species interactions and ecomodes in more detail.
Specifically, there are two sources of correlation between
species densities in the model: the effective interaction
coefficients Aij and the dynamical noise covariances Sd

ij .
Since we have an analytical expression for the dynamics of
the logarithmic density covariance matrix [Eq. (7) and more
detail in the Supplemental Material [26], Sec. S1], we can
repeatedly sample the joint posterior distribution for A and
Sd and obtain a distribution of predicted ecomode dynamics
(Fig. 4(d), compared with estimates for the data obtained in
Ref. [1]). The ecomodes are labeled L (large), M (medium),
and S (small) in order of their corresponding eigenvalues (L:
∼2, M: ∼0.7, and S: ∼0.3).

We compare the predicted ecomode dynamics (lines with
90% posterior confidence interval) with observations from
Ref. [1] [Fig. 4(d), open circles]. To determine which source of
species-species correlations dominates ecomode composition
within our model, we display the eigenvectors of the density
correlation matrix corresponding to Sd alone as filled circles
on the left y axis (t = 0), and the eigenvectors of A as filled
circles on the right-hand y axis (t = 100 days). This display
is motivated by the observation that dynamical noise exerts
its effects instantaneously, while the Aij act over time. To
establish the correspondence between eigenvectors of A and
ecomodes, we use the labels L, M, and S, connecting the
eigenvectors of A shown in Fig. 4(d) at t = 100 days to the
eigenvalues of A [Fig. 4(c)]. Even though the relation between
A and CS is in general quite complex [19], the ecomodes
resemble the eigenvectors of A quite closely after a few weeks,
despite the additional interspecies correlations present in the
dynamical noise. In particular, the L ecomode is connected
with the eigenvector of A with a nearly 0 eigenvalue.

We conclude that after a few weeks the structure of density
covariation across systems is dominated by the effective
species interactions and not by correlations within the dynam-
ical noise. Indeed, we see that the largest density fluctuations
occur along a collective dimension of the ecosystem which
nearly coincides with the eigenvector of A with nearly zero
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eigenvalue. Moreover, this occurs despite negative density
dependence for each individual species (the Aii > 0). This
situation is reminiscent of the phenomenon of co-integration
of macroeconomic time series [45].

E. Identifiability of model parameters

It may not be possible to estimate every parameter com-
bination accurately from the data. In essence, this problem
arises when different θ give rise to similar P (Y |θ), with Y the
general stochastic variable of which the data, y, are considered
a realization. In such a case, the model is said to be not (or not
completely) identifiable. Identifiability can be global or local in
parameter space [for example, in a regression y = (a/b)x + η,
a and b cannot be estimated independently anywhere in
parameter space, while in a regression y = ax/(x + b) + η,
a and b cannot be estimated independently if b � x for the
available measurements].

Using our data set, we study identifiability empirically
using the posterior correlation matrix of the model param-
eters [Fig. 5(a)]. (Note that the posterior correlation matrix
is estimated using the Hessian matrix [Eq. (15)] as an
approximation of the inverse posterior covariance matrix.)
For example, the observed posterior correlation between the
estimates of Sd

11 and Sm
1 is −0.60 [highlighted in Fig. 5(a)].

We illustrate this using a contour plot of the joint posterior
distribution of Sd

11 and Sm
1 [Fig. 5(b)]. Shown are also the

eigenvectors of the posterior covariance matrix of these two
model parameters [Fig. 5(b), blue arrows]. Along the direction
nearly parallel to the diagonal, along which the sum of the
two noises varies, the posterior variance is about 6× smaller
than along the eigenvector orthogonal to it, along which their

difference varies. That is, the sum is better constrained than
the difference. (We note that such effects imply as well that
marginal variances of log Sd

11 and log Sm
1 are both about twice

as large as their conditional variances with all other model
parameters constrained at their optimal values.)

In Fig. 5(c) we show the eigenvalue spectrum for the
entire posterior correlation matrix (red dots). The larger the
eigenvalue, λ, the harder the parameter combination described
by the corresponding eigenvector is to estimate. We show the
composition of the eigenvectors with the largest eigenvalues in
Fig. 5(d). The dominant effect displayed by each eigenvector
is a noise identifiability problem for each species. It is often
hard to distinguish between dynamical noise and measurement
error in models containing both [9]. For example, for a
simple Gompertz model (in our notation K = 1, S = 1,
μ → ∞), Knape [40] showed that for large A (strong “density
dependence”) it is hard to separate the relative contributions
of Sd and Sm. In a single species model, the total noise in
dynamics (asymptotically) equals Sd/A + Sm. Indeed, we see
that the estimates of Sd

ii ,Aii , and Sm
i are correlated for each

species [Fig. 5(d)]. For example, as shown in v(c), for the same
data a larger estimate of Sd

22 would yield a larger estimate of
A22 and a smaller estimate for Sm

2 . An important consequence
is that, if one assumes any of these three parameters to be zero,
one introduces significant bias in the estimates of the other
two parameters. There is significant additional structure in
the eigenvectors shown in Fig. 5(d). In particular, since the
densities of C. reinhardtii and T. thermophila tend to covary
in our data set, there is some difficulty telling the effects of
the two species apart [that is, a larger estimate of A11 implies
a smaller estimate of A13 and vice versa in v(a), and likewise
for A31 and A33 in v(b), Fig. 5(d)].
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FIG. 5. (Color online) Analysis of posterior correlations between parameters. (a) The posterior correlation matrix of the linear model for
our experimental data contains some significantly nonzero elements (for the scale, see the colorbar; substantial posterior correlations between
interaction coefficients are negative, between measurement error and dynamical noise negative, and between dynamical noise and interaction
coefficients positive). (b) Illustration of posterior correlation: There is some correlation between the estimates of dynamical and measurement
noise as illustrated for C. reinhardtii: The total noise can be estimated much better than the size of either dynamical or measurement noise
separately. The other parameters were constrained to their optimal values. (c) Eigenvalues of the posterior correlation matrix ranked by
magnitude. The three largest eigenvalues are labeled a, b, and c, respectively. (d) Composition of the three eigenvectors of the posterior
correlation matrix [see the corresponding labels in (c)]. Solid and dotted lines indicate one and two σ levels, respectively, for uncorrelated
Gaussian random variables with the same number of observations. Some of the most pronounced components of each eigenvector are labeled.
In all panels we indicate C. reinhardtii by 1, E. coli by 2, and T. thermophila by 3 in subscripts.
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How does one judge the statistical significance of these
results? In principle, since a closed form expression for the
likelihood function is available, one can calculate the posterior
correlation matrix exactly and even derive its entire distribution
for any set of model parameter values. We will use such an
explicit calculation for the elements of the expected Hessian
matrix for a simpler model when we examine the possibility
of improvement of experimental designs in Sec. III G. For
our data, statistical fluctuations are expected to be relatively
small, since the number of observations is much larger than
the number of entries in the posterior correlation matrix.
For smaller data sets, we recommend study of the Hessian
matrix instead in order to avoid numerical errors from matrix
inversion.

At this point, we see room for further application of
techniques from statistical physics in two directions. First, it
seems reasonable that methods from random matrix theory
[46] can be extended to posterior correlation matrices for
complex models. That is, it should be possible to judge the
significance of modes of the posterior correlation matrix by
more general considerations of number of replicates, time
points, and so on. Second, the posterior correlation matrix
is closely related to matrices used to study system sensitivity
to parameter perturbations in systems biology and other fields
[47]. Recent statistical physics approaches to such matrices
suggest such matrices may fall into certain universality classes
[48], based on their eigenvalue spectra.

We make three more observations. First, replication plays
an important role. An empirical analysis [as in Figs. 5(b)–5(d)]
generally requires at least a number of observations compa-
rable to the number of elements in the posterior correlation
matrix [49]. In our case, keeping K,N constant, this means
one would need at least S > p2/KN ≈ 4.5 replicates, with
p = 18 the number of model parameters. More generally, for
the Gompertz model p = 3

2K(K + 1) and one needs at least
S > 9

4K(K + 1)2/N .
Second, as long as posterior correlation does not equal

±1, large eigenvalues of the posterior correlation matrix only
mean that one needs more data than in the absence of posterior
correlation to obtain good parameter estimates. For example,
the posterior correlation between Sd

11 and Sm
1 is −0.60. It

would be easier to estimate these parameters without this
posterior correlation, but we obtain good estimates for both
(relative errors of 6% and 15% for Sd

11 and Sm
1 , respectively)

and even for their ratio (relative error: 19%). Finally, as we will
show below, thoughtful experimental design can substantially
alleviate identifiability issues.

F. Model selection

Once one has estimated model parameters, it is natural to
ask how good the model really is. We will consider two ways of
addressing this. First, we will compare the quality of one model
relative to another, a task known as “model selection.” Second,
we will look for a way to address how well an individual model
fits the data. Our principle aim in this section is to stimulate
a more critical attitude towards model selection criteria in
ecology.

1. Model selection criteria

To judge the relative merits of models, we calculate Bayes
factors [50] or, more precisely, their logarithms. For a model
M and data y, Bayes’s theorem yields P (M| y)P ( y) =
P ( y|M)P (M), so one can compare the relative probabilities
of two models, M1 and M2, being the models generating the
data, as follows:

P (M1| y)

P (M2| y)
= P ( y|M1)

P ( y|M2)
× P (M1)

P (M2)
. (20)

For now, we will assume that models are a priori equally
likely, although alternative assumptions can also be considered
(and, as we will see, this choice can have nontrivial con-
sequences). The ratio of P ( y|M1) and P ( y|M2) is known
as the Bayes factor. Hence, we calculate for each model
P ( y) = P ( y|M) as follows:

P ( y|M) =
∫

dθP ( y|θ )P (θ)

�
∫

dθP ( y|θ̂ )P (θ̂)

× exp

(
− 1

2
(θ − θ̂ )�H(θ − θ̂ )

)

= P ( y|θ̂)P (θ̂ )
√

(2π )p|H−1|, (21)

where, for each model, θ = θM; θ̂ is the optimal parameter
vector and where H is the Hessian matrix at θ̂ as in Eq. (15).
The approximation made here is that the likelihood function is
essentially Gaussian (or the log-likelihood function parabolic)
around θ̂ . Often, one can make this an excellent approximation
by finding a suitable transformation ϑ = w (θ) after θ̂ has
been found [35], as described in Sec. II E. In our case,
simply using log Sm

i and log Sd
ii proves adequate, leaving the

other parameters untransformed (Supplemental Material [26],
Fig. S-4).

We can compare our analysis to the Bayesian information
criterion (BIC) [51]. The BIC is commonly used as a model
selection criterion in ecology. The BIC in our case is as follows:

BIC = −2 log P ( y|θ̂) + p log(KNS). (22)

For comparison, our criterion [Eq. (21)] can be rewritten
by taking logarithms [52],

−2 log P ( y) = −2 log P ( y|θ̂) − 2 log P (θ̂)

−p log(2π ) + log |H|
= −2 log P ( y|θ̂) − 2 log P (θ̂) (23)

+p log(KNS) + log |h|
with h = 2πH

KNS
,

where we defined a normalized Hessian matrix, h, since
the size of elements of H will grow asymptotically linearly
with the number of data points, KNS (provided the model is
identifiable).

We observe two differences between Eqs. (23) and (22): The
BIC neglects the prior information on model parameters, and
the detailed structure of h, both of which do not scale with the
number of data points. Indeed, the BIC, like other such criteria,
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TABLE III. Comparison of different models under two treatments of the trend prior (μ = 25, top rows) and using a “unit information prior”
(μUIP, bottom rows). Each model is described in the text. p is the number of parameters in each model. The other quantities refer to Eqs. (23)
and (22). Smallest values among alternative models are indicated as bold text.

Trend prior, model p −2 log P ( y|θ̂ ) −2 log P (θ̂) −2 log P ( y) BIC

Full model 18 3216.8 49.6 3351.2 3358.0
Diagonal Sd 15 3275.1 30.8 3360.6 3392.7

μ = 25 Diagonal A 12 3271.5 33.4 3332.6 3365.6
Uncoupled 9 3338.8 14.4 3351.1 3409.4
Random walk 9 3280.7 25.2 3303.2 3351.3

Full model 18 4081.7 45.1 4208.0 4222.9
Diagonal Sd 15 4130.5 27.7 4211.0 4248.2

μUIP Diagonal A 12 4139.6 29.0 4193.0 4233.7
Uncoupled 9 4193.5 11.3 4200.7 4264.1
Random walk 9 4146.1 20.9 4160.8 4216.7

was derived for the limit of a large number of data points.
Unfortunately, ecology rarely operates in this limit. Posterior
correlations between the model parameters (see above) further
limit the range of validity of such asymptotic approximations.
For completeness, we note that for transformed parameters
ϑ = w (θ), we obtain

−2 log P ( y) = −2 log P ( y|ϑ̂) − 2 log Pϑ (ϑ̂)

−p log(2π ) + log |H̃|
(24)

with Pϑ (ϑ)|J| = Pθ (θ) and J�H̃J = H

where Jij = ∂ϑi

∂θj

.

To illustrate the use of Bayes factors, we examine a
number of “submodels.” As a reminder, the full model is
given by ẋs = f (t) − Ax + η and ykns = xks(tn) + ξkns , with
η ∼ N (0,Sddt) and ξkns ∼ N (0,Sm

k ). We considered leaving
out each of the two sources of density correlations between
species: The second row of Table III (“diagonal Sd”) shows the
effects of setting the off-diagonal elements of the dynamical
noise matrix Sd to 0, while the third row (“diagonal A”) shows
the effect of setting the off-diagonal elements in the effective
interaction matrix to 0. In the fourth row (“uncoupled”),
the dynamics of each species are entirely independent (zero
off-diagonal elements in both A and Sd ). Finally, in the fifth
row (“random walk”), we explore a simple random-walk
description (A = 0), retaining the off-diagonal elements in Sd .

In each case, the full model fits the data the best at the
optimal parameters [as measured by −2 log P ( y|θ̂), to which
we will return below]. However, both measured by our “Bayes
factor criterion,” −2 log P ( y), and by the BIC, the random-
walk description is superior as an efficient description of the
data, that is, once we average over the posterior distribution
of the model parameters. This result is consistent with our
previous work [1]. In that work, we showed that the random-
walk-like fluctuations of logarithmic density along the largest
ecomode (see Sec. III D) dominate the density fluctuations of
each of the species.

Even though the Bayes factor and BIC agree in selecting the
random-walk model as the best model, they do not agree on the
ranking of the other models. Indeed, the full and uncoupled
models do equally well, as measured by Bayes factors, but

their BICs differ by >50, which constitutes a large difference
in evidence [50]. Such a difference is comparable to the
differences in BIC scores between the different models. This
means that the formulation of the prior and the structure of the
normalized Hessian cannot be ignored in model selection, even
for our data set, which is large by any ecological standard.
[We note that the ranking of the models by Bayes factors is
robust to the choice of smoothing parameter (Table IV, bottom
rows)].

The fact that both the “diagonal Sd” and “diagonal A”
models fit the data much better than the uncoupled model
suggests that off-diagonal elements in Sd and A contain
partially redundant information about the correlations between
species. This observation is related to the identifiability issues
described in Sec. III E. Consistent with the potential for
redundancy in the statistical description, we note that the
estimated effective interaction matrix is fairly symmetric
[Fig. 4(b)] so Aij and Sd

ij could readily absorb some of the
effects of each other’s omission.

2. Lindley paradox

There is something surprising about the performance of
the random-walk model (A = 0): above (Sec. III D) we found
that eight of nine elements of A differed significantly from
0, yet the random-walk model provides a seemingly better
description of the data than the full model, judging by the
Bayes factors. This inconsistency is known as Lindley’s
paradox [53] and occurs often in ecology [54]. It occurs if
one assigns finite prior probability to a finite set of discrete
parameter values. On the one hand, our prior probability
density on the Aij assigns 0 probability to any precise value
of Aij [e.g., limε→0

∫ +ε

−ε
P (Aij )dAij = 0]. On the other hand,

in comparing the full model to the random-walk model using
−2 log P ( y), we assigned the model with all Aij = 0 and the
full model equal prior probability.

These choices together imply an overall prior distribution
on A as illustrated in Fig. 6(a) for a single interaction
coefficient. The question is whether it is natural to assign
finite prior probability to the case of effectively noninteracting
species. This is as much a biological consideration as a
statistical one. If one wants to compare “noninteracting
species” and “interacting species” as a priori equally plausible
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TABLE IV. Constants used in Eq. (25) to derive the expected distribution of the likelihood function. V is an auxiliary matrix used to simplify
notation.

Mns,ñs̃ = (Sm)−1δss̃δnñ − (Sm)−1Q−1
nñ (Sm)−1δss̃ − ∑

n′,ñ′ V(s)�
nn′ R−1

n′ ñ′ V
(s̃)
ñ′ ñ

hns = μ2
∑

n′,ñ,ñ′ V(s)�
nn′ R−1

n′ ñDññ′φ0
ñ′

C ′ = ∑N−1
n=1

∑N−1
n′=1 φ0

n

�(μ2Dnn′ − μ4(DR−1D)nn′ )φ0
n′ + S

∑N−1
n=1 log |�n| + SN log |Sm|

+ log |R| + S log |Q| − log |μ2D| + K(S + 1)(N − 1) log(2π )

V(s)
nn′ = 1(n<N)�tn

(
�−1

n Q−1
n+1,n′ − βnQ−1

nn′
)

(Sm)−1

alternative models, the random-walk model turns out to be the
best for our data. One can, alternatively, take, for example,
P ({|Aij | < 1/T for all i,j}) as a rough prior probability of
the random-walk model. In other words, one can ask whether
the interactions are effectively weak on the time scale of the
experiment. The resulting implied overall prior distribution
on A is illustrated in Fig. 6(b) (again for a single interaction
coefficient). This choice would increase −2 log P ( y) for the
random-walk model by about +94, making the full model
the better one. In other words, the answer provided by
Bayes factors will—correctly—depend on which question
one precisely asks. If data analysis is to provide any clarity,
questions should be asked precisely and prior beliefs stated
explicitly and consistently.

3. Absolute model quality

As a second, absolute criterion for model quality, we ask
whether the data look like typical “output” of the model [55].
For example, the best model identified by a model selection
criterion, as in Eq. (23), may still not fit the data very well.
Alternatively, we could have overfitted the data, making the
data unusually probable under the model. To judge this, we ask
how the probability of the data compares with the probability of
realizations of the model with the same measurement schedule.
While we can ask this question for unique time series as well, it
seems particularly well suited for a set of replicate time series.

As a starting point, we reinterpret the likelihood function,
properly normalized, [Eq. (13) and Table II] as a proba-
bility distribution over Y , the space of possible data sets.
That is, P (Y |θ) = l y(θ ; μ). In general, a linear model with
Gaussian dynamical and measurement error will produce a
log-likelihood function of the type

Ly(θ ) = −2 log l y(θ ; μ)

= y�M y − y�h − h� y + C

= ( y − M−1h)�M( y − M−1h) (25)

− h�M−1h + C

hence, P (Y |θ ) = N (M−1h,M−1),

where N indicates a multivariate normal distribution. One
readily obtains C, M, and h by rearranging terms in the
likelihood function (see Table II), yielding Table IV. We now
compare the observed value of the log-likelihood function
to the distribution of log-likelihood function values one
would observe for data sets generated by the fitted model.
Defining L0 = C − h�M−1h, we see that LY (θ̂) − L0 =
(Y − M−1h)�M(Y − M−1h) has a χ2 distribution with KNS
degrees of freedom for realizations Y of the state space model.
For our data, we calculate the log-likelihood Ly(θ̂ ) at the
estimated model parameters. Surprisingly, the observed data
are quite typical for the model at θ̂ , meaning that the fit of the
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FIG. 6. The implied overall prior distribution and model comparison. For simplicity, we illustrate implied prior distributions on A for a
single interaction coefficient A. The overall prior distribution is P (A) = P (A|M1)P (M1) + P (A|M2)P (M2). In both panels, the contribution
from the prior distribution of the full model, M1, is shown in gray; the contribution from the random-walk model, M2 with A = 0, is shown in
black. (a) Comparison of the two models using equal a priori weights (P (M1) = P (M2)) and a precise prior on A = 0. The implied overall
prior has an infinite peak (delta function) at A = 0 with integrated weight 1

2 . (b) One can instead first specify the overall prior distribution on

A and then derive model probabilities from it. For example, in this illustration, we chose P (M2) = ∫ +ε

−ε
P (A)dA and P (M1) = 1 − P (M2),

with ε dependent on what can be resolved in the experiment (ε = 1/T ).

062714-15



HEKSTRA, COCCO, MONASSON, AND LEIBLER PHYSICAL REVIEW E 88, 062714 (2013)

2200 2400 2600 2800 3000
0

2

4

6

L - L0

P
ro

ba
bi

lit
y 

de
ns

ity
 (x

 1
0-3

)

← better fit worse fit →

FIG. 7. Absolute model quality. The fit of the model to the closed
ecosystem data, measured by comparing the observed value of the
log-likelihood (gray vertical line) to the distribution of log-likelihood
values expected for data generated by the Gompertz model at the
inferred parameters (black). The latter is a χ 2 distribution with KNS
degrees of freedom. Correction of the number of degrees of freedom
by the number of parameters yields the dashed curve.

model to the data is as good as expected were the data actually
generated by the model (Fig. 7).

We note that this criterion for model quality has a structure
similar to so-called “goodness-of-fit” quantities, like Pearson’s
χ2 test statistic, as well as the deviance information criterion
[56]. An obvious concern is that θ̂ is itself estimated from the
data rather than the true θ , leading to an artificially good fit.
Like for conventional asymptotic goodness-of-fit tests, one can
(approximately) correct for this bias by adjusting the number
of degrees of freedom of the χ2 distribution to KNS − p [this
is based on a second-order Taylor expansion of LY (θ̂ ) around
LY (θ) and taking expectation values]. The results for both the
unadjusted and adjusted distribution of the log-likelihood are
given in Fig. 7. In either case, the observed data fall well within
the main part of the distribution and are thus similar to typical
output of the model itself [P (L < Lobs) = 0.11 (uncorrected)
or 0.16 (corrected)].

G. Optimal sampling

Can a judicious choice of sampling effort reduce parameter
estimation and identification problems studied in Secs. III C–
III E? Questions of optimal experimental design and optimal
sampling have a long history in a variety of scientific fields
[57,58]. Perhaps most pertinent to ecology is recent work in
the study of HIV disease dynamics, in which one needs to
choose which factors to measure and at what schedule [59],
subject to cost and time constraints.

In our study of identifiability of model parameters above, we
saw that difficulties in identifiability arise fundamentally from
the presence of two sources of noise, error in the measurements
and dynamical noise. We will illustrate the utility of ideas for
optimal sampling by restricting ourselves to this elementary
identification problem, the simultaneous estimation of mea-
surement error and dynamical noise variances.

Central to most studies of optimal design is the so-called
Fisher information matrix, I = E(H), that is, the expected
value of the Hessian matrix [36]. By the Cramér-Rao in-
equality, subject to some regularity conditions, I−1 places
a bound on the best expected covariance matrix for unbiased
estimators [36] and thus tells us how much one can learn at
most from a particular experiment about each parameter or
parameter combination.

Here we will determine I for log Sm and log Sd rather than
Sm and Sd , since expected standard deviations (

√
(I−1)ii)

can be interpreted as relative errors [as σ (log x) ≈ σ (x)/x
provided σ (x) � x]. We then look at the smallest eigenvector
of I, which acts as a bound on the precision (inverse variance)
of the combination of log Sm and log Sdwhich is the hardest to
estimate. To calculate I, we first observe that the Hessian
matrix can be calculated analytically when an analytical
expression is available for the likelihood function. As in
Sec. III F, we then reinterpret the likelihood function as the
probability distribution for data given the model parameters
and, hence, calculate both the distribution of H under the model
and its expectation value, I.

For simplicity, we examine the case of a single species (K =
1), in a single ecosystem (S = 1), for which both intraspecies
interactions (Aii) and the common trend are known to be
zero (φ = 0). Since more measurements (N ) and longer
experimental duration (T ) obviously improve estimation, we
keep N and T constant. In this case, the likelihood function
is given by the integrand of Eq. (12). As A = 0, �n = Sd�tn,
B = 1, and C(0) = 0, the log-likelihood function simplifies to

L = −2 log P ( y|θ)

= log |Q| − N log(2π ) + C − u�Q−1u

= log |Q| + y�
(

I
Sm

− Q−1

(Sm)2

)
y

+
∑

n

log(Sd�tn) + N log(Sm), (26)

where we omitted parameter- and data-independent constants.
Only the first two terms can contribute toI, since the remaining
terms are linear in log Sm and log Sd and have zero second
derivatives. We calculate the second derivatives of log |Q| and
Q−1 in the Supplemental Material [26], Sec. S5, but note that
this is a simple task, since Q can be written as Q = Q̃

Sd + I
Sm ,

where Q̃ depends on the measurement schedule but not on
model parameters and I is the identity matrix. We thus can
study I directly for different measurement schedules (through
Q̃) and values of Sd and Sm. Indeed, only the ratio of Sd and
Sm matters, which we summarize in the dimensionless number
γ = Sd�t/Sm, with �t = T/N the average measurement
interval. The resulting expression for the Fisher information
matrix for log Sm and log Sd is

I =
N∑

n=1

1

(λn + γ )2

(
λ2

n γ λn

γ λn γ 2

)
, (27)

where the λn are the eigenvalues of Q̃. Calculation of I for
many random measurement schedules (not shown) suggested
that optimal measurement schedules are periodic: optimal
measurement schedules appeared to consist of bunches of
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close-together measurements of various multiplicity, with the
optimal multiplicity dependent on the value of γ . These
“repeated sampling” schedules are reminiscent of the mea-
surement approach proposed by Dennis et al. [60], based on
disaggregation of data in the North American Breeding Bird
Survey. (Here we should note some confusing terminology
in the ecological literature. Dennis et al. [60] refer to such
repeated sampling of an individual ecosystem as “replicated
sampling,” but this should not be confused with the use
of replicate ecosystems, and we will instead refer to the
former as repeated sampling.) Knape et al. [61] extended
approximate maximum likelihood inference for such sampling
schemes. Our formalism can handle repeated sampling without
modification. Repeated sampling has been proposed in other
scientific fields as well [58].

Since general optimization of measurement schedules is a
highly nontrivial task, we restrict ourselves further to periodic
schedules. Within these schedules, measurements occur in
bunches of the same multiplicity, L, separated by small
intervals ε. For simplicity, we measure time in units of the
average measurement interval (that is, �t = 1) without loss
of generality. We illustrate such measurement schedules in the
diagram in Fig. 8(c). Within each bunch, measurements are
numbered 1, . . . ,�.

We illustrate the achievable gains in precision [according
to Eq. (27)] as a function of L and ε for N = 120 and
γ = 0.1 [dotted lines, Fig. 8(a)] and γ = 3 [Fig. 8(b)]. In each
case, the reference is measurement at equally spaced time
points. For both values of γ , substantial gains in precision
relative to the equally spaced reference can be achieved by
sampling repeatedly, although different multiplicities of the
measurements are optimal for different values of γ . For
comparison, single species estimates of γ for our data are,
for the most densely sampled time series, about 1.1 for C.
reinhardtii, 2.1 for E. coli, and 2.9 for T. thermophila.

Figures 8(a) and 8(b) also shows that the optimal spacing
within a bunch is often as large as possible (that is, it reduces
to equal spacing) or as small as possible (ε∗ = 0). However,
for larger values of L and γ , intermediate optimal ε are seen
[Fig. 8(c), thickened line segments].

For measurement schedules with many time points, it may
become inefficient to calculate the optimal schedule this way.
Instead, one can also calculate I in the limit of long time
series (T ,N → ∞, while T/N constant). In this case, the
periodicity of the measurement schedule can be exploited to
easily calculate I. Since Q̃ is periodic, we can use a tool from
condensed matter physics, Bloch’s theorem [62], to reduce the
complexity of finding its eigenvectors and eigenvalues from an
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FIG. 8. (Color online) Optimal experimental design. Expected gain in precision (for the least precise eigenvector of the Fisher information
matrix, I) for different measurement schedules relative to equally spaced measurements. All curves are for the same average measurement rate,
�t = T/N . Results are a function of the ratio between dynamical and measurement noise, γ = Sd�t/Sm. [(a) and (b)] Gain in precision as a
function of the spacing between measurements, ε, in bunches of different multiplicity, L, for γ = 0.1 (a) and γ = 3 (b) [L labeled on curves;
dotted: N = 120, solid: asymptotic result; the two nearly coincide in panel (b)]. (c) Illustration of the “repeated sampling” schedule discussed
in the text. Thick vertical bars represent measurement times. (d) Gain in precision at optimal ε∗ as a function of γ for each multiplicity L (as
labeled on each curve). Along each curve, segments at which ε∗ intermediate (0 < ε∗ < 1) are indicated by thickening of the curve (within the
plot area this occurs only for L � 5 at large γ ).
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NL × NL problem to an L × L problem (see the Supplemental
Material [26], Sec. S5 for details).

As the number N of measurements grows, we find that I =
NI0, with I0 the Fisher information matrix per measurement
point as follows:

I0 = 1

πL

L∑
�=1

∫ π

0

dϕ

(γ + λ�(ϕ))2

(
λ�(ϕ)2 γ λ�(ϕ)

γ λ�(ϕ) γ 2

)
. (28)

This is analogous to Eq. (27). Here, λ�(ϕ), with � =
1, . . . ,L, denotes the eigenvalues of the L × L matrix Q̃(ϕ),
which is an L × L submatrix of Q̃ modified at its corner
elements, as follows:

[Q̃(ϕ)]�,�′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
�t�

+ 1
�t�+1

if � = �′ � L − 1
1

�tL
+ 1

�t1
if � = �′ = L

− 1
�t�

if � = �′ + 1

− 1
�t�+1

if � = �′ − 1

− δ�,Lδ�′,1
e−iϕ

�t1
− δ�,1δ�′,L

eiϕ

�t1
, (29)

where i2 = −1. The proposed periodic repeated sampling
measurement schedules have �t� = ε for � = 1, . . . ,L − 1
and �tL = L − (L − 1)ε. Differences in precision gain be-
tween the asymptotic result and the finite time series results
tend to be small even for modest N [Figs. 8(a) and 8(b), dotted
versus solid lines].

Using our asymptotic results, we show in Fig. 8(d) the
gain in precision for different sampling multiplicities (in each
case at their optimal ε = ε∗) as a function of γ . Obviously,
one typically does not know γ precisely at the start of an
experiment. Nevertheless, it is clear that low multiplicities
(L = 2 − 4) yield robust gains in precision over a large range
of γ , mostly for ε∗ ≈ 0. Temporal autocorrelation in the
measurement errors can make the optimal ε larger than 0 and
decrease the achievable gain in precision.

Finally, we note that, since the full likelihood function is
available for multiple interacting species, replicate systems,
and arbitrary common trend (Tables I and II), one can derive
and optimize the eigenvalues of the Fisher information, I,
for more complex dynamics and measurement schedules. For
example, while in the above case the Fisher information is
simply additive over replicate systems, we expect this to be
no longer the case if the common trend is unknown. As a
consequence, it might be optimal, at constant total effort, to
sample different systems in different ways. We also studied the
case of single species dynamics with Sd

11 > 0, A11 > 0, and
Sm

1 = 0 in a single replicate with known average dynamics. In
this case, our analysis suggested little room for improvement
over equally spaced measurements, provided A11 � 1/�t

(results not shown).

IV. DISCUSSION AND CONCLUSIONS

Study of the stochastic nature of any complex system
requires accounting for possible idiosyncratic trends in the
data. For ecological systems such trends are clearly pervasive.
Replication of ecosystems allows the exciting possibility that
one can actually study variability in ecological dynamics,
but one also needs flexible but simple models capable of

accommodating an idiosyncratic trend. Indeed, for our
experimental data on a set of replicate closed ecosystems, we
confirm this notion: Flexibility in the common trend described
by the model is necessary to obtain good estimates of effective
species interactions characterizing the variability in dynamics
[Fig. 4(a)].

Specifically, we use a linear, Gaussian, continuous-time
Gompertz model to illustrate the challenges one faces fitting
models to replicate ecological time series. We emphasize
that this is a phenomenological model and its parameters are
effective ones. Changes in model structure, for example, in
the functional form of density dependence or the time depen-
dence of parameters, could lead to different estimates of all
parameters. Without doubt, alternative model structures may
be more appropriate for some other ecosystems. Conceivably,
too, different approaches may be required, e.g., for strongly
cyclical dynamics in which the main mode of variability might
be random variation in the phase of the cycles or dynamical
noise is intermittent.

A central difficulty in fitting replicate time series is the
description of the common trend. Here we chose a segment-
by-segment description with time dependence in the trend
variables f and a smoothing parameter μ to limit the overall
complexity of its description. There are several reasonable
choices of the smoothing parameter, and we advise exploring
inference over a range of μ. As shown in Fig. 4(a), the common
choice, constant coefficients (μ → ∞), can lead to significant
error, and we have proposed ways to make a better choice.
We anticipate that more sophisticated choices of smoothing
parameter, and perhaps a description of the common trend
altogether, will be developed.

While we believe that much can be learned from a
simple, linear model, we briefly mention here a number of
modifications and extensions of our work.

(1) One can make alternative choices for prior distributions
and still apply the methods here, provided the overall proba-
bility of the data can still be integrated over x and φ.

(2) We note that our analysis places no restrictions on
measurement schedule. Different replicates can be sampled
at different time points, and time intervals do not need to
be identical. Indeed, the analysis of our data was based on
a more general form of our algorithm than presented in the
main text, accommodating arbitrary measurement schedules
as explained in the Supplemental Material [26], Sec. S3, and
avoiding “missing data” problems.

(3) One can extend our approach to the comparison of sets
of replicates each with their own trend. We discuss briefly how
to do this in the Supplemental Material [26].

(4) We have described our approach for linear stochastic
differential equations since stochastic differential equations
(rather than difference equations) have received little attention
in the ecological literature and were suitable for our data. It
is straightforward to apply our methods to linear difference
equations instead. One simply replaces Eqs. (6) and (7) with
the new dynamical model.

(5) It is also straightforward to include delays (e.g., ARMA
models, Refs. [10,24]), life cycle (stage) or age structure. Such
models can, in principle, alleviate the assumption of a Markov
property for the dynamics. Not surprisingly, however, such
models suffer from significant identifiability problems and
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complicated, multimodal likelihood surfaces [63], even for
a single species.

(6) It is trivial to include covariates with known
time dependence into the analysis, as long as they
are additive, or linear in the logarithmic densities (cf.
Ref. [19]).

(7) One can separate dynamical noise into a “global”
component affecting all replicate systems and per-system
components. This would simply lead to cross-terms Q(s,s ′)

between systems but not affect the overall mathematical
structure.

(8) We conjecture that one can approximately accommo-
date some nonlinear models in the present framework. For
example, formulated in terms of logarithmic densities, the
Lotka-Volterra model contains a nonlinear term ex , which
is quite readily linearized. Likewise, replacing log-normal
measurement error with Gaussian measurement error simply
means multiplication of the error terms by e−x . One can
also approximate alternative stochastic components using
linear combinations of Gaussian distributions (“mixtures”).
In any case, from a statistical perspective, linear Gaus-
sian models provide a good starting point, in comparison
to which nonlinear contributions can be tested for their
significance.

(9) It would be interesting to compare our methodology
further to methods from econometrics based on vector autore-
gressive models.

We want to make a few closing remarks. First, rarely is
one interested in a list of parameter values per se but rather
in system properties like the robustness to perturbations, the
sources, size and time scale of fluctuations, or prediction of
extinction dynamics. As we have shown, inference of the
full joint posterior distribution of the model parameters is
essential to this end. We anticipate that future population
dynamics experiments may well differ markedly from past
practice. They may include an a priori or “online” (i.e.,
as measurements come in) analysis of the identifiability of
the system properties of interest. This analysis can steer
the choice of initial conditions, system perturbations, and
measurement schedule [64], enabling more efficient focus
on the ecosystem properties or processes under study. More
fundamentally, even “simple” laboratory ecosystems display
a rich interplay between physical, metabolic, phenotypic,
spatial, and population dynamics. This multitude of relevant
variables and associated length and time scales raises the
question whether differential equations, or, more generally,
conventional population dynamics models, can at all be applied
to data in a meaningful manner. Perhaps entirely different
statistical and conceptual tools are necessary. At the same time,
we believe that replicable model systems are necessary for
ecology. Such model systems may not match the complexity
present in natural ecosystems. They could, however, be our
only hope of obtaining the conditions and data necessary for
making fundamental progress.
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