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Mathematical modeling of human brain physiological data
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Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and
oxygen supply was introduced [Jung et al., J. Math. Biol. 51, 491 (2005)]. Although this model correctly
describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly
when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together
with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during
neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where
the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with
the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two
extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations
quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the
physiological mechanisms from which such abnormal correlations originate can be gained.
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I. INTRODUCTION

Mathematical modeling of the cerebral physiology has to
cope with two major problems, namely, the complexity of
the system itself and the verification of the modeling results
by appropriate measurements. As described by the Monroe
Kelly doctrine, the intracranial space can be seen as a closed
system, confined within the nearly rigid skull. This property
exacerbates elaborate measurements, especially if long-term
observations are needed. Despite considerable progress in
neuroimaging and the so called multimodal monitoring im-
plemented at many neurosurgical intensive care units, the
validation of such models is still challenging. Hence most of
the modeling approaches focus on a view of specific properties
of the cerebral physiology and the associated measurements.
In the following, we present a, not necessarily comprehensive,
summary of the variety of modeling approaches and the
different problems they address.

A. A short literature survey

In 1973 Marmarou [1,2] introduced a mathematical model
of cerebrospinal fluid (CSF) pressure-volume compensation.
In the 1980s the concept of a vascular component of the
intracranial pressure (ICP) was proposed, and it was shown
that in cases of traumatic brain injuries only 30% of an elevated
ICP could be explained by changes in CSF circulation, while
the remaining 70% had to be attributed to the vascular ICP
component.

In 1988, Ursino [3,4] proposed more elaborate hydrody-
namic models of CSF fluid dynamics. Later, a simple math-
ematical model of the interaction between ICP and cerebral
haemodynamics has been presented [5,6]. It included the
hemodynamics of the arterial-arteriolar cerebrovascular bed,
CSF production, and reabsorption processes, and the nonlinear
pressure-volume relationship of the craniospinal compartment.
The model was used to simulate interactions between ICP,

*matthias.boehm@ur.de

cerebral blood volume (CBV), and autoregulation. Simulation
results suggested an instability of ICP dynamics in patients
with elevated CSF outflow resistance and decreased intracra-
nial compliance, provided cerebral autoregulation is efficient.
Subsequently, intracranial pressure dynamics in patients with
acute brain damage have been modeled also by Ursino et al.
[6]. A simple mathematical model was used to analyze the
time pattern of ICP during pressure-volume index (PVI) tests.
A satisfactory fitting between model response and patient data
was achieved by adjusting the CSF outflow resistance, the
intracranial elastance coefficient (1/C), and the gain and time
constant of cerebral autoregulation. The results showed that
in cases of weak autoregulation, ICP mainly reflects CSF
circulation and passive cerebral blood volume changes. These
models were later completed by including CO2 reactivity and
CO2 pressure changes [7,8]. More recently, a physiological
model of cerebral blood flow control is presented by [9] and
extensively discussed in the thesis of Tachtsidis [10].

The work of Lakin [11] revoked the Monro-Kellie doctrine
and developed a mathematical model for the dynamics of
intracranial pressures, volumes, and flows that embedded the
intracranial system in extensive whole-body physiology. The
model consistently introduced compartments representing the
tissues and vasculature of the extradural portions of the body,
including both the thoracic region and the lower extremities.
In addition to vascular connections, a spinal-subarachnoid
CSF compartment bridged intra- and extracranial physiology
allowing explicit buffering of intracranial pressure fluctuations
by the spinal cord. The model contained cerebrovascular
autoregulation, regulation of systemic vascular pressures by
the sympathetic nervous system, regulation of CSF production
in the choroid plexus, a lymphatic system, colloid osmotic
pressure effects, and realistic descriptions of cardiac output.

Wakeland and Goldstein [12] presented a computer model
of intracranial pressure dynamics during traumatic brain injury
that explicitly models fluid flows and volumes. The response
to changes in clinical parameters was monitored through key
characteristics such as hematoma volume and CSF uptake
resistance. The estimated values for hematoma volume and
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other subject characteristics were plausible but could not be
verified empirically.

A further mathematical model of blood, cerebrospinal fluid,
and brain dynamics has been proposed by Linninger et al. [13].
Using first principles of fluid and solid mechanics, the com-
partmental model, including blood, CSF, brain parenchyma,
and the spinal canal, predicted intracranial pressure gradients,
and blood and CSF flows and displacements under normal and
pathological conditions. Fluid-solid interactions of the brain
parenchyma with cerebral blood and CSF are calculated. The
model provides the transitions from normal dynamics to the
diseased state. Predicted results were compared with phys-
iological data from cine phase-contrast magnetic resonance
imaging [14] to verify the dynamic model.

Moppett et al. [15] presented a lumped parameter model for
time-dependent simulation of the cerebral blood flow (CBF)
and metabolism including the cerebral oxygenation, and the
carbon dioxide content and pH of cerebral blood.

Masoumi et al. [16] studied a mathematical model of
CSF pulsatile hydrodynamics based on fluid-solid interactions.
This study considered a fluid-solid interaction model of CSF
hydrodynamics in the ventricular system based on clinical data
as arterial blood pressure (ABP), ICP, and the venous blood
pressure (VBP). In addition, the model has been modified
by considering CSF pulsatile production rate as the major
factor of CSF motion. The resulting CSF flow pattern, ICP
distribution, and velocity magnitude were in good agreement
with published models and cine magnetic resonance imaging
(cineMRI) experiments, respectively.

Sweetman et al. [17] presented a three-dimensional model
of human CSF spaces by reconstructing patient-specific brain
geometries from magnetic resonance images (MRI). The
model was validated by comparing the predicted flow rates
with cine phase-contrast MRI measurements.

Online estimation of cerebral autoregulation (CA) was
studied by Aoi et al. [18]. The authors used data from
transcranial Doppler and high resolution ABP measurements
to frame the assessment of CA as a parameter estimation
problem, in which they estimated the parameters of a nonlinear
mathematical model of CA using an ensemble Kalman filter
(EnKF). The latter allowed one to estimate the parameters of a
model of cerebral hemodynamics which predicted intracranial
pressure and cerebral blood flow velocity, generated from real
patient arterial blood pressure measurements.

Kashif et al. [19] recently introduced a noninvasive deter-
mination of ICP based on measurements of peripheral ABP
and blood flow velocity (BFV) in the middle cerebral artery
(MCA), both at intraheartbeat resolution. A physiological
model of cerebrovascular dynamics provides mathematical
constraints that relate the measured wave forms to ICP. The
algorithm produced patient-specific ICP estimates with no
calibration or training. The achieved accuracy is already
comparable to that of some invasive ICP measurement methods
in current clinical use.

B. The hemodynamical and oxygen transport model

In Jung et al. [20] a simple compartmental approach,
based on the work of Ursino et al. [5] was proposed
to design a mathematical model for the interpretation of

multimodal neuromonitoring data, recorded at a neurosurgical
intensive care unit. It is used to study the impact of defective
cerebral regulatory systems, such as cerebral autoregulation
and cerebral compliance, on continuously measured data
such as ABP, ICP, and the partial oxygen pressure of brain
tissue (TiPO2). The above mentioned regulatory systems show
certain dysfunctions in patients with a severe brain trauma
whose origins are not well understood yet. The key functional
role of these systems is the maintenance of an adequate
supply of the human brain with oxygen and nutrition. Any
dysfunction may have a dramatic impact on the patient’s
health status. For these reasons the proposed model attributes
special attention to the cerebral compliance, i.e., the ability
of the brain to compensate intracranial volume changes, by
modeling a pressure dependent CSF production and absorp-
tion. Furthermore, the cerebral autoregulation, modeled as a
nonlinear resistance, is dynamically adapted to a changing
ABP by a control parameter α which allows the simulation
of different levels of autoregulation failures. Additionally, an
extra storage compartment was added to simulate an evolving
brain swelling, one of the most frequent complications arising
during treatment of severe brain traumata. Such a swelling
may lead to a diminished cerebral compliance with distinct
impact on the intracranial pressure. A detailed description of
this simple model, called the HOM model in the following,
and related simulation results are given in [20], where HOM
is an abbreviation for hemodynamical and oxygen transport
model.

II. MODELING APPROACH

As already mentioned in this study a compartmental
approach is used to model cerebral perfusion. The complex
physiological structures of the human brain are subdivided
into seven different functional subunits, where every subunit
is described by its physical properties. The used compartments
characterize the functionality of the arteries, veins, capillaries,
brain tissue, sagittal sinus, cerebrospinal fluid, and the cranial
bone. Additionally an extra compartment E is used to simulate
swelling of the brain. For a more detailed description, see [20].
As a starting point, the conservation of mass is used including
that a change of mass accounts for a change in density and/or
change in volume of a compartment:

∑
qi = dm

dt
= ∂m

∂ρ︸︷︷︸
=V

∂ρ

∂t
+ ∂m

∂V︸︷︷︸
=ρ

∂V

∂t
. (1)

Here, the following physiological assumptions were made:
Blood and CSF are considered incompressible media, whereas
the brain tissue is considered a compressible medium. All
fluxes are considered stationary, more specifically blood flow
is considered to be laminar. The Hagen-Poiseuille law is then
used to describe the flow qXY between two compartments X

and Y :

qXY = �pXY

RXY

= pX − pY

RXY

. (2)

The volume change of a compartment can be modeled by
assigning a compliance C(ϕ) to compartments surrounded by
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an elastic membrane:

V − V0 =
∫ p

0
C(ϕ)dϕ with p = pext − pint. (3)

As the cranial bone of the human head acts as a closed
compartment, the total volume change of all compartments
has to be zero: ∑

i

V̇i = 0. (4)

For modeling the resistance of all blood vessels, the Hagen-
Poiseuille law can be used:

RXY = k′
R

r4
= kR

V 2
. (5)

In this framework, the cerebral autoregulation will be
modeled via temporal variations of the compliance CAB :

RAC = k′
RAC

r4
= kRAC

V 2
A

= kRAC

C2
AB(pA − pB)2

, (6)

whereas kRAC
= const and VA = CAB(pA − pB). Compliance

dynamics ∂tCAB is given by

dCAB(t)

dt
= − 1

τ
[CAB(t) − CABreg(αx)] (7)

with

x = qAC − qACn

qACn

, (8)

whereas qAC equals the cerebral blood flow and qACn
= const

describes the CBF required for the standard tissue metabolism.
The degree of autoregulation is given by α and τ is the time
constant of the regulation. The regulation term CABreg itself
has the following form, which is proposed by Ursino and Lodi
in [5]:

CABreg(αx) = CABn − �CAB tanh

(
αx

�CAB

)
. (9)

Thereby �CAB represents the maximum gain for the autoreg-
ulation and CABn is the compliance of the arteries for the
standard CBF. As the autoregulation curve is not symmetrical,
�CAB assumes different values for dilation (x < 0) and
constriction (x > 0):

�CAB =
{

�CAB1, x < 0

�CAB2, x > 0.
(10)

The brain tissue is surrounded by the so-called cere-
brospinal fluid. This fluid is produced at a capillary level and
(mainly) absorbed at the sagittal sinus. The driving forces of
production and absorption are the pressure differences between
capillaries and the CSF compartment, and between the CSF
compartment and the sagittal sinus, respectively:

qCF = pC − pB

RCF

and qFS = pB − pS

RFS

. (11)

The sagittal sinus is a stiff vessel and therefore does not
collapse in cases of a negative pressure gradient between the
outside and inside. Additionally, it should be mentioned, that a

reversal of both fluxes is not possible. The lacking compliances
CV B and CB are described by

CVB = 1

kV [
√

(pV − pB)2 + pV0 ]
(12)

and

CB(pB) = 1

kB(|pB | + pB0 )
, (13)

whereas kV , pV0 , kB , and pB0 are constant.
Combining the above mentioned fluxes and compliances

via the mass conservation leads to a set of differential
equations similar to Eqs. (16)–(22), but only describing a one
hemispheric model.

Although this model could reliably reproduce the primary
experimental observations such as the autoregulation curve
and the pressure volume curve, it badly failed to reproduce
abnormal correlations of ABP vs ICP and TiPO2, which were
detected recently [21] in multimodal neuromonitoring data
(see Figs. 6 and 7). To rectify these deficiencies of the simple
HOM model, two extensions will be added which include a two
hemisphere model and incorporate a Starling resistor into the
venous compartment. These extensions, resulting in a model
henceforth called esHOM, precisely reproduce the observed
abnormal correlations mentioned above and provide clues to
their possible physiological origin.

III. THE EXTENDED HOM MODEL

In the following, two extensions to the HOM model are
proposed, which reflect two additional physiological charac-
teristics of the human brain, namely, the compressibility of the
venous compartment and the existence of two hemispheres.

A. Two hemispheres

In order to better reflect the structure of the human brain,
a splitting of the model into a left and right hemisphere is
proposed. Further, this splitting allows modeling the autoregu-
lation independently in both hemispheres and therefore allows
simulating a local failure of the autoregulation in only one of
the two hemispheres. Such situations may arise during a severe
brain injury.

In Fig. 1 a schematic representation of the two hemisphere
model is shown (compare [20] for the schematic representation
of the HOM model). Here, extra compartments for the arteries
(A), capillaries (C), and veins (V ) are added, whereas both
venous compartments empty into the sagittal sinus (S). In

FIG. 1. Schematic view of compartment model.
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addition, the model contains two inflows qi
A (the superscript

“i” denotes the left (L) and the right (R) hemisphere of a
human brain), which represent the inflows of blood into each of
the two hemispheres. As depicted in Fig. 1, both hemispheres
contribute to the CSF production.

The new nonlinear system of differential equations can be
solved numerically and will be given in a following section.

B. Starling resistor

One deficiency of the HOM model lies in its imperfect
specification of the venous compartment. Because of the elastic
properties of the venous blood vessels, in cases of a diminished
cerebral compliance, the venous system can collapse. Such a
behavior can be modeled by describing the resistance of the
veins via a Starling resistor, as proposed in [7]. Thereby, the
resistance of the veins depends on the pressure differences
between veins and sagittal sinus, and veins and pressure inside
the brain:

RVS =
{

1
gVS

pV −pS

pV −pB
if (pV − pB) > 0

∞ else,
(14)

where by gVS the conductance between veins and sinus is
given. For the case where the ICP is higher than the pressure
inside the veins, the system collapses and the resistance tends
towards infinity.

The compliance of the veins, which describes the volume
change with respect to the pressure difference between pres-
sure inside the veins and brain tissue, can then be calculated
according to

CVB = VV

pV − pB

. (15)

Here VV denotes the volume of the veins. The resulting
model, which, in addition to modeling two hemispheres,
incorporates the Starling resistor, is called the esHOM model
henceforth.

C. Differential equation system

Combining all aforementioned features, the model is
defined by the following set of differential equations:

V̇E = qE, (16)

V̇F =
∑

i

pi
C − pB

Ri
CF

+ qI + pS − pB

RFS

, (17)

V̇ i
V = pi

C − pi
V

Ri
CV

+ pS − pi
V

Ri
V S

, (18)

Ċi
AB = 1

τ
Ci

ABreg − Ci
AB, (19)

ṗB = 1

CB + ∑
i C

i
AB

{∑
i

[
Ċi

AB

(
pi

A − pB

) + V̇ i
V + Ci

ABṗi
A

]

+ V̇F + V̇E

}
, (20)

ṗi
V = ṗB + V̇ i

V

Ci
V B

(21)

with

Ci
ABreg = CABn − �CAB tanh

[
α

(
1 − qi

AC

qACn

)]
. (22)

IV. EXPERIMENTAL SETUP

In order to reproduce the observed interdependencies of the
data, the general behavior of both models, HOM and esHOM,
need to be known. Therefore we present simulations of the
changes in ICP and TiPO2 resulting from varying the ABP
under different physiological conditions. A possible successive
failure of the cerebral control mechanisms can be simulated
by means of four different scenarios:

Case 1. Active autoregulation, sufficient compliance.
Case 2. Inactive autoregulation, sufficient compliance.
Case 3. Active autoregulation, insufficient compliance.
Case 4. Inactive autoregulation, insufficient compliance.
The first scenario represents an optimal condition for a

patient. In the second scenario, the autoregulation is inactive,
e.g., due to a severe head trauma. In the third and fourth
scenario, additionally a swelling of the brain occurs, hence
the forth scenario represents the worst case.

For case 1 and case 2, both models produce very similar
results (compare [22] for graphs). In case 1, the experimentally
known behavior of the autoregulation is well reproduced. In
case 2, the expected, roughly linear, increase of TiPO2 along
with a moderate increase of ICP can be reproduced as well,
though not quantitatively.

In the following we will discuss the behavior of ICP and
TiPO2 as predicted by the HOM and esHOM models with
respect to the above mentioned four scenarios.

A. HOM

In Fig. 2, the graphs for case 3 (solid lines) are plotted
with reference to case 1 (dashed lines). In both cases, the
autoregulation mechanism is fully functional (α = 2.0).

In cases of a swelling (case 3), a small drop of the TiPO2

occurs inside an ABP interval ranging from 67 (hPa) to
113 (hPa) contrary to the case of no swelling (case 1). The
main difference between both simulations lies in an altered
ICP dynamics inside an ABP interval between 67 (hPa) and

FIG. 2. TiPO2 and ICP against ABP for α = 2.0, VE = 0 (ml)
(case 1) and VE = 30 (ml) (case 3); HOM.
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FIG. 3. TiPO2 and ICP against ABP for α = 0.0, VE = 0 (ml)
(case 2) and VE = 30 (ml) (case 4); HOM.

140 (hPa). Due to brain swelling [VE = 30 (ml)], the ICP
shows a strong overshoot when compared to case 1 and the
ICP maximum is reached at an ABP of ∼93 (hPa) just when
the autoregulation plateau begins in case 1.

For the scenarios where the autoregulation is disabled (α =
0.0) the corresponding ICP and TiPO2 responses are depicted
in Fig. 3. The graphs for case 4 (solid lines) are compared with
corresponding graphs for case 2 (dashed lines). With disabled
autoregulation, both scenarios produce similar results below
an ABP of ∼ABP � 127 (hPa). For a higher ABP, the graphs
differ, however. Again the TiPO2 shows small differences only.
Above an ABP of ∼ABP > 127 (hPa), the increase of TiPO2

for case 4 is smaller than for case 2, and the difference between
both scenarios increases with a raising ABP.

As before, a larger difference is seen in the ICP response. In
cases of a brain swelling, the ICP increases much faster with
a raising ABP than in the no swelling case. For an ABP above
ABP > 127 (hPa), the increase of ICP in the swelling case is
nearly twice as fast as for case 2.

B. esHOM

Using the esHOM model, the ICP and TiPO2 dynamics
resembles coarsely the HOM model predictions. But here, due
to the splitting into two hemispheres, and the incorporation of
the Starling resistor in the venous compartments, the influence
of a brain swelling has a stronger impact on both the ICP
and TiPO2 dynamics, although the ABP interval, where the
dynamics are altered, remains principally the same.

In the case of a functioning autoregulation (Fig. 4), the ICP
reaches a higher maximal level in the esHOM model than for
the HOM model. Additionally, the maximum in ICP occurs at a
higher ABP value. On the other hand, the drop in TiPO2 is more
pronounced and is observed around an ABP of 120 (hPa). The
most significant difference between both models is founded in
the response of the TiPO2 to ABP values lower than 120 (hPa).
After the drop, the TiPO2 decreases nearly linearly until ABP
values lower than 67 (hPa) are reached. Beyond the upper
end of this linear increase there is an interval, although very
small, where TiPO2 increases while ICP decreases both in a
roughly linear manner. As will be shown later, such a behavior
can be detected in measurements of the above mentioned
neurosurgical multimodal monitoring (see [21]).

FIG. 4. TiPO2 and ICP against ABP for α = 2.0, VE = 0 (ml)
(case 1) and VE = 30 (ml) (case 3); esHOM.

In the case of a disabled autoregulation mechanism (Fig. 5),
the increase in ICP is around three times faster in the case of
a brain swelling than without any swelling. In contrast, the
HOM simulation just yields an increase in ICP of two times
faster, roughly. The increase of TiPO2 is less pronounced, when
compared with the HOM model (see Fig. 3), resulting in an
even larger gap between both scenarios.

C. Physiological interpretation

Looking at the behavior of the different compartments, the
above mentioned simulation results can be interpreted in the
following way: During brain swelling, ABP intervals exist
where the CSF compartment is completely depleted, hence no
further CSF fluid can be absorbed which leads to a diminished
cerebral compliance. In this case, an intact autoregulation in
combination with a decreasing ABP induces a dilation of
the arterial vessels which in turn leads to an increasing ICP,
until the maximal dilation according to the autoregulation is
reached. This effect appears much more pronounced with the
esHOM model. The inclusion of the Starling resistor, which
implies a deformable venous compartment, has a pronounced
impact on the venous resistance, and, accordingly, on the
global CBF. This distinct influence on the CBF leads to
an almost linear decrease of TiPO2 for ABPs in the range
67 (hPa) � ABP � 120 (hPa).

FIG. 5. TiPO2 and ICP against ABP for α = 0.0, VE = 0 (ml)
(case 2) and VE = 30 (ml) (case 4); esHOM.
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FIG. 6. ABP and ICP against time (measured data).

In sections where CSF fluid can still be absorbed, no
significant differences are seen between the simulation results
of both models, with or without a brain swelling. Hence,
the depletion of the CSF compartment appears to be the
critical parameter driving the vastly different behavior of the
autoregulation in both scenarios.

V. VALIDATION

To validate the applicability of the HOM model and its
extension, the esHOM model, simulation results of their
responses are checked against experimental recordings of
ICP and TiPO2 within a time window chosen to exhibit
pronounced correlations and anticorrelations between the
measured physiological parameters.

Specifically, the time window is chosen such that a special
case occurs where the ABP is anticorrelated with the ICP,
indicating a diminished cerebral compliance caused by a severe
brain swelling [21]. This abnormal behavior is illustrated
in Fig. 6. Moreover, during this time segment, the ABP is
additionally correlated with the TiPO2 as is shown in Fig. 7. A
preliminary analysis indicated that this anticorrelation occurs
in more than 80% of the patients during neuromonitoring in an
intensive care unit, and therefore seems to play a crucial role
during the treatment of a severe head trauma.

The depicted graphs represent a low pass filtered version
of the original data, simply eliminating certain fast oscillatory
components (see [23]).

FIG. 7. ABP and TiPO2 against time (measured data).

FIG. 8. ICP and TiPO2 against ABP for α(i) = 0.5 and VE =
31 (ml) (HOM and esHOM).

From a modeling point of view, the behavior seen in
Fig. 6 represents case 3, whereas with case 4 the pronounced
positive correlation between ABP and TiPO2 depicted in Fig. 7
is reproduced. Consequently, simulating measured data with
the esHOM model, a mixture of case 3 and case 4 has to
be assumed. A positive correlation can only be achieved in
such simulations if a severe brain swelling meets an active
autoregulation. Therefore, we choose to simulate a diminished
autoregulation in order to achieve, in addition, a positive
correlation between ABP and TiPO2. Within a simulation,
a diminished autoregulation can be achieved by adjusting the
control parameter α.

A. Simulation with both models

By analyzing the graphs depicted in Fig. 8, simulated
with the HOM model (and marked with the prefix “b”),
the aforementioned behavior of measured data cannot be
reproduced quantitatively. Although a negative correlation is
already predicted, the quantitative variation of the ICP is far
too small. Increasing α would increase the ICP range, but
then the variation in TiPO2 would be reduced. For a smaller
value for α, the variation of TiPO2 would increase, but the ICP
range would decrease. In conclusion the variation of α within
the HOM model reproduces the observations qualitatively,
but cannot provide a quantitatively satisfying picture of the
experimentally observed pressure variations of the monitored
response variables.

The model response can be improved, however, by extend-
ing it to include two hemispheres and a Starling resistor,
as is done in the esHOM model. The difference between
the responses of the HOM and the esHOM models are
depicted in Fig. 8 (graphs for the esHOM are prefixed with
“es”). Concerning the ICP, there is a significant difference
between both models, contrary to the TiPO2 dynamics. This
difference between both models originates from different
volume dynamics of the blood vessel system. With an enlarged
volume of the blood vessel system, the ICP is increased, too,
and, analogously, decreased when the volume of the blood
vessels decreases.

Now, assuming an intact autoregulation in one hemisphere,
but a diminished autoregulation in the other, the sought-after
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FIG. 9. ICP and TiPO2 against ABP for αL = 0.3, αR = 1.4, and
VE = 31 (ml) (esHOM).

effect can be further emphasized as is shown in Fig. 9.
With this parameter configuration, the observed correlations
and anticorrelations in measured response parameters can be
described both qualitatively and quantitatively.

B. Interpretation

With the help of the simulation model, it is possible to
interpret the experimentally observed behavior: Due to brain
swelling, the CSF compartment is completely depleted in a
certain range of ABPs. Therefore, for a decreasing ABP the
autoregulation mechanism stabilizes the CBF as far as possible
on the basis of its constrained mode of operation. Because
of the resulting volume increase of the arteries, the total
volume of the blood vessel system grows. But this volume
increase cannot be compensated by the CSF compartment,
as, due to the brain swelling, it is already completely
depleted. Blood volume increase and CSF depletion thus
results in a more compressed brain tissue and, therefore,
in an increase of the ICP. With a further decrease of the
ABP, this effect is amplified and ultimately results in an
increase of the ICP with a decreasing ABP. This explains
the frequently observed anticorrelation between ICP as the
response variable and ABP as the driving force. Additionally,
the rising ICP influences the cerebral blood flow via the
Starling resistor mechanism. Due to an elevated cerebral
vascular resistance, CBF is reduced, leading to a decreasing
TiPO2.

VI. CONCLUSION

The dysfunction of cerebral regulatory systems, as cerebral
autoregulation or cerebral compliance, may have a dramatic
impact on the health status of patients suffering from a severe
head trauma. To identify such failures by means of multimodal
neuromonitoring data, a mathematical model was introduced
to predict the interdependencies between these data in the
above mentioned case of failing regulatory systems.

The simple HOM model is able to reproduce experimental
behavior as the well known autoregulation curve. Additionally,
it predicts different forms of correlations between ABP and
ICP in cases of diminished compliance and intact or failing
autoregulation in a qualitatively correct way.

But the predictions with the HOM model were shown to
be quantitatively incorrect. Furthermore, the HOM model is
unable to reproduce a specific combination of correlations
where ABP and ICP appear anticorrelated but ABP and
TiPO2 appear correlated, a constellation which is observed
in about 80% of neuromonitoring recordings from patients
suffering from a severe head trauma. To reproduce these
striking correlations, two extensions to the HOM model have
been introduced:

(1) First, the representation of the elastic venous compart-
ment via a Starling resistor, which increases the influence of a
diminished compliance on the cerebral perfusion.

(2) Second, a splitting of the cerebral compartment into two
hemispheres with individual autoregulation.

This extended model, called the esHOM model, is able to
even quantitatively reproduce the above mentioned scenario
of simultaneous correlations and anticorrelations of the multi-
modal monitoring data. Both modifications have to be used:

(1) The Starling resistor mechanism is responsible for an
extended influence of the compliance on the cerebral perfusion
promoting a negative correlation between ICP and TiPO2.

(2) Reproducing the experimentally observed behavior
quantitatively also affords the inclusion of two distinct hemi-
spheres with independent autoregulation systems to allow for
local failures of only one of them.

In summary, the esHOM model can be used as a basis for
offline and online analyses, and also for an interpretation of
physiological parameters recorded during neuromonitoring.
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C. G. Puntonet, A. Brawanski, and E. W. Lang. Empirical Mode
Decomposition Techniques for Biomedical Time Series Analysis
(Bentham Publishers, Hilversum, 2010), Chap. 4, pp. 60–81.

[23] A. Brawanski, R. Faltermeier, R. D. Rothoerl, and C. Woertgen,
J. Cerebral Blood Flow Metab. 22, 605 (2002).

062711-8

http://dx.doi.org/10.1016/j.compbiomed.2008.07.004
http://dx.doi.org/10.1016/j.compbiomed.2008.07.004
http://dx.doi.org/10.1007/s00285-009-0250-2
http://dx.doi.org/10.1007/s00285-009-0250-2
http://dx.doi.org/10.1213/01.ane.0000284620.37846.e5
http://dx.doi.org/10.1213/01.ane.0000284620.37846.e5
http://dx.doi.org/10.1109/TBME.2009.2037975
http://dx.doi.org/10.1109/TBME.2009.2037975
http://dx.doi.org/10.1016/j.compbiomed.2010.12.001
http://dx.doi.org/10.1126/scitranslmed.3003249
http://dx.doi.org/10.1007/s00285-005-0343-5
http://dx.doi.org/10.1007/978-3-7091-0956-4
http://dx.doi.org/10.1097/00004647-200205000-00012



