
PHYSICAL REVIEW E 88, 062702 (2013)

Squirmer dynamics near a boundary
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The boundary behavior of axisymmetric microswimming squirmers is theoretically explored within an
inertialess Newtonian fluid for a no-slip interface and also a free surface in the small capillary number limit,
preventing leading-order surface deformation. Such squirmers are commonly presented as abridged models of
ciliates, colonial algae, and Janus particles and we investigate the case of low-mode axisymmetric tangential
surface deformations with, in addition, the consideration of a rotlet dipole to represent torque-motor swimmers
such as flagellated bacteria. The resulting boundary dynamics reduces to a phase plane in the angle of attack
and distance from the boundary, with a simplifying time-reversal duality. Stable swimming adjacent to a no-slip
boundary is demonstrated via the presence of stable fixed points and, more generally, all types of fixed points
as well as stable and unstable limit cycles occur adjacent to a no-slip boundary with variations in the tangential
deformations. Nonetheless, there are constraints on swimmer behavior—for instance, swimmers characterized as
pushers are never observed to exhibit stable limit cycles. All such generalities for no-slip boundaries are consistent
with observations and more geometrically faithful simulations to date, suggesting the tangential squirmer is a
relatively simple framework to enable predications and classifications for the complexities associated with
axisymmetric boundary swimming. However, in the presence of a free surface, with asymptotically small capillary
number, and thus negligible leading-order surface deformation, no stable surface swimming is predicted across the
parameter space considered. While this is in contrast to experimental observations, for example, the free-surface
accumulation of sterlet sperm, extensive surfactants are present, most likely invalidating the low capillary number
assumption. In turn, this suggests the necessity of surface deformation for stable free-surface three-dimensional
finite-size microswimming, as previously highlighted in a two-dimensional mathematical study of singularity
swimmers [Crowdy et al., J. Fluid Mech. 681, 24 (2011)].
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I. INTRODUCTION

Simply examining pond water under a microscope reveals
a diversity of swimming microbes, thriving in a low Reynolds
number world, where inertia is typically negligible [1–6]. In
many experiments, to assure more than a fleeting glimpse of
motile microswimmers, the focal plane is typically set adjacent
to the coverslip, where microswimmers often accumulate
[7–11]. This boundary attraction initiates bacterial biofilms
[12], which present major economic challenges and opportuni-
ties, such as biofouling, biohydrometallurgy, and bioremedia-
tion [13,14]. Boundary dynamics also clearly influences sperm
motility [15,16], with potential functional consequences,
such as reducing the dimensionality of sperm guidance
[17,18] and encouraging sperm escape from reservoirs in
the isthmus of the estrous mammalian female reproductive
tract [19,20].

This prevalence and importance of motile microswimmer
boundary induced behaviors has encouraged numerous me-
chanical studies, from initial explorations of the extent of
surface effects [21,22] to the influence of a no-slip boundary
on a flagellated bacterium’s circling behavior, efficiency, and
entrapment [7,9,23]. Other examples include the confirmation
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that detailed flagellar regulation is not required to bring a
sperm cell close to a surface [24,25], although a wave form
regulation, known as hyperactivation, appears to encourage
surface escape [19]. Further studies have also explored the
boundary dynamics of idealized swimmers and prospective
engineered swimmers [26–28], often via the use of dynamical
systems ideas [27], and have for instance illustrated that
height oscillations above the surface are possible for inertialess
swimmers [27], though this has not been predicted by sperm
or bacterial modeling to date.

In addition, a generic and detailed analytical study based
on the far-field structure of the flow field has been presented
by Spagnolie and Lauga [29]. However, except as part of
this generic context, and a brief consideration by Llopis
et al. [30], the boundary dynamics of one class of model
microswimmer has not yet been considered, namely that of
the squirmer [31,32], which induces motility by nonreciprocal
surface deformations.

While the swimmer shape and its deformations can
be arbitrary, we focus here on axisymmetric bodies with
tangential squirming, whereby the swimmer shape remains
unchanged but an effective slip velocity is maintained on
its surface. Nonetheless, this is a standard abridged model
of ciliate motility [35,36], whereby relatively large unicells,
with a semiaxis length scale on the order of 50 μm, are
motile due a coating of relatively short actively beating cilia,
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FIG. 1. (Color online) (a),(b) Images of the ciliate, Paramecium
(Viridoparamecium) chlorelligerum. (a) An image from flash pho-
tomicrography of freely motile specimen after disturbance. Scale bar,
50 μm. (b) A scanning electron microscope image of the dorsal side,
illustrating the density of cilia on the cell surface. Reproduced, with
permission, from Kreutz et al. [33]. (c) A schematic of a prospective
self-electrophoretic propulsion mechanism for a conducting Janus
particle within an acidic environment, whereby a slip velocity is
induced by the ion flows generated by a simultaneous catalytic
oxidation of a fuel present in the solute, A, on one side of the particle
and a catalytic reduction of a fuel, B, on the other. Reproduced, with
permission, from Paxton et al. [34].

which drive a fluid flow around the cell, in turn inducing
motility [1]; a classic pond water example is Paramecium,
as illustrated in Figs. 1(a) and 1(b). Slip-velocity swimming
is also used to model colonial algae such as Volvox carteri,
[35,37], whose surface flows are driven by flagella, and
Janus particles [29], which have the potential to induce slip
velocities by many mechanisms, such as self-electrophoresis
via asymmetric surface chemical reactions [34], as detailed in
Fig. 1(c).

Thus our first objective in this study will be to classify the
behavior of tangential squirmers with axisymmetric bodies
and relatively simple slip velocities near no-slip boundaries
utilizing dynamical system ideas, in particular a phase plane
in the angle of attack and height from the surface. By exploiting
boundary element methods for the solution of Stokes’ inertia-
less fluid-dynamical equations, which provide high numerical
accuracy for low computational costs [23,29,37,38], we will
numerically explore phase space, considering fixed points and
their bifurcations as parameters vary. We will also investigate
whether more complex dynamics such as limit cycle behaviors
and multiple fixed points occur, as well as considering surface
scattering, enabling an assessment and characterization of how
swimming behaviors near surfaces vary in parameter space
for this class of tangential squirmers. We note this generally
takes us beyond the scope of Spagnolie and Lauga’s [29]

recent study of swimmer boundary dynamics using far-field
analytical approximation, except for aspects of scattering
dynamics where the far-field theory is used to provide an
independent check of our simulations.

Of particular further interest is that modeling investigations
of boundary swimming to date have almost exclusively
focused on no-slip boundaries. However, free surface boundary
dynamics merit attention in that an air-water interface is an ex-
ploitable microenvironment, facilitating sperm accumulation
for laboratory studies [39], as well as providing niche resource
opportunities for ciliates [40] and strain dissemination for
bacteria [41]. However, current modeling has been restricted
to idealized two-dimensional studies including surface de-
formation [26] and a theoretical prediction that flagellated
bacterial circling is reversed near a stress-free surface [9],
with a subsequent empirical verification [8,41]. The latter
in particular relies on the dynamics of the rotating bacterial
flagellum and the counter-rotation induced on the cell body,
resulting in a far-field torque dipole, which clearly has an
extensive influence on swimmer dynamics near surfaces.

Thus our second objective will be to also characterize how
squirmer boundary dynamics may differ in the presence of a
stress-free surface in parameter regimes characterized by low
capillary numbers, i.e., high surface tension, so that surface
deformations are negligible [42], simplifying the analysis. The
influence of swimmer strokes generating an additional torque
dipole on squirmer boundary dynamics will also be explored,
given its importance in bacterial surface behavior.

In summary, microswimmers exhibit a diverse array of
surface behaviors and differentiating between hydrodynamical
and adaptive biological or chemical effects is fraught with
difficulty. Hence we explore how dynamical systems princi-
ples provide a means of classifying purely hydrodynamical
behaviors, both near no-slip and stress-free surfaces for a
simple swimmer, the axisymmetric tangential squirmer which
is a common model for ciliates, colonial algae, and Janus
particles. The suggested prospect that the far-field dynamics
of swimmers may allow approximation of surface behaviors
[29] indicates that such characterizations, with the inclusion
of rotlet dipoles given the prevalence of rotary flagellated
swimmers such as bacteria, may be more widely applicable.
Thus in our study of squirmer boundary swimming, our
final objective will be to suggest predictions of generic
behaviors across parameter space that may be investigated
in more specialized, geometrically faithful, studies of specific
swimmers.

II. MODEL SWIMMER AND ITS FLUID DYNAMICS

A. Squirmer

We consider an axisymmetric inertialess microswimmer
with semiaxes a, c, initially above a no-slip wall, which
generates propulsion by an axisymmetric tangential surface
deformation, represented by a tangential slip velocity. The
location of the swimmer is given by the height of its center
above the wall, h, and the angle between its axis of symmetry
and the wall, ϕ ∈ (−π/2,π/2), as illustrated in Fig. 2, noting
that a unique symmetry axis exists even for the spherical
swimmer, due to the squirming deformations. The squirmer
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FIG. 2. Schematic picture of an inertialess tangential squirmer,
with semiaxes a, c, located a height h above a no-slip boundary at an
angle ϕ, with the axis of symmetry corresponding to the unit vector
e, directed positively with the swimming direction in the absence
of a wall. The polar angle θ and the axisymmetric tangential slip
velocity component, uθ (θ ), are also depicted. The symmetry of the
latter slip-velocity profile ensures the swimmer remains in a plane
perpendicular to the wall, which in this paper is taken to be the x-z
plane without loss of generality, as depicted.

surface is parametrized by a polar angle, θ ∈ [0,π ], which is
the angle between the swimmer surface normal and its axis of
symmetry, as shown in Fig. 2, together with an azimuthal angle
φ ∈ [0,2π ), which is the angle around the axis of symmetry,
taken clockwise as seen from behind the swimmer.

We first consider a swimmer with a polar slip velocity
relative to the body fixed frame. This is represented by
a velocity component expressed in terms of an associated
Legendre polynomial expansion

uθ (θ ) =
∞∑

n=1

BnVn(cos θ ), (1)

in the polar tangential direction to the swimmer surface, as
depicted in Fig. 2, with

Vn(x) = 2
√

1 − x2

n(n + 1)

d

dx
Pn(x), (2)

where Pn(x) denotes the nth-order Legendre polynomial.
Given the symmetry of this surface velocity, the swimmer

moves in a plane, which is perpendicular to the wall and
denoted by the x-z plane, as shown in Fig. 2. We nondimen-
sionalize so that the nondimensional viscosity is μ = 1, and
the volume of the squirmer is given by (4π/3)a2c = 4π/3
and hence the geometry of the swimmer is identified by
the aspect ratio A = c/a, and all length scales, for instance,
the height from the wall, are nondimensionalized by A1/3a.
The swimming velocity of a spherical squirmer (a = c) in
free space is simply given by U = (2/3)B1 on additionally
noting an inertialess swimmer is subject to zero net force and
torque [31,32].

This highlights how the lower modes of the associated
Legendre polynomial expansion strongly dictate the overall
behavior of the swimmer. Indeed these modes dominate the far
field, which has a particularly simple structure any significant
distance from the swimmer, as can be seen in Fig. 3, and
thus these modes are likely to dictate initial swimmer-wall

B1 B2 B3

FIG. 3. (Color online) Flow field around a spherical swimmer
with the direction θ = 0 corresponding to the positive horizontal
direction for a tangential squirming pattern that possesses only (left)
a B1 mode, (center) a B2 mode, and (right) a B3 mode in the associated
Legendre polynomial expansion, Eq. (1).

interactions as a squirmer approaches a boundary. Hence, as
observed in Spagnolie and Lauga [29], the consideration of
the far field often leads to accurate predictions for overall
swimmer behavior. Consequently, to limit the dimensionality
of parameter space that needs to be considered, we focus on the
first three modes of expansion (1) in our explorations. Without
loss of generality, we hereafter fix B1 = 1.5 which generates
a unit velocity in the case of a free-space spherical squirmer,
which is consequently the velocity scale used in the paper.
Thus to complete our characterization of tangential squirming
deformations, we introduce two further slip-velocity parame-
ters: β2 = B2/B1 and β3 = B3/B2.

B. Far-field expression and singularity solutions

The flow field obeys Stokes’ equation and can be expressed
by the superposition of fundamental singular solutions, i.e.,
the Stokeslet G, the potential source, H, and their multipoles,

uj ( y) =
∫

dSx

∞∑
n=0

∂n

∂xi1∂xi2 · · · ∂xin

×[αi,i1,...,inGij ( y,x) + βi1,...,inHj ( y,x)], (3)

where the integral is taken over a surface x located in the
exterior of the flow [43]. The Stokeslet is also called the Oseen
tensor and given by

Gij (x, y) = δij

r
+ rirj

r3
, (4)

where r = y − x and |r| = r . Similarly, the potential dipole
is given by

Hi(x, y) = ri

r3
, (5)

and it arises in the multipole expansions due to the presence
of a boundary.

The flow far from the body is expressed by the first few
modes, which are often used in the discussions of the fluid
interaction of microswimmers, noting that both strengths of
the Oseen tensor and the source singularity must be zero due
to the free-force condition and the volume conservation of the
swimmer. In particular, for an axisymmetric swimmer the flow
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field is of the form

ul = αeiejGD
ijl + βeiHD

il + γ eiej ekG
Q
ijkl + O(|r|−4), (6)

where the upper suffices D and Q respectively denote the
dipole and quadrupole of each singularity, and the vector e is a
unit vector along the swimmer’s axis of symmetry, in the same
direction as the swimmer motion in the absence of a wall.

Since the swimmer geometry becomes irrelevant for the
far-field velocity, the strengths of the singularities in (6) can
be evaluated from the far-field expression around the spherical
squirmer even though the swimmer is generally spheroidal.
Compared with the flow around the spherical squirmer [31],
the strengths are respectively found to be

α = − 3
4β2,

β = 1
2 − 1

8β3, (7)

γ = − 5
16β3.

The signature of α is used to classify the slip-velocity of the
swimmer; in particular, a swimmer with positive α is a pusher,
while negative α corresponds to a puller [29]. Microorganisms
with tail-like flagella behind the cell, according to the direction
set by the overall cell movement, such as bacteria and
spermatozoa, can be categorized as pushers. Pullers may be
seen in swimmers with their flagella ahead of the cell body,
for instance, Chlamydomonas and Leishmania promastigotes.
Indeed, β2 ∼ 1 is reported for Escherichia coli, whilst β2 ∼ 0
for Volvox carteri and artificially created squirmers like a Janus
particle, and β2 ∼ 1 for the algae genus Chlamydomonas [44].
The potential dipole term, which is a fundamental solution
for the Laplace equation of potential flow arises due to the
presence of a boundary, while the Stokes quadrupole term
typically reflects a fore-aft asymmetry of the swimmer. For
instance, the idealized, elongated, bacterial-like swimmers of
Spanolie and Lauga [29] have negative γ , with |γ | < 20, whilst
spermatozoa also generate nontrivial values of γ due to their
fore-aft asymmetry [45].

C. Dynamical systems and time-reversal symmetry

Given the surface velocity and the geometric aspect ratio,
the force and the torque exerted on the swimmer are completely
determined by the configuration of the body, i.e., the distance
from the wall h and the direction of the symmetry axis ϕ.
Therefore, the inertialess Stokes dynamics can be described in
terms of the two-dimensional dynamical system,

ḣ = Fh(h,ϕ),

ϕ̇ = Fϕ(h,ϕ), (8)

where the functions Fh and Fϕ can be numerically obtained
from Stokes’ equation. Determining the fixed points of the
dynamical system (8) and their linear stability, by considering
the associate fixed-point eigenvalues, is fundamental as a
stable fixed point of (8) may be regarded as a mathematical
expression of stable boundary swimmer behavior.

Furthermore, the dynamical system (8) possesses a time-
reversal symmetry under the change of variables,

t → −t,

ϕ → −ϕ,

β2 → −β2,

β3 → β3,

which demonstrates that the dynamical behavior due to a slip
velocity with parameters (β2,β3) is the same as a time-reversed
slip velocity for the dual swimmer with parameters (−β2,β3).
Hence the behavior of pushers can be understood from that of
pullers. For instance, suppose that there exists a stable fixed
point (h∗,ϕ∗) for a given slip velocity (β2,β3). The symmetry
(9) then implies that (h∗,−ϕ∗) is also a fixed point for the dual
swimmer with (−β2,β3), though stability is lost due to the time
reversal in the duality.

D. Numerical scheme

The single-layer boundary element method for an incom-
pressible inertialess flow of a Newtonian fluid is used to
compute the swimming trajectory. This is founded on an
expression for the velocity field as an integral over the surface
of the swimmer S [46],

ui(x) = − 1

8πμ

∫
S

Gij (x,x′)qj (x′)dSx′ , (9)

where q is a surface traction given by q = f − f int with
f , f int respectively denoting the surface tractions due to
the external and internal Newtonian flows associated with
the swimmer surface velocities. This formalism entails that
q possesses a gauge degree of freedom, namely an additive
constant of the surface normal—this is removed by setting∫
S

q · n dSx′ to zero. The Green function G is the Stokeslet
in the presence of an infinite no-slip rigid wall [47], known
as the Blakelet, or in the presence of an infinite free-slip
wall, according to the problem under consideration. For the
integral kernel in the case of the free-slip wall, only the image
singularity is required (see, for example, Appendix B of [29]),
and the Green function is given by

Gslip
ij (x′,x) = Gij (x′,x) ± Gij (x′,x∗), (10)

where x∗ is the mirror image of x with respect to the infinite
wall, x∗ = x − 2h ẑ, and z is an unit vector along the z axis.
The sign in (10) is taken to be positive when i = x,y and
negative otherwise.

The boundary condition on the surface of the swimmer, S,
is a continuity of velocity, so that the fluid velocity matches
the local surface velocity of the swimmer. The position of the
swimmer surface ξ in the laboratory frame can be written as
ξ = X + B · ξ ′ (Fig. 4), where X is the origin of the body
frame in the laboratory frame, corresponding to the center
of the swimmer, ξ ′ = x′ − X is the surface position in the
body frame, and, following [25], B is a set of column basis
vectors of the body frame. Let U and � be the translational
and rotational velocity of the origin of the laboratory frame
X . Then the surface velocity of the swimmer in the laboratory
frame is

v(ξ ) = U + � × ξ ′ + B · ξ̇ ′. (11)

The boundary condition that the velocity vector field
does not slip relative to the swimmer surface deformation,
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FIG. 4. Schematic picture of the swimmer configuration—its
surface and axis of symmetry are respectively given by S and e,
with the latter’s direction dictated by the swimming direction in
the absence of a wall. A laboratory reference frame has Cartesian
coordinates x,y,z and the position vector of the swimmer’s center, a
point on its surface and an external field point, relative to this frame,
are respectively denoted by X , x′, and x. Analogously, a point on the
swimmer’s surface relative to a body fixed frame with origin at the
swimmer center, is denoted ξ ′.

v(x′) = u(x′), thus becomes

uj = Ui + εijk�jξ
′
k + Bij ξ̇

′
j

= − 1

8πμ

∫
S

Gij (x′,x′′)qj (x′′)dSx′′ . (12)

Noting that the force and torque generated on the swimmer by
the internal force, fint, are both zero [46], the total force and
torque balance equations can be written in the form∫

S

q(x′)dSx′ =
∫

S

(x′ − X) × q(x′)dSx′ = 0. (13)

The unknown variables q(x′), U , and � are then obtained
by solving the linear problem (12), subject to the balance
equations (13).

For mesh generation, we have employed the BEMLIB
library accompanying [43]. The number of mesh elements used
here is N = 512 or N = 2048, depending on the accuracy that
is required. At each time point, the problem then reduces to
the solution of a dense matrix equation in 3N + 6 unknowns,
analogously to [37]. This yields the body velocity and angular
velocity at each time point in terms of the surface deformations,
which is sufficient to find phase-space fixed points. When
swimmer trajectories are required, there is a subsequent time
marching which proceeds via a Heun scheme, as presented
by Smith et al. [25], and elements of these simulations have
been performed using the cluster computing system within
Research Institute for Mathematical Sciences (RIMS), Kyoto
University.

Once the distance between the swimmer surface and the
substrate is of the order of 0.1 μm or less, additional interaction
forces manifest between a bacterial cell and the boundary,
which are highly dependent on the details of the substrate,
the swimmer surface, and the solution media [48]. We do
not consider such molecular-level complexities here and our
computation stops if the swimmer approaches this close to the
wall and we simply conclude that under such circumstances
hydrodynamics brings the swimmer up to the wall—drawing
more detailed conclusions would require caution.

III. DYNAMICS IN PHASE SPACE

A. Swimming near a no-slip boundary

We proceed to numerically examine the fixed points for
height, h, and angle, ϕ, using the standard Newton-Raphson
method, which calls the boundary element solver to determine
values of the functions Fh and Fϕ in Eq. (8), in turn allowing the
roots of Fh = Fϕ = 0 to be found. The results are illustrated
in Fig. 5—the reflection symmetry and antisymmetry with
respect to β2 is readily apparent in the phase diagram and is a
consequence of the time-reversal symmetry of this system.

Note that by the consideration of the free space solutions,
we anticipate straight-line swimming trajectories as h → ∞
due to negligible fluid interactions with the wall; such regions
of phase space are neglected below since the dynamics is
trivial. In particular, since the time variation of h and ϕ

becomes quite small when the swimmer is far from the wall
(h 	 1), so that Fh and Fϕ vary only weakly, the accuracy
requirements in finding any prospective large-h fixed point
become extremely demanding. Furthermore, such a fixed
point can be regarded as physically meaningless in terms
of swimmer-boundary attraction. Thus we introduce a cutoff
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FIG. 5. (Color online) Plots detailing the location and stability
properties of phase-space fixed points for a given slip-velocity
parametrization (β2,β3), with different swimmer aspect ratios A =
1,2,3 and the presence of a no-slip boundary. If no color is plotted
there is no fixed point for the given parameter values. The upper row
(a) presents the steady-state angle between the axis of symmetry and
the wall, ϕ∗, associated with each fixed point in units of radians.
When β2 ∼ 0 and β3 > 0, there are multiple fixed points, though we
only plot the one with the most negative ϕ when β2 � 0, and the most
positive otherwise; these fixed points are nodes with nearby adjacent
saddles, as illustrated in Fig. 6 and discussed further in the text. The
central row (b) depicts the shortest distance between the swimmer
and the wall for the plotted fixed point. The bottom row (c) gives the
largest real part of the linear stability eigenvalues associated with the
plotted fixed point.
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for the height of the fixed point at hfar = 15, i.e., a scale of
15 swimmer lengths from the wall, where the squirmer-wall
interactions are assured to be very small.

Achieving accuracy for any prospective fixed point very
close to the wall is also computationally extremely demanding,
due to difficulties in sufficiently resolving the singularities and
their images when the swimmer surface is extremely close to
the wall [23]. In particular, the boundary element scheme and
discretization used here lose accuracy when the distance d

between the wall and the nearest point of the swimmer, which
is given by d = h − A−1/3 cos(ϕ)

√
1 + A2 tan2(ϕ), decreases

below 0.01 nondimensional units. This is on the scale of
0.01 of the squirmer semiaxis: even for a swimmer as large
as the ciliate depicted in Fig. 1 this is about 0.2 μm,
which is approaching a scale necessitating the inclusion of
nonhydrodynamic, molecular-level, details in the squirmer-
surface wall interactions. Thus, once more, drawing any
quantitative conclusions relying on the modeling predictions
in this dynamical regime requires caution.

In Fig. 5, there is a region at the center of the phase diagram
where no fixed points exist. As the slip-velocity parameters
(β2, β3) approach this region the steady-state height, h∗, grows
rapidly as can be seen in the middle row of Fig. 5. Thus, for
example, the fully activated Janus swimmer, which is classified
by β2 = β3 = 0 (Fig. 5 [29]) does not have a fixed point near
a wall.

Now consider a swimmer with β2 = 0,β3 < 0—there is
a fixed point with zero steady-state angle, ϕ∗ = 0, and pure
imaginary eigenvalues. More generally, if there is a fixed point
with ϕ∗ = 0, the real part of the eigenvalues must be zero
due to the time-reversal symmetry discussed above. Such a
fixed point is a center, with the linear theory prediction that
phase-space trajectories form closed loops sufficiently close
to the fixed point. While in general this need not reflect the
behavior of the full nonlinear system, due to the breakdown of
Hartman’s theorem, the time-reversal symmetry ensures that
such trajectories are indeed closed loops.

Except for β2 ∼ 0 with β3 relatively large, which we discuss
later below, there is a single fixed point; in this case, the
eigenvalues have nonzero real parts when β2 
= 0 and thus
the fixed point is a phase-plane focus. Consequently, when the
real part of the eigenvalue is negative, the swimmer progresses
in one direction essentially parallel to the wall, with a damped
height oscillation that relaxes to the fixed point on approaching
stable swimming and presents a growing unstable oscillation
otherwise.

The presence or absence of this stability is highly sensitive
to the swimmer aspect ratio A, as can be observed from the
lowest row of Fig. 5. First of all, let us consider the case of the
spherical squirmer with A = 1. For a swimmer with positive β2

(a puller), there are two regions with distinct stability behaviors
in the figure: an unstable region with smaller β3 and a stable
region with larger β3. Our computational results show that as
the geometric aspect ratio, A, is increased from 1 to 2, some
fixed points are lost to infinity and the stable region with β2 > 0
is compacted into a region with smaller β3. There is also a new
unstable region for larger β3 and analogous dual changes occur
for β2 < 0. With a further increase in the aspect ratio to A = 3,
boundary swimming with β2 > 0 is now unstable, in distinct
contrast to most of the parameter space for A = 1. Hence both

pushers and pullers can stably swim near a boundary with an
appropriate slip-velocity pattern, which is generally contingent
on the squirmer geometry. Furthermore, one can also observe
that whenever a puller (β2 > 0) has a stable fixed point, its
angle relative to the wall is negative, in contrast to a pusher,
reflecting the duality imposed by time-reversal symmetry.

Remarkably, we can find regions containing multiple fixed
points when β2 ∼ 0 and β3 is relatively large. These do not
contradict time-reversal symmetry as the two steady-state
angles and the associated linear stability eigenvalues differ by
a minus sign, while the steady-state height is the same. In this
parameter regime, with β2 � 0, only the fixed point associated
with the most negative angle is plotted in Fig. 5, whilst the fixed
point associated with the most positive angle is plotted for
β2 < 0. In addition, we observe an adjacent saddle point. The
dynamics in this regime is therefore more complicated than a
phase-plane focus that we observed above. Thus, to understand
swimming behaviors in the presence of these multiple fixed
points, and global behavior more generally, the swimmer’s
overall behavior in phase space also needs to be explored. We
therefore numerically examine swimmer trajectories in phase
space and, more generally, the (h,ϕ) phase-plane portrait.

First, we consider a parameter regime with multiple fixed
points. With A = 1,β2 = 0,β3 = 10, the phase portrait is
plotted in Fig. 6. Nodes are depicted by circles, and the node
associated with a negative steady-state angle, ϕ∗, is unstable
in contrast to the node associated with positive ϕ∗. Two saddle
points are also present and close to the nodes so that local to
each saddle-node pair the phase portrait is analogous to that
of a saddle-node bifurcation. In particular, such fixed-point
pairs are not globally stable, as the saddle’s unstable manifold
drives integral paths away from the fixed points, and thus the
associated dynamics can be highly contingent on the approach
to the fixed points, even when one of them is locally stable. In
particular, stable boundary swimming need not occur, and the
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FIG. 6. Phase plane portrait for A = 1,β2 = 0,β3 = 10 with
arrows indicating flow in the dynamical system. Four fixed points
can be observed with a duality in the sign of the steady-state
angle. The circles indicate two fixed points, one of which at
(h∗,ϕ∗) = (1.093, 0.231π ) is a stable node, whereas the other at
(h∗,ϕ∗) = (1.093, −0.231π ) is an unstable node. Also, two saddle
points are depicted by stars, at (h∗,ϕ∗) = (1.222 ± 0.194π ).
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swimmer can either approach the surface or be scattered from
it, depending on initial conditions. However, this dynamical
system phase-plane portrait relies on relative fine-tuning as the
saddle and node annihilate in a bifurcation as β2 moves away
from zero. Nonetheless, certain aspects of the phase plane are
also present even with a single stable fixed point, such as the
observation that the swimmer can approach the boundary or
escape at sufficiently extreme angles, for example.

We proceed to consider a swimmer’s trajectory for a
slip-velocity associated with an unstable fixed point. As the
slip-velocity parameters (β2,β3) are changed along a curve in
(β2,β3) parameter space where the real part of the eigenvalues
transition through zero without a change in the sign of β2, the
fixed point undergoes a Hopf bifurcation. In the case of A = 2,
for instance, when the parameters change from (β2,β3) =
(6,−10) to (6,5), the stable fixed point becomes unstable
at β3 ∼ −4. We therefore explore the swimmer dynamics
in phase space after the Hopf bifurcation has occurred by
employing initial conditions which constitute a perturbation
away from the unstable fixed point, and then computing the
swimmer trajectory until it approaches the wall or moves
away (h � hfar), or the large time dynamics is revealed. In
particular, the Hopf bifurcation is supercritical and a stable
limit cycle is observed as highlighted in Fig. 7 for parameters
A = 2,β2 = 6,β3 = −2. Furthermore, as β3 further increases,
the limit cycle becomes larger and approaches the wall,
eventually intersecting it. Thus this trajectory finally becomes
globally unstable in the sense that the swimmer is brought
sufficiently close to the wall by hydrodynamic interactions
that surface-swimmer molecular interaction forces manifest,
at which point the model presented here breaks down, as
schematically illustrated in Fig. 8. In contrast, when β2 is
negated for this set of parameters, the stability is lost due to
the time-reversal symmetry, which entails the appearance of
an unstable limit cycle together with a stable fixed point at a
subcritical Hopf bifurcation, as reported in [27] for a simple
three-sphere swimmer.
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FIG. 7. (Color online) Phase-space trajectory for A = 2,β2 =
6,β3 = −2. The color contour shows the time after departure from an
initial point adjacent to the unstable fixed point. Clearly, the trajectory
ultimately converges to a limit cycle.

(c) (u+sLC)(s) (u+sLC+W)

parameters

FIG. 8. (Color online) Schematic picture of the Hopf bifurcation
and its influence on global behavior in the phase space. A stable
fixed point becomes unstable as a parameter varies, together with the
appearance of a limit cycle which finally approaches and intersects
the boundary. The stability of the fixed point is characterized via (s)
stable, (c) nonlinear center, (u) unstable, (u + sLC) unstable fixed
point with a surrounding stable limit cycle, and (u + sLC + W)
unstable fixed point with a surrounding stable limit cycle that
intersects the wall.

B. Swimming near a free surface

The swimmer near a free surface is investigated analo-
gously, under the assumption that the capillary number is
asymptotically small, so that surface deformation is negligible
[42]. The angle, ϕ∗, and distance of closest approach are
depicted for fixed points in Fig. 9 as a function of the geometric
aspect ratio, A, and the slip-velocity parameters β2,β3. Once
more the signature of the angle between the axis of symmetry
and the wall at the fixed point, ϕ∗, is determined by the sign
of the slip-velocity parameter β2, though fixed points are now
lost into the wall when β2 = 0 as the aspect ratio increases, for
example, in contrast to observations for a no-slip boundary.
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FIG. 9. (Color online) Plots detailing the properties of phase-
space fixed points for a given slip-velocity parametrization (β2,β3),
with different geometric aspect ratios A = 1,2,3 in the presence of
a free-surface boundary at asymptotically small capillary numbers,
so that surface deformation is negligible. If no color is plotted there
is no fixed point for the given parameter values. The upper row (a)
plots the angle, ϕ∗, of each fixed point and the lower row (b) denotes
the shortest distance between the swimmer and the wall at the fixed
point. When there are multiple fixed points, all are still saddles though
only the one with the most negative ϕ is plotted above when β2 � 0;
otherwise, the fixed point associated with the most positive ϕ is
plotted; see text for further details.
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FIG. 10. Phase-plane portrait for an aspect ratio A = 2, and slip-
velocity parameters β2 = β3 = 0 in the presence of a free surface. The
star highlights the location of a saddle point at (h∗,ϕ∗) = (1.147,0);
note that no stable accumulation dynamics is indicated by the phase-
plane trajectories.

The most surprising and interesting difference though is the
absence of stable fixed points in the same parameter space
surveyed for the no-slip boundary case; instead we only find
saddle points, demonstrating that the swimmer cannot be
stably trapped near the boundary in this substantial region
of parameter space.

An illustration of the global behavior in the presence of a
free surface boundary is given by the dynamical system flow
presented in Fig. 10 for a geometric aspect ratio of A = 2
and slip-velocity parameters (β2,β3) = (0,0) corresponding to
a fully activated Janus particle [29]. The only fixed point is
highlighted by a star and is a saddle, with no stable boundary
swimming. Instead (except on the stable manifolds of the
saddle), the swimmer either escapes to infinity or approaches
the wall, respectively with a positive and a negative angle ϕ.
We finally note that multiple saddle points can co-exist with
opposite fixed-point angle, ϕ∗, for a large value of β3; in such

e

FIG. 12. Schematic picture of a squirmer with an additional rotlet
dipole. The illustrated scenario case has a positive orientation and thus
possesses positive γ2.

cases, the squirmer can approach the wall with a positive angle
though once more stable boundary swimming is not possible.

IV. SCATTERING BEHAVIOR

To examine the difference in swimmer behaviors in the
absence of fixed points and either a no-slip or a free-
surface boundary, we consider scattering trajectories for a
spherical swimmer (A = 1), initially located at (x,z) = (0,2)
and with tangential deformation parameters (β2,β3) = (0,0).
In Fig. 11(a) the relation between the initial angle ϕinit and the
final angle ϕfin for both no-slip and free-surface boundaries are
plotted, using squares and triangles. Note that below an initial
angle of ϕ ∼ −0.09π , the swimmer is not scattered by a free
surface, whilst scattering occurs for a no-slip boundary until
the initial angle is as negative as ϕ ∼ −0.19π . Furthermore,
in Fig. 11(b), where sample trajectories in physical space
are plotted for an initial angle of −0.05π , there is clearly
an extended residence of the swimmer in the vicinity of
the free surface during scattering, compared to a no-slip
boundary. Finally, in Fig. 11(a), the solid curve represents
the far-field approximation expression for scattering from
the no-slip boundary, ϕfin =

√
ϕ2

init + 1/64 [29], and clearly
agrees with the no-slip boundary computation, providing an
independent validation of the numerical simulations.
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FIG. 11. (a) Plot of the final angle, ϕfin, in terms of the initial angle, ϕinit, for the scattering trajectory followed by a swimming spherical
squirmer with aspect ratio A = 1 and slip-velocity parameters (β2,β3) = (0,0) in the presence of both a no-slip and a free-surface boundary;
the far-field theory predictions are also plotted (solid). Inset: a magnified view when the initial angle is near zero. (b) The trajectory when this
swimmer is initially located at (x,z) = (0,2) with initial angle ϕ = −0.05π for both a no-slip and a free-surface boundary.
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FIG. 13. Swimming trajectories projected into the x-y plane
for the spherical squirmer (A,β2,β3) = (1,0,0), with and without a
positively oriented rotlet dipole, adjacent to a no-slip or a free surface
with initial location (x,y,z) = (0,0,2) and direction ϕ = −0.05π .
The swimmer with γ2 = 5 rotates clockwise close to a no-slip
boundary and counterclockwise near a free surface, whilst swimming
in the absence of a rotlet dipole induces motion only in the x-z plane.

V. SWIMMER WITH A ROTLET DIPOLE

We proceed to briefly consider a rotary swimmer, such
as a bacterium, which is driven by a torque motor rapidly
rotating a flagellum or multiple flagella in one direction, and
thus inducing a cell body rotation in the opposite direction, as
required for conservation of angular momentum. To consider
such influences, we allow the squirmer to possess an axisym-
metric tangential deformation in the azimuthal direction, with
this component of the surface velocity expressed in terms of a
stream function �, via

uφ = �

r sin θ
. (14)

Here the stream function � satisfies

[
∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]2

� = 0 (15)

and, similar to the polar angle component (1), we introduce a
series expression of the surface velocity,

uφ(θ ) =
∞∑

n=1

CnVn(cos θ ). (16)

Separation of variables gives the azimuthal velocity, via the
solution of (15), as

uφ(r,θ ) =
∞∑

n=1

Cn

rn+1
Vn(cos θ ), (17)

which decays on the scale O(r−1) in the far field, where the
resulting flow can be also expanded in terms of the fundamental
singular solution of a point torque, or rotlet, and its multipoles
[46]. The rotlet is given by

Rij = −εijkrk

r3
, (18)

though the leading term in the rotlet multipole expansion must
be trivial due to the torque-free condition. Thus the leading
term of the far-field velocity due to the azimuthal tangential
deformations is given the rotlet dipole, RD

ijk , and takes the form

uk ∼ τeiejRD
ijk, (19)

where e is the axis of symmetry in Fig. 2 and τ is a constant,
measuring the magnitude of the rotary flow and signed via its
orientation. It may be determined by comparison with Eq. (17)
and is given by (1/3)C2, with positive τ corresponding to the
front of the cell, towards θ = 0, rotating clockwise and the aft
rotating anticlockwise when viewed from behind, as depicted
in Fig. 12, which corresponds to the chirality of E. Coli, whilst
the opposite chirality is exhibited by R. Sphaeroides [49,50].

We therefore introduce another slip-velocity parameter, γ2,
defined as γ2 = C2/B1, to incorporate the rotary contribution
of the tangential deformation. Its effect only influences the
squirmer trajectory near a boundary. In particular, Fig. 13 illus-
trates the trajectories of the spherical swimmer (A,β2,β3,γ2) =
(1,0,0,5) viewed from above, with initial position (x,y,z) =
(0,0,2) and direction ϕ = −0.05π . Note that the no-slip
boundary case induces anticlockwise circling with a positively
oriented rotlet dipole, as also observed in Fig. 14(a), and in the
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FIG. 14. Trajectory of a squirmer adjacent to a no-slip boundary, with aspect ratio A = 3, and polar slip-velocity parameters (β2,β3) =
(−4,−4), for a given value of the azimuthal slip-velocity parameter γ2 ∈ {0,4,8}. (a) The trajectories are plotted in physical, xyz, space
together with the projection onto the xy plane, constituting the boundary at z = 0. (b) The time evolution of swimmer height h. (c) A plot of
the associated trajectory in the phase-plane dynamical system. Note that (a) the swimmer with positive γ2 rotates in a clockwise direction when
viewed from above with (b) its height converging to a constant irrespective to the magnitude of γ2 and (c) the time evolution of the orientation
angle ϕ is also independent of the rotlet dipole strength.

062702-9



KENTA ISHIMOTO AND EAMONN A. GAFFNEY PHYSICAL REVIEW E 88, 062702 (2013)

opposite direction for a free-surface boundary, as discussed
by [8,9] for models of bacteria. Importantly, in Fig. 14, we
can also observe that the rotlet dipole term just modulates the
swimmer’s behavior within the horizontal plane and does not
change its height and orientation angle [Figs. 14(b) and 14(c)].
Hence the dynamics of the swimmer in the xz plane is
decoupled from the influence of the rotary dynamics.

VI. DISCUSSION AND CONCLUSION

We have considered how an axisymmetric tangential
squirmer, together with in general a rotlet dipole, behaves near
a no-slip boundary and, for an asymptotically small capillary
number, near a free surface, using dynamical-systems ideas
to characterize the swimmer dynamics. In particular, there is
a well-defined two-dimensional phase plane consisting of the
height above the surface and the angle the axis of symmetry
makes with the boundary, immediately demonstrating that
chaotic dynamics is not possible. Nonetheless, the dynamics
can be complex, as emphasized in Fig. 6, which demonstrates
that a locally stable node in phase space does not necessarily
entail stable global behavior due to its proximity to a saddle
point.

Fortunately, for most regions of parameter space associated
with boundary swimming, the dynamics is not as complicated.
Boundary approach and escape for extreme angles of attack
are evident from the phase-plane (e.g., Fig. 6), and the
potential for extensive microswimmer boundary approach
within a population of cells is consistent with the fact that,
in observational studies, albumin is required to prevent human
sperm sticking to microscope slides [45]. For no-slip surfaces,
there is also frequently a stable fixed point, demonstrating a
prediction that stable boundary swimming can occur, with a
slight orientation between the swimmer and the boundary, of
positive angle for a pusher and negative angle for a puller.
This ability to swim stably near a surface is regularly reported
and likely to feature in many observations of swimming cell
behaviors, such as with sperm boundary navigation [17]. In
addition, the presented results demonstrate that there is a
decoupling of the dynamics perpendicular to the boundary
in the presence of a rotlet dipole, so that the discussions of
boundary swimming immediately apply for such swimmers,
as in the context of modeling bacterial motility.

Recall that the dimensional length scale is given by L =
(a2c)1/3, where a,c are the semiaxis lengths depicted in Fig. 2,
with a geometric aspect ratio A = c/a; further note that the
distance of closest approach at the fixed point in Fig. 5
is broadly the same order of magnitude across a range of
parameter values. This entails that the dimensional distance
of closest approach scales with aA1/3 and thus we have the
indication that the distance of closest approach for fixed-point
boundary swimming is relatively insensitive to the geometric
aspect ratio, as long as the fixed point remains stable. This is
also consistent with simulations of monotrichous bacteria [23],
and gives a first indication that the results observed here may be
more generally representative of boundary microswimming.

It also clear in addition that fixed-point stability, as required
for stable boundary swimming, is readily altered with the
aspect ratio and, in particular, the beat pattern, which can be
adaptively changed by a cell. Indeed the ability of biological

swimmers to regulate their behavior near a no-slip surface
is likely to be functionally important. One example concerns
the passage of sperm through the estrous mammalian female
reproductive tract, with the observation that the release of
epithelial-bound sperm from tract reservoirs coincides with
hyperactivation [20], which induces flagellar wave forms
with lower spatial wave numbers, higher amplitudes, and
asymmetric beating. In particular, it is interesting to note
that hyperactivation, and its associated reduction in flagellar
wave number, is predicted in modeling studies [19,25] to
induce surface escape, as recapitulated here in the presented
results, with the loss of fixed points to infinity on reducing the
magnitude of β3, representing a higher spatial wave number in
the stroke. This is not the only trend in swimmer behavior that
can be readily deduced by an inspection of the fixed points in
Fig. 5 and is reflected in more geometrically faithful simulation
studies. In particular, there is a tendency to surface approach
with reduced aspect ratio [23] and the positive angle between
the swimmer and the boundary for a pusher [23,25,51].

A time-reversal symmetry is readily apparent which means
that pullers and pushers are dual swimmers and thus many
aspects of puller dynamics can be understood from pusher
dynamics. For instance, the fact pushers can switch to bound-
ary escape behaviors with altered tangential deformations
demonstrates that pullers are capable of regulating their
boundary dynamics analogously. Indeed, flagellated Leishma-
nia promastigotes are, in contrast to sperm, pulled by their
flagellum, but similarly bind to and subsequently escape from
midgut epithelia in their vector host, the sandfly [52]. We have
demonstrated that stroke or slip velocity regulation, here at
the level of the lowest modes in expansion (1), does indeed
allow both pullers and pushers control over their behavior
near a no-slip surfaces. Analogously, one might tentatively
anticipate that ciliates and colonial algae can control their
behavior near surfaces and that detailed surface patterning
may alter, and yield some control over, the no-slip boundary
behavior of Janus particles.

One further aspect of the time-reversal duality between
pushers and pullers concerns their differences, in particular
our observations of stable limit cycle dynamics. This occurs
in substantial regions of parameter space, but for pullers
only. Hence, by duality, pusher limit cycles are unstable
for all the slip velocities we have considered. This is also
consistent with the absence of limit cycles for pushers such as
sperm and bacteria in observations and geometrically faithful
simulations, together with the damped oscillatory decay to
fixed points seen in simulations (e.g., [23,25]).

Further, note that all nondegenerate fixed points can occur
in the dynamical system phase plane, so that the lowest three
modes of the tangential squirmer in expansion (1) can in
principle describe any phase-plane behavior aside from fine-
tuned bifurcation dynamics. Thus the restrictions and trends
we have observed concerning no-slip boundary behaviors,
such as pushers do not undergo limit cycles and stably swim at
positive angles relative to the boundary, may indeed be generic
physically based restrictions rather than due to the necessarily
limited exploration of parameter space in a predominantly
simulation based study. Certainly there are no discrepancies
known to the authors on comparing more geometrically
faithful simulations or observational studies with the trends
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and constraints highlighted in the discussion above, which
therefore can be considered as generic predictions of this
modeling framework and suggest simple model squirmers can
be used to explore the range of axisymmetric no-slip boundary
microswimming behaviors.

We have also investigated the behavior of the axisymmetric
tangential squirmer near a free surface for an asymptotically
small capillary number, so that surface deformations can be
neglected. In terms of scattering when stable near surface
swimming does not occur, the most extensive difference was
in the extent of surface residence, though a reduction in the
level of scattering was also observed. These observations can
be concisely understood in terms of the reduced amount of
shear and thus viscous torque near the free-surface boundary
compared to the no-slip scenario [53].

When attempting to consider stable near-surface swimming
near a free surface with low capillary number, we in fact found
that its absence is universally predicted within our modeling
framework. Interestingly, the precise converse is observed
for both Escherichia coli [8,41] and sperm [39]. The first
of these bacterial studies also assessed interfacial properties
and recorded bacterial-induced surface property changes even
before trajectories were observed [41], which is consistent
with substantial evidence that E. Coli produce surfactants
[54]. Similarly, for the sperm study, sufficient surfactant
was added to generate a flat drop [39] in the microscopy
preparation. Thus surfactants are present, or at least most
likely to be present, which has the effect of reducing surface
tension, invalidating the assumption of a small capillary
number regime, preventing a direct comparison of the theory
presented here and observation. Nonetheless, this discrepancy
does suggest that surface deformation is necessary for stable
near-surface swimming as deduced, together with sufficiency
though not stability, in a two-dimensional mathematical study
of singularity swimmers, where the length scale of the
swimmer in the 2D plane of interest is asymptotically small
relative to the boundary-swimmer separation [26].

Finally, we note that our prediction of the lack of boundary
accumulation near free surfaces in the absence of surfactants
also represents a potential experimental test of the hydrody-
namical theory studied here. Another opportunity for experi-
mental testing would be an exploration of whether slip velocity
swimmers such as Janus particles can be adjusted to undergo

limit cycles in experiments. This is predicted to require a Janus
particle that is a puller with a geometric polarity (e.g., A = 2
or A = 3 in Fig. 5) but a limited fore-aft asymmetry in the
force generation to avoid a very large negative value of the
force quadrupole weighting, β3, which may instead induce
simply stable swimming at moderate geometric polarities (e.g.,
A = 2,β2 > 0, β3 � −1 in Fig. 5). Our modeling in particular
emphasizes that these tests of swimmer hydrodynamical theory
would be legitimate over large regions of parameter spaces,
ensuring the comparison of theory and experiment is subject to
less uncertainty than quantitative tests which require detailed
control over swimmer parameters.

In summary, our exploration of axisymmetric tangential
squirmers as models of ciliates, colonial algae, and Janus
particles has been characterized by phase-plane behaviors and
simplified by a time-reversal duality. Whilst all phase-plane
behaviors (except subtle bifurcations) have been observed
as possible for a no-slip boundary, there are nonetheless
dynamical restrictions such as pushers that do not undergo
stable limit cycles. The fact all dynamical system behaviors
are observed for no-slip boundaries, but these restrictions are
still in place, suggests that model squirmers may be a simple
framework to understand, or at least predict, generic trends and
properties of axisymmetric boundary microswimming. Our
observations of free-surface dynamics at low capillary number
revealed that hydrodynamic changes can be understood in
terms of reduced viscous torques arising on the swimmer due
to the boundary, though this does not explain our predicted
absence of stable near-surface swimming. This contrasts with
experimental studies, though the latter are complicated by the
presence of surface active substances, in turn suggesting that
stable motility for finite-size swimmers near a free surface
in 3D is necessarily contingent on surface deformation in the
absence of nonhydrodynamical effects.
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