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Electrical impedance controls mechanical sensing in ionic polymer metal composites
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Ionic polymer metal composites (IPMCs) are a class of soft electroactive materials that are recently finding
extensive application as mechanical sensors and energy harvesters in liquids. In their most fundamental form,
IPMCs are composed of a hydrated ionomeric membrane that is sandwiched between two electrochemically
deposited metal electrodes. Ionomer swelling, counterion diffusion, and the formation of electric double layers are
some of the physical phenomena underpinning energy transduction in IPMCs; however, a thorough understanding
of the relative influence of such phenomena is yet to be established. Here, we propose a physics-based modeling
framework, based on the Poisson-Nernst-Planck system, to describe IPMC chemoelectrical response to an
imposed time-varying flexural deformation. We utilize the method of matched asymptotic expansions to compute
a closed-form solution for the electric potential and counterion concentration in the IPMC. The model predicts
that IPMC sensing is independent of the time rate of deformation and linearly correlated to the mechanical
curvature, with a coefficient of proportionality that is a function of the ionomer thickness and the temperature.
Thus, our results demonstrate that the characterization of IPMC electrical impedance suffices to identify all the
parameters that are relevant to sensing, in contrast with the current state of knowledge. Theoretical results are
validated through experiments on patterned in-house fabricated IPMC samples that are subject to time-varying
flexural deformations.
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I. INTRODUCTION

Ionic polymer metal composites (IPMCs) are novel
electroactive materials which are fabricated by sandwich-
ing soft ionomeric membranes, such as Nafion [1–4] and
Flemion [3,5], with noble metal electrodes, such as plat-
inum [1,3,4] and gold [3,5]. IPMCs have received considerable
attention in the past two decades for their propitious attributes
as compliant actuators in liquids [1,6,7]. Specifically, they
have been shown to produce large mechanical deformations
in response to modest voltages applied across their electrodes
and to react to time-varying voltage inputs of broad frequency
contents [1,8,9]. These features have been especially beneficial
in the design of miniature biomimetic propulsion systems [10–
16] and micromanipulators [17–20]. The research impetus
towards these engineering applications has been accompa-
nied and supported by rigorous research on the physics of
actuation [21–31]. As a result, our capacity to predict the
performance of IPMC actuators as a function of physical and
geometric parameters of their constituents is relatively well
developed.

Recent efforts have demonstrated that IPMCs can accu-
rately and precisely sense mechanical deformations in a broad
range of operating conditions [32–40]. For example, IPMCs
have been utilized in flow sensing [32], touch sensing [33],
force sensing [34,35], and energy harvesting [36–40]. While
recent modeling efforts [32,34,35,39,41–49] have helped
us in identifying the determinants of IPMC sensing, our
understanding of the physical phenomena that control energy
transduction is still relatively limited, and the current practice
in IPMC sensors’ design cannot rely on predictive models.

In so-called black-box models, empirical rules are estab-
lished on the basis of experimental observations on IPMC
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electrical response to mechanical deformations. For example,
in Refs. [34,35,43], the short-circuit current of a cantilever
IPMC is shown to linearly scale with the tip deflection and the
associated transfer function is experimentally identified. For
large quasistatic deformations, in Ref. [45], it is shown that the
bending angle of a cantilever IPMC is linearly proportional
to the peak open-circuit voltage and the coefficient of pro-
portionality is experimentally identified. In Ref. [48], several
lumped circuit sensor models comprising capacitors, resistors,
and deformation-controlled current sources are presented and
tested against experimental results.

A first comprehensive physics-based model of IPMC
sensing has been proposed in Ref. [41]. The model revolves
around the notion that the deformation of clusters in the
ionomer core is central to sensing. As such, model calibration
requires deep knowledge of the topology of the clusters along
with a multitude of physical and geometric parameters, which
hamper the direct application of the approach to design IPMC
sensors and to dissect the relative role of the contributing
factors. Building upon the work in Ref. [41], a series of more
analytically tractable physics-based models based on different
implementations of the Poisson-Nernst-Planck (PNP) sys-
tem [50] have been proposed in Refs. [39,42,44,46,47,49,51].
While these models have helped in identifying the determi-
nant processes underpinning IPMC sensing, that is, ionomer
swelling, counterion diffusion, and the formation of electric
double layers in the vicinity of the electrodes, their ability to
predict IPMC sensing is rather limited. Indeed, most of these
models require a posteriori use of ad hoc parameters to be
identified from experimental data.

Common to all these models is the assumption that the
IPMC core is a homogeneous material, which we argue is
their main limitation. In fact, IPMCs are generally fabricated
through an electroless chemical reduction process [2,52]
consisting of the diffusion and adsorption of a noble metal salt
in the polymer and its consecutive deposition on the ionomer
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surface through a reducing agent. Such deposition results in
the formation of a metal particle layer, which is composed
of scattered metal particles dispersed in the ionomer at the
interface between the ionomer core and the metal electrodes;
see, for example, microscopy results in [53,54].

In previous work of our group [55,56], we have introduced
the notion of “composite layer” to describe IPMC electrical be-
havior in the vicinity of the electrodes. Therein, we describe the
IPMC as a stacked sequence of five layers, where the polymer
core is separated from the metal electrodes by two composite
layers. This approach shares similarities with the theoretical
concepts of inner electrode [57], intermediate layer [54], and
active area [58,59]. We have already demonstrated that such
composite layers can be integrated in PNP systems to explain
the complex frequency dependence of IPMC impedance in
Refs. [55,56]. Here, we extend this framework to study the
chemoelectromechanical behavior of IPMCs in response to
an imposed mechanical deformation. Specifically, we extend
the formulation presented in Refs. [55,56] to account for
the swelling of the ionomer core and the composite layers
as well as the forced counterion convection associated with
the IPMC motion. Following Refs. [60–63], we use the
method of matched asymptotic expansions [64] to derive
a closed-form solution for the electric potential and the
counterion concentration in the IPMC, along with a distributed
circuit model of IPMC sensing. The framework is validated
through comparison with experimental data on IPMCs with
varying number of plating layers, undergoing large periodic
deformations at varying excitation frequency.

We organize the paper as follows. In Sec. II, we present
the governing equations for the chemoelectromechanical
response of IPMCs to mechanical deformations. In Sec. III, we
establish closed-form solutions for the electrical potential and
counterion concentration, along with a pertinent distributed
circuit model. In Sec. IV, we validate the model through
comparison with experimental results and discuss the main
elements of our framework. Conclusions are summarized in
Sec. V.

II. GOVERNING EQUATIONS

We model the IPMC chemoelectromechanical behavior
by adapting the PNP framework originally developed in
Refs. [27,65] to study IPMC charge dynamics and mechanical
actuation. With reference to a two-dimensional scenario,
IPMC chemoelectrical response is described in terms of
the electrical potential ψ and the concentration of mobile
counterions, with unit valency, per unit volume of deformed
IPMC c. Both of these fields are functions of the time
variable t and the two-dimensional coordinates in the deformed
configuration x and y; see Fig. 1. For convenience, we set
the voltage ground at the origin of the coordinate system
x = y = 0. IPMC flexural deformations are modeled using
the classical Euler-Bernoulli beam theory [66,67], whereby
we assume that the IPMC kinematics is fully described by the
rotation of the cross section ϕ, which depends only on t and y.
Thus, IPMC cross sections are assumed to be rigid and to stay
orthogonal to the midaxis, along y, during the deformation.

We further hypothesize that the IPMC is inextensible so
that its length is always L and the rotation of the cross

FIG. 1. (Color online) Schematics of the IPMC showing the
clamping at y = 0 and the actions applied at y = L.

section ϕ is sufficient to describe the IPMC kinematics [67].
Indeed, assuming that the cross section at y = 0 is clamped as
displayed in Fig. 1, the location of the IPMC midaxis is given
by

∂X0(y,t)

∂y
= sin (ϕ(y,t)), (1a)

∂Y0(y,t)

∂y
= cos (ϕ(y,t)), (1b)

with ϕ(0,t) = 0 at every time. The position of any other point
is computed from the location of the midaxis through

X(x,y,t) = X0(y,t) + cos (ϕ(y,t))x, (2a)

Y (x,y,t) = Y0(y,t) − sin (ϕ(y,t))x. (2b)

The dilatation in the IPMC is consistently computed from the
deformation above as χ (x,y,t) = 1 − k(y,t)x, where k(y,t) =
∂ϕ(y,t)

∂y
is the IPMC curvature. With this notation, a positive

curvature corresponds to a deformation similar to the one
depicted in Fig. 1, that is, one in which the center of curvature
resides in the region x > 0.

Following [55,56], we model the IPMC as the stacked
sequence of five layers: an ionomer core, two composite layers
of metal particle dispersed in the ionomer material, and two
metal electrodes. For simplicity, each layer is assumed to have
constant thickness and physical properties along the IPMC
length and width. More specifically, each composite layer
has thickness d, diffusivity Dcl, dielectric constant εcl, and
polymer volume fraction φ. The ionomer has thickness 2h,
diffusivity D, and dielectric constant

ε(x) = (εi − εb)e−μ h+x
h + (εi − εb)e−μ h−x

h + εb, (3)

where εi and εb refer to the permittivity of the ionomer
at the interface with the composite layers and in its bulk,
respectively, and μ is the decay rate of the permittivity;
see Refs. [30,56]. The through-the-thickness variation of the
electric permittivity is used to account for the presence of
the high surface rough electrodes [29,68,69]. Moreover, the
concentration of fixed anions in the ionomer core in the
undeformed configuration is c0. The electrodes are considered
as lossy planar conductors with surface resistivity ρ. Following
Refs. [55,56], the composite layers are assumed to be much
thinner than the ionomer, while having considerably higher
permittivity and lower diffusivity, that is, d � h, εcl � εi, and
Dcl � D.

062603-2



ELECTRICAL IMPEDANCE CONTROLS MECHANICAL . . . PHYSICAL REVIEW E 88, 062603 (2013)

Observations in Refs. [49] suggest that nonlinear electromi-
gration is a secondary phenomenon in IPMC sensing, which
is well described by a linearized one-dimensional form of
the PNP system, where the axial coordinate y is treated as a
parameter. Within this framework, the PNP system reduces to
a set of linear partial differential equations in x and t , which
are coupled through their boundary conditions and are linearly
forced by the IPMC curvature k. Below, we briefly present the
system of equations and propose a closed-form solution based
on the method of matched asymptotic expansions. Notably, the
model differs from the state of knowledge in the field of IPMC
sensing, whereby it includes, for the first time, the presence
of composite layers, and it considers convective phenomena
that are essential for accurately predicting IPMC response in
a broad frequency range.

A. Ionomeric membrane

The linearized one-dimensional PNP system within the
ionomer core is [49]

− ∂

∂x

(
ε(x)

∂ψ(x,y,t)

∂x

)
= F [c(x,y,t) − c0(1 + xk(y,t))] ,

(4a)

∂c(x,y,t)

∂t
− c0x

∂k(y,t)

∂t

= D

[
∂2c(x,y,t)

∂x2
+ Fc0

RT

∂2ψ(x,y,t)

∂x2

]
, (4b)

where R is the universal gas constant, T is the IPMC
temperature, and F is the Faraday constant. Note that the
right-hand side in the Poisson’s equation (4a) represents the
charge imbalance per unit volume of deformed ionomer, which
depends on its dilatation. Such dilatation also determines the
convective effect in the mass continuity equation (4b).

B. Composite layers

The PNP system for the composite layers is adapted from
Eq. (4) by scaling the counterion concentration with respect to
the polymer volume fraction and accounting for the different
physical properties in these regions. By labeling relevant
variables through the subscript “cl” and using the subscript
± to identify the field variables in the upper, h < x < h + d,
and lower, −(h + d) < x < −h, composite layers, we find

−εcl
∂2ψcl±(x,y,t)

∂x2
= F [ccl±(x,y,t) − c0φ(1 + xk(y,t))] ,

(5a)

∂ccl±(x,y,t)

∂t
− c0φx

∂k(y,t)

∂t

= Dcl

[
∂2ccl±(x,y,t)

∂x2
+ Fc0φ

RT

∂2ψcl±(x,y,t)

∂x2

]
. (5b)

C. Boundary, interface, and initial conditions

The IPMC is assumed to be initially electroneutral, that is,

c(x,y,0) = c0, (6a)

ccl±(x,y,0)/φ = c0. (6b)

Following Refs. [55,56], we hypothesize that the counterion
concentration and the electric potential are continuous at the
ionomer-composite layer interfaces, that is,

c(±h,y,t) = ccl±(±h,y,t)/φ, (7a)

ψ(±h,y,t) = ψcl±(±h,y,t). (7b)

We further assume that the ion flux and the electric dis-
placements are continuous at the ionomer-composite layer
interfaces, that is,

J (±h,y,t) = Jcl±(±h,y,t), (8a)

D(±h,y,t) = Dcl±(±h,y,t). (8b)

Here the ion fluxes are defined by

J (x,y,t) = −D

[
∂c(x,y,t)

∂x
+ Fc0

RT

∂ψ(x,y,t)

∂x

]
, (9a)

Jcl±(x,y,t) = −Dcl

[
∂ccl±(x,y,t)

∂x
+ Fc0φ

RT

∂ψcl±(x,y,t)

∂x

]
.

(9b)

Moreover, the electric displacements are defined by

D(x,y,t) = −ε(x)
∂ψ(x,y,t)

∂x
, (10a)

Dcl±(x,y,t) = −εcl
∂ψcl±(x,y,t)

∂x
. (10b)

We note that continuity of the electric displacement and
the ion flux automatically guarantees the continuity of the
through-the-thickness current per unit surface i(y,t), which is
computed by evaluating −[ ∂D(x,y,t)

∂t
+ FJ (x,y,t)] at any x in

the ionomer or −[ ∂Dcl±(x,y,t)
∂t

+ FJcl±(x,y,t)] at any x in the
composite layers.

Following Ref. [62], we consider ion-blocking metal elec-
trodes and, for convenience, we define the voltage difference
between the electrodes as vs. Therefore, we set

Jcl±(±(h + d),y,t) = 0, (11a)

ψcl+((h + d),y,t) − ψcl−(−(h + d),y,t) = vs(y,t). (11b)

We consider the case of lossy electrodes [44,70], for which
Ohm’s and Kirchhoff laws yield

∂vs(y,t)

∂y
= −rsis(y,t), (12a)

∂is(y,t)

∂y
= i(y,t), (12b)
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where is is the current through the top or bottom electrode and
rs is the surface resistance of both the electrodes per unit IPMC
length. The latter parameter is computed from the width b of
the IPMC and the resistivity ρ as rs = ρb. We comment that
during the deformation, the resistance per unit IPMC length
of either electrodes may vary, yet their series connection is
constant due to the underlying hypothesis of Euler-Bernoulli
beam kinematics.

Finally, we always assume that the electrodes at y = L are
open circuited, so

is(L,t) = 0. (13)

Thus, we treat the IPMC as a two-terminal network, for which
we study the relationship between the input voltage V (t) =
vs(0,t) and the current I (t) = is(0,t).

III. CHEMOELECTROMECHANICAL RESPONSE

Due to the physical and geometrical symmetry of the
problem with respect to the y axis and the structure of the
governing equations comprising the linearized PNP system,
see Eqs. (4)–(13), the chemoelectric response of the IPMC is
skew symmetric with respect to the y axis. More specifically,
in the polymer region

c(x,y,t) − c0 = −c(−x,y,t) + c0, (14a)

ψ(x,y,t) = −ψ(−x,y,t), (14b)

and in the composite layers

ccl+(x,y,t) − c0φ = −ccl−(−x,y,t) + c0φ, (15a)

ψcl+(x,y,t) = −ψcl−(−x,y,t). (15b)

We comment that such a skew-symmetric response is gener-
ally lost during actuation, due to nonlinear electromigration
generated by the large voltage across the electrodes [28,29].

To derive a tractable closed-form solution of the overall
PNP system in Eqs. (4)–(13), which represents a set of linear
nonhomogeneous partial differential equations, we adapt the
procedure presented in Ref. [56] for the analysis of IPMC
nonlinear charge dynamics. Such a procedure is based on the
method of matched asymptotic expansions with respect to the

perturbation parameter δ = 1
Fh

√
εiRT

c0
� 1, which measures

the ratio between the so-called Debye screening length λ =√
εiRT
F 2c0

, associated with the interfaces between the ionomer

and the composite layers and the ionomer semithickness [62].
Following Ref. [56], we hypothesize that the physical and
geometric properties of the IPMC are such that the aggregated
nondimensional parameters ε∗ = εclδ

εiφ
, D∗ = Dcl

Dδ
, and d∗ =

d

h
√

δ
are all on the order of 1 as δ approaches zero in the

asymptotic analysis [64].
Differently than in Ref. [56], we account for the presence of

a forcing term in the PNP system due to the imposed mechan-
ical deformation and we neglect nonlinear electromigration
and steric phenomena [28,71,72], which are unlikely to be
relevant for sensing applications [49]. Therefore, for the sake
of brevity, we present directly the results of the analysis and
refer to Ref. [56] for an analogous derivation. We first offer

the general solution of Eqs. (4)–(11), which depends on the
unknown voltage drop across the electrodes vs, and then we
utilize Eqs. (12) and (13) to ultimately compute the sought
chemoelectric fields and the overall IPMC response.

A. Counterion concentration and electric potential

In the ionomer core and in the composite layers, the
unilateral Laplace transform of the concentration and the
electrical potential are given by the following expressions:

L[c](x,y,s) = c0

(
1

s
− A1(y,s)e− (h−x)

λ + A1(y,s)e− (h+x)
λ

+ xL[k](y,s)

)
, (16a)

L[ψ](x,y,s) = Vth

(
A1(y,s)e− (h−x)

λ − A1(y,s)e− (h+x)
λ

+A2(y,s)x

)
, (16b)

and

L[ccl±](x,y,s) = c0φ

(
1

s
∓ A1(y,s)e−√

s
Dcl

(x∓h)

± xL[k](y,s)

)
, (17a)

L[ψcl±](x,y,s) = ±VthA3(y,s)(h + d ∓ x) ± L[vs](y,s)

2
,

(17b)

where L[·] is the unilateral Laplace transform, s is the Laplace
variable, and Vth = RT/F is the thermal voltage. The thermal
voltage is controlled by the absolute temperature T , and
at room temperature it is approximately equal to 26 mV.
The function A1 is given in terms of the voltage across the
electrodes and the IPMC curvature by

A1(y,s) =
L[vs](y,s)

2Vth
+ hL[k](y,s)

1 + φh
√

Dcl
√

s

D
+ λh

D
s

. (18)

The functions A2 and A3 are computed from A1 and the
curvature through

A2(y,s) =
(

φ
√

Dcl
√

s

D
+ λ

D
s

)
A1(y,s) − L[k](y,s),

(19a)

A3(y,s) = − εi

εclλ

(
φ

λ

√
Dcl

s
+ 1

)
A1(y,s). (19b)

Note that Eqs. (16) and (17) reduce to the solution
presented in Ref. [56], when L[k](y,s) = 0, upon neglecting
nonlinearities and steric effects considered therein.
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FIG. 2. Distributed circuit model of IPMC sensing.

B. Through-the-thickness current and voltage
across the electrodes

From the concentration and the electric potential, we
directly calculate the through-the-thickness current i in terms
of the imposed curvature k and the voltage across the electrodes
vs. Specifically, in the Laplace domain, we find

L[i](y,s) = 1

z(s)
(L[vs](y,s) − L[v](y,s)), (20)

where

v(y,t) = −2hVthk(y,t), (21)

with z is the through-the-thickness impedance per unit length
(with units of � m). The impedance z is given by

z(s) = 1 + (rw)
√

s + (rγ )s

w
√

s + γ s
, (22)

where γ = εib
2λ

is the capacitance per unit length associated
with the double layers in the ionomer (with units of F m−1),
r = 2hλ2

εiDb
is the resistance per unit length associated with

charge transport in the ionomer (with units of � m), and w =
εiφb

√
Dcl

2λ2 is the Warburg impedance per unit length generated
by charge diffusion in the composite layers (with units of
s1/2 �−1 m−1). By combining Eqs. (12) and (20), we obtain
the equivalent circuit representation in Fig. 2, where the
through-the-thickness impedance is synthesized as a simplified
Randles’ impedance [50] and the imposed deformation acts as
a distributed voltage source in series connection.

We note that the proposed impedance model is similar to
the black-box distributed model for actuation presented in
Ref. [73]. On the other hand, it radically differs from the
circuit models presented in Refs. [39,46,49] for the presence of
a Warburg impedance in the through-the-thickness impedance
and the distributed surface resistance. Both these elements
are critical to accurately describe IPMC response. We also
remark that the model in Ref. [39] posits that the deformation-
controlled voltage source relates to the time rate of change
of the curvature rather than the curvature as suggested in
Eq. (21). Such discrepancy should be ascribed to the neglection
of convective phenomena in Ref. [39], which are critical in
shaping low-frequency IPMC sensing. Notably, a deformation-
controlled voltage source is also predicted in Ref. [46];
however, the model presented therein is only applicable to

static deformations and uses a peculiar dielectric polarization
phenomena, instead of magnified dielectric constants to
explain IPMC large capacitance, due the assumption of energy
conservation.

Moreover, by Laplace transforming Eq. (12) and substitut-
ing Eq. (20), we find the general solution of the voltage across
the electrodes and the surface current, namely

L[vs](y,s) = B1(s)e
√

rs
z(s) y + B2(s)e−√

rs
z(s) y

− 1

2

√
rs

z(s)
e
√

rs
z(s) y

∫ y

0
e
−√

rs
z(s) y

′
L[v](y ′,s)dy ′

+ 1

2

√
rs

z(s)
e
−√

rs
z(s) y

∫ y

0
e
√

rs
z(s) y

′
L[v](y ′,s)dy ′,

(23a)

L[is](y,s) = −
√

1

z(s)rs
B1(s)e

√
rs

z(s) y

+
√

1

z(s)rs
B2(s)e−√

rs
z(s) y

− 1

2z(s)
e
√

rs
z(s) y

∫ y

0
e
−√

rs
z(s) y

′
L[v](y ′,s)dy ′

+ 1

2z(s)
e
−√

rs
z(s) y

∫ y

0
e
√

rs
z(s) y

′
L[v](y ′,s)dy ′,

(23b)

where B1 and B2 are yet-to-be-determined functions of s.

C. Open-circuit voltage

For open-circuit conditions at the IPMC clamp, the current
I is zero. On account of Eq. (13), B1 and B2 in Eq. (23) reduce
to

B1(s) = B2(s) =
√

rs

z(s)

coth
[√

rsL2

z(s)

]
− 1

4

×
(

e
2
√

rsL2
z(s)

∫ L

0
e
−√

rs
z(s) y

′
L[v](y ′,s)dy ′

+
∫ L

0
e
√

rs
z(s) y

′
L[v](y ′,s)dy ′

)
. (24)

From Eqs. (23a) and (24), we find the Laplace transform of
the open-circuit voltage Voc(t) = vs(0,t),

L[Voc](s) = 2B1(s). (25)

For the special case of perfectly conducing electrodes, rs →
0,

B1(s) = B2(s) = −Vthh
L[ϕ](L,s)

L
, (26)

which yields Voc(t) = −2Vthhϕ(L,t)/L, in agreement with
Ref. [49]. [Note that ϕ(L,t)/L corresponds to the mean
curvature of the IPMC kmean(t) = 1

L

∫ L

0 k(y,t)dy.] Thus,
for highly conductive electrodes, the composite layers
have a secondary role on the open circuit voltage, which
is controlled by the ionomer swelling. In this case,
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A1(y,s) = A3(y,s) = 0 and A2(y,s) = −L[k](y,s), so the
counterion concentration and the electric potential in the
ionomer reduce to c(x,y,t) = c0(1 + xk(y,t)) and ψ(x,y,t) =
−Vthxk(y,t), respectively. In the composite layers, the concen-
tration is ccl±(x,y,t) = φc0(1 ± xk(y,t)) and the potential is
ψcl±(x,y,t) = ∓Vthhk(y,t). For a positive curvature, as shown
in Fig. 1, the counterion concentration per unit volume of
deformed IPMC increases in the vicinity of the compressed
electrode (top) and decreases close to the stretched one
(bottom). This indicates that the net charge does not change and
the IPMC is everywhere electroneutral during the deformation,
with the counterion concentration balancing the variation of
the fixed charge concentration per unit volume of deformed
IPMC. The electric potential in the ionomer core decreases
with x, so a larger voltage is generated on the bottom electrode.
In this case, we find that no boundary layers develop at the
interface.

D. Short-circuit current

For short-circuit conditions at the IPMC clamp, the voltage
V is zero. On account of Eq. (13), B1 and B2 in Eq. (23)
become

B1(s) = −B2(s) = 1

2

√
rs

z(s)

1

1 + e
2
√

rsL2
z(s)

×
(

e
2
√

rsL2
z(s)

∫ L

0
e
−√

rs
z(s) y

′
L[v](y ′,s)dy ′

+
∫ L

0
e
√

rs
z(s) y

′
L[v](y ′,s)dy ′

)
. (27)

From Eqs. (23b) and (27), we obtain the Laplace transform of
the short-circuit current Isc(t) = is(0,t),

L[Isc](s) = − 2√
z(s)rs

B1(s). (28)

Differently from the open-circuit voltage, even for highly
conductive electrodes, the short-circuit current is highly influ-
enced by the composite layers. Indeed, for rs → 0, we have
L[Isc](s) = 2hVthL[ϕ](L,s)/z(s), showing the effect of the
through-the-thickness impedance. Thus, the composite layers
have a fundamental role in shaping the frequency content
of the short-circuit current. In this case, a compact solution
similar to the one presented for open-circuited electrodes for
the time evolution of the concentration and electric potential
cannot be found. With reference to the IPMC parameter values
from Ref. [56] and reported in Table I for completeness, in
Fig. 3, we display the through-the-thickness evolution of the
counterion concentration and the electrical potential IPMC
to a uniform step change in the curvature of 1/L. Note that
in this case the salient nondimensional parameters used for
the perturbation analysis are as follows: δ = 5.80 × 10−6,
d∗ = 9.54, D∗ = 11.92, and ε∗ = 1000. Therein, we only
report the time evolution of the counterion concentration and
the electric potential for x > 0, due to symmetry.

Figure 3 demonstrates the presence of boundary layers in
the concentration and potential profile, along with counterion
diffusion in the composite layers, which are instead absent
in the open-circuit response. Notably, while the IPMC is

TABLE I. IPMC physical and geometric parameters from Ref. [56].

Parameter Value

F (C mol−1) 96485
R (J mol−1 K−1) 8.314
T (K) 300
c0 (mol m−3) 1200
h (μm) 100
d (μm) 2.3
φ 0.5
D (m2 s−1) 1.19 ×10−10

Dcl (m2 s−1) 8.24 ×10−15

εi (F m−1) 1.51 ×10−9

εb (F m−1) 1.51 ×10−11

εcl (F m−1) 1.30 ×10−1

electroneutral in the ionomer bulk, the interface in the vicinity
of the compressed electrode is negatively charged, due to
the depletion of mobile counterions that cannot balance the
negative charges of the backbone ionomer. We also comment
that the results in Fig. 3 offer further verification that nonlinear
electromigration is a secondary effect in IPMC sensing,
whereby we find that the variation of the concentration with
respect to the initial values are within 1% for a very significant
deformation with curvature equal to 1/L.

Often IPMC sensors are utilized to study steady-state
harmonic vibrations at a fixed frequency f [35,39,44,47].
In this case, IPMC curvature is of the form k(y,t) =
Im[k̂(y,f )eI(2πf )t ], where I is the imaginary unit, Im[·] denotes
the imaginary part, and k̂ is the phasor of the curvature.
The phasor of the steady-state short-circuit current Îsc can be
directly computed from Eq. (28) by replacing in the integrals
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FIG. 3. (Color online) Theoretical predictions on the concentra-
tion of counterions and electric potential in an IPMC with perfectly
conducting electrodes and properties in Table I in response to a
uniform step in the curvature of 1/L, for short-circuited electrodes.
Red (gray), green (light gray), blue (darkest gray), purple (dark
gray), and cyan (lightest gray) curves refer to t = 0.001, 0.01, 0.1, 1,
and 10 s, respectively. (a) Counterion concentration in the ionomer;
(b) counterion concentration in the composite layer; (c) electric
potential in the ionomer; and (d) electric potential in the composite
layer. Insets in (a) and (c) highlight the boundary layers at the interface
between the ionomer an the composite layer.
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FIG. 4. (Color online) (a) Magnitude and (b) phase of the
impedance of an IPMC with properties listed in Table I for different
values of the surface resistance. Red (gray), green (light gray), blue
(darkest gray), purple (dark gray), and cyan (lightest gray) represent
rs = 10, 100, 1000, 10 000, and 100 000 � m−1, respectively.

of Eq. (27) L[k](y,s) with k̂(y,f ) and setting s = I(2πf )
in the impedance defined in Eq. (22). Here and henceforth,
superimposed hat is used to identify phasors.

E. Overall impedance

From the open-circuit voltage Voc and the short-circuit
current Isc, we compute the equivalent impedance of the IPMC,
that is,

Z(s) = −L[Voc](s)

L[Isc](s)
=

√
z(s)rs coth

[
L

√
rs

z(s)

]
. (29)

With reference to the data in Table I, in Fig. 4, we display
the IPMC impedance for s = I(2πf ) and different values of
the surface resistance. Figure 4 shows that increasing the
surface resistance monotonically increases both the impedance
magnitude and phase. In the high-frequency regime, where
the IPMC is dominated by resistive effects, the equivalent
resistance increases with

√
rs . On the other hand, in the

intermediate range around the knee of the magnitude curve,
where reactive phenomena starts to be more evident, increasing
the surface resistance regulates the slope of the impedance,
which can attain values lower than −10 dB/decade with phases
lower than −45◦.

IV. EXPERIMENTS

We validate the proposed modeling framework through
comparison with experiments on in-house fabricated IPMCs.

FIG. 5. (Color online) Computer-aided design of the experimen-
tal setup used for investigating IPMC sensing, illustrating the
deformation of the IPMC strip in response to the linear motion of
the movable clamp imposed by the shaker.

At room temperature, we conduct two integrated experiments
to ascertain the effect of surface resistance on the IPMC
impedance in Eq. (29) and verify the established relationship
between the IPMC curvature and the short-circuit current in
Eq. (28).

A. Experimental scheme

To produce a simple IPMC deformation similar to the one
depicted in Fig. 1, we follow the methodology presented in
Ref. [74], which offers a robust scheme to control IPMC
curvature without the need of measuring forces. In this
approach, IPMC strips are compressed along their axis through
a movable fixture, whose relative motion with respect to a fixed
clamp causes structural buckling. By electrically insulating the
first portion of the strip in the vicinity of the fixed clamp, we
produce an IPMC sample whose deformation is accurately
regulated through the linear motion of a movable fixture.

Figure 5 displays a computer-aided design of the experi-
mental apparatus, along with a detailed view of the buckling
of the IPMC strip. A Bruel and Kjaer 4810 mini-shaker
is controlled by an Agilent 33210A function generator to
select the frequency of excitation and a Bruel and Kjaer
2718 power amplifier is used to adjust the amplitude of the
motion. When the strip is undeformed, the distance between
the clamps is 32 mm. We consider three nominal levels of
IPMC deformation, by varying the peak-to-peak value of the
sinusoidal motion of the movable clamp D0 to include 2, 4, and
6 mm. For each value of D0, we vary the input frequency from
2 to 5 Hz with an increment of 0.5 Hz, so each IPMC is tested
in 21 conditions. The motion is analyzed through a IDT/Y3C
high-speed camera, from which the trajectory of a marker on
the movable clamp is measured through Motion studio [75] and
Xcitex Proanalyst software [76]. The camera sampling rate is
250 frames per second to maintain a sampling frequency over
50 times the largest excitation frequency considered in this
study of 5 Hz.

The electrodes of the strip are partitioned into three sections,
following experimental observations in Ref. [74], and only
the portion adjacent to the fixed clamp is used for sensing.
Here and in what follows, we refer the portion of the strip
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FIG. 6. Experimental data (dots) and theoretical prediction (solid lines) for the impedance of fully covered IPMCs. (a) Magnitude and
(b) phase of the IPMC sample with one secondary plating cycle. (c) Magnitude and (d) phase of the IPMC sample with two secondary plating
cycles. (e) Magnitude and (f) phase of the IPMC sample with three secondary plating cycles.

that is used for sensing as the IPMC sample or simply as
the IPMC. The short-circuit current through the IPMC is
measured through copper electrodes covering 3 mm of the
sample and connected to an inverting amplifier, composed of a
Texas Instruments TLC2202 low-noise precision operational
amplifier with a feedback resistance of 10 k�. The output of the
inverting amplifier is measured using a National Instruments
data acquisition board 6221 and a custom-made code in
Labview 8.6 with a low-pass filter at 60 Hz, a band-stop filter
between 40 and 80 Hz, and another band-stop filter between
170 and 190 Hz, which are used to eliminate coupling with
the power line. For each experiment, we acquire 3 s of data
and we use a MATLAB script to process both the short-circuit
current and the linear motion of the movable clamp to extract
the amplitude of the phasors of both signals, with the frequency
fixed to the input value.

Impedance measurements are performed using the method-
ology presented in Ref. [55], which is based on the “ac
impedance” technique on a CH Instruments 700D potentiostat.
Gold electrodes are used in the testing and the IPMCs are
completely immersed in deionized water. The amplitude of
the sine wave is set to 10 mV. To elucidate on the role of
surface resistance, we systematically vary the portion of the
samples which is covered by external electrodes. Specifically,
we consider the following coverage values β: 100%, 75%,
50%, and 25%. A similar setup is utilized to measure the
surface resistance, whereby gold electrodes are placed on
the the top or bottom surfaces of the samples at a distance
equal to 66% of their length. The resistance between the gold
electrodes is estimated using a Fluke 175 true RMS digital
multimeter. Also in these tests, the IPMCs are kept hydrated
and the overall surface resistance rs is evaluated by summing
the surface resistance of the bottom and top electrodes.

B. IPMCs

IPMC strips are fabricated from Nafion N117 polymer
membrane foils, produced by DuPont de Nemours, and
platinum salt through an electroless chemical reduction
process [2,52]. The IPMC strips have patterned electrodes,
consisting of three identical portions on both the top and
bottom surfaces. Patterning is obtained through a masking
technique that uses 3M 5423 ultrahigh molecular weight
polyethylene tape [4,77,78].

Briefly, the main fabrication steps can be described as
follows. The masked Nafion membrane is immersed in a
solution of [Pt(NH3)4]Cl2 and NH4 OH overnight to allow
platinum cations to diffuse through the ionomer. Following the
adsorption phase, the sample is stored in deionized water, and
a reducing agent NaBH4 is added to reduce the platinum ions
to metal particles on the ionomer surface. After this primary
plating, IPMC strips are subject to repeated multiple secondary
plating cycles to produce thicker electrodes. Specifically, more
platinum is deposited by adding NH2OH-HCl and NH2 NH2

through a solution of [Pt(NH3)4]Cl2, NH4 OH. After the
deposition process is completed, the strips are neutralized in
NaCl solution so Na+ acts as the counterion species.

We fabricate three types of IPMC strips, which are char-
acterized by one, two, or three cycles of secondary platinum
plating. The nominal dimensions of each of them are 38 mm
in length, 10 mm in width, and 0.2 mm in thickness. The gap
between adjacent electrodes is 2 mm and the length of the three
electrodes on each surface are 12, 10, and 12 mm, from one
end to the other. This results into IPMC samples of length
L = 9 mm when tested in the apparatus in Fig. 5, whereby
3 mm of the strip are covered by the copper electrodes, which
activate only the first 12-mm-long portion of the strip.
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TABLE II. Identified parameters of the IPMC samples.

Secondary plating r (� m) γ (F m−1) w (s1/2 �−1 m−1) rs (� m−1)

One cycle 0.0252 0.0485 0.0850 4450
Two cycles 0.0260 0.1397 0.2020 1875
Three cycles 0.0202 0.3113 0.2394 2862

C. Impedance measurements

Experimental data on fully covered IPMC samples are
utilized to identify the parameters r , γ , and w defining the
through-the-thickness impedance in Eq. (22) through least-
squares error minimization [55]. Figure 6 displays experimen-
tal results against model predictions with identified parameters
for the three IPMC samples. The model is able to accurately
explain IPMC impedance in the whole frequency range. The
minimal discrepancies in the phase for frequencies below 1 Hz
should be attributed to experimental errors associated with the
large impedance of the IPMCs. Results in Fig. 6 confirm that
both the Warburg impedance and the IPMC capacitance are
important parameters for describing IPMC electrical behavior
in the range of frequencies typically considered for sensing,
that is, 0.1–100 Hz [32,39,43]. Indeed, as the excitation
frequency becomes smaller than 10 Hz, the effect of the
Warburg impedance becomes stronger as seen in the bending
of the impedance magnitude bending towards −10 dB/decade
and the phase plot towards −45◦.

The results of the identification are compactly presented
in Table II. Our findings confirm the evidence presented
in Ref. [55] on a larger batch of Nafion-based IPMCs.
Specifically, we find that increasing the number of plating
layers has a secondary role on the through-the-thickness

resistance, which is controlled by the counterion diffusion in
the ionomer bulk. On the other hand, increasing the number
of plating layers is responsible for a significant increase of
both the Warburg impedance and the double layer capacitance,
which are controlled by interfacial properties. Table II also
reports the measured values of the surface resistance of the
electrodes. Such values are in agreement with experimental
observations in Ref. [70], where surface resistance on the order
of 1000 � m−1 are found. In contrast with our expectations, the
surface resistance does not decrease with the number of plating
layers, which is likely due to the formation of microcracks in
the thicker electrodes [79].

The data in Table II are utilized to verify the effect of the
surface resistance predicted by Eq. (29). Assuming that the
IPMC does not deform during testing, the total impedance
of a sample which is covered only for a fraction β of its
length L can be computed as the parallel connection between
the impedance of the free portion and the impedance of the
electroded part. The former is calculated from Eq. (29) by
substituting (1 − β)L with L, and the latter is simply z

βL
.

Thus, we find

Zβ(s) =
z(s)
βL

√
z(s)rs coth

[
(1 − β)L

√
rs

z(s)

]
z(s)
βL

+ √
z(s)rs coth

[
(1 − β)L

√
rs

z(s)

] . (30)

Model predictions from Eq. (30) are presented in Fig. 7 for
all the considered cases. The model is successful in accurately
anticipating the effect of β on the impedance in Eq. (30),
which regulates the magnitude of Zβ(I2πf ) for f larger
than 10 Hz and its phase for frequencies in the range 1–100
Hz. Specifically, decreasing the coverage of the sample is
responsible for a remarkable increase in the high-frequency
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FIG. 7. (Color online) Experimental data (dots) and theoretical prediction (solid lines) for the impedance of partially covered IPMCs.
(a) Magnitude and (b) phase of the IPMC sample with one secondary plating cycle. (c) Magnitude and (d) phase of the IPMC sample with two
secondary plating cycles. (e) Magnitude and (f) phase of the IPMC sample with three secondary plating cycles. Red (gray), green (light gray),
and blue (dark gray) refer to β equal to 75%, 50%, and 25%, respectively.
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FIG. 8. (Color online) Amplitude of the short-circuit current through the IPMCs. (a) IPMC sample with one secondary plating cycle,
(b) IPMC sample with two secondary plating cycles, and (c) IPMC sample with three secondary plating cycles. Red (gray), green (light gray),
and blue (dark gray) refer to D0 = 2, 4, 6 mm, respectively. Dots and crosses indicate experimental data and theoretical predictions, respectively.

magnitude of the impedance, which is related to resistive
effects. At the same time, decreasing the coverage of the
sample modulates the interplay between resistive and reactive
phenomena that are visible in the variations of the phase in the
frequency range 1–100 Hz.

D. Sensing

Following the approach presented in Ref. [74], and based
on the closed-form results on beam post-buckling in Ref. [67],
we compute the curvature along the whole IPMC strip
from the sinusoidal motion of the movable clamp for each
experimental condition. The curvature field is then sampled
in the interval [0,L], defining the IPMC sample, using 51
Gaussian quadrature points and the phasor at each location
is extracted using a MATHEMATICA script. These data are
ultimately used to perform the numerical integrations in
Eq. (28) and compute the phasor of the short-circuit current
stemming from the proposed modeling framework.

A comparison between model predictions and experimental
results is presented in Fig. 8. Our findings are in good
agreement with experimental results for all the 63 experiments
conducted as part of this study, and the largest discrepancy
between model predictions and experimental findings is on
the order of 20%. The model is successful in predicting the
dependence of the short-circuit current on the peak-to-peak
oscillation and the excitation frequency of the movable clamp
for different numbers of plating cycles. For each sample, we
find that the short-circuit current increases as a function of
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FIG. 9. Amplitude of the ratio between the phasor of the open-
circuit voltage, extracted from experimental data, and the mean
curvature as a function of the frequency of excitation.

the amplitude of excitation, which controls the curvature of
the sample and, in turn, the voltage source v in Eq. (21); see
Fig. 2.

Similarly, we find that the short-circuit current increases
with the frequency of excitation, which is instead related to
the reactive component of the IPMC impedance. Indeed, while
the distributed voltage source depends on the curvature and
not on its time rate of variation, see Eq. (21), the magnitude
of the IPMC impedance decreases as a function of f , see, for
example, Fig. 7. This causes the through-the-thickness current
to increase. Finally, our results show that the number of plating
cycles regulates the range of variation of the amplitude of the
short-circuit current, whereby we find that for one plating layer
the current can reach up to 4.096 μA while for three plating
cycles we observe values as large as 13.857 μA. This should
also be attributed to the increase in the reactive component of
the impedance as a function of the number of plating cycles,
see Table II, which results into a decrease in the through-the-
thickness impedance.

These observations suggest that IPMC sensing can be
enhanced by increasing the double layer capacitance and
promoting counterion diffusion in the composite layers, which
modulate the capacitance and the Warburg impedance of the
IPMC. For example, for the sample with one secondary plating
layer, if the capacitance were increased by a factor of 10,
the amplitude of the phasor of the short-circuit current for
D0 = 2 mm and f = 3.5 Hz would increase from 1.449 to
7.537 μA. For the same condition, increasing the Warburg
impedance of a factor of 10 would raise the current value to
3.868 μA.

The fact that the voltage source v is independent of the
rate of change of the curvature can be further illustrated by
computing the open-circuit voltage of the IPMCs from the
short-circuit currents through the experimentally validated
impedance model in Eq. (12). Specifically, we multiply the
experimental data in Fig. 8 by the amplitude of the impedance
in Eq. (12), computed at the pertinent input frequency, to
estimate the amplitude of the phasor of the open-circuit
voltage. To consolidate all these data points in a single graph,
we divide each of these values by the corresponding amplitude
of the mean curvature of the IPMC, computed from Gaussian
quadrature. Such data are reported in Fig. 9, which confirms
that the frequency has a secondary role on the open-circuit
voltage. The average and standard deviation of these data
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are 5.23 μV m and 0.98 μV m, respectively. Notably, for
perfectly conducting electrodes, such data should collapse on
a horizontal line at 2hVth = 5μV m. We comment that if a
less accurate model of the impedance were utilized to extract
open-circuit voltage data from measured short-circuit current,
artificial dependencies on the curvature rate could arise, such
as those often stemming from black-box models [40].

V. CONCLUSIONS

In this paper, we have presented a novel modeling frame-
work to elucidate the physics of sensing in IPMCs. A PNP
system is proposed to describe the evolution of the electric
potential and counterion concentration in the IPMC in response
to an imposed time-varying large deformation, which produces
IPMC swelling and forced counterion convection. Composite
layers have been utilized to model interfacial phenomena
taking place in the vicinity of the electrodes, which have been
treated as lossy conductors to model surface currents. A closed-
form solution of the set of coupled partial differential equations
has been computed using the method of matched asymptotic
expansions. The solution has been leveraged to establish a
mathematically tractable distributed circuit model of IPMC
sensing, which is further specialized to relevant scenarios
to offer physical insight into process of energy transduction.
Model predictions have been validated through experiments on
patterned IPMC strips undergoing large flexural deformations.

For highly conductive electrodes, we find that the IPMC
is always electroneutral during the mechanical deformation
if its electrodes are open circuited. Thus, the counterions do
not migrate irrespective of IPMC swelling and a voltage drop
develops across the electrodes to maintain electrochemical
equilibrium. On the other hand, for short-circuited electrodes,
boundary layers develop in the vicinity of the interfaces
between the ionomer and the composite layers. In this case, the

IPMC electroneutrality is lost in the boundary layers, where
charge depletion and enrichment are elicited by the IPMC
deformation, and in the composite layers, where counterion
diffusion takes place. As the electrodes’ resistance becomes
significant, the voltage across the electrodes is not uniform
along the IPMC span and significant variations of the overall
impedance are observed across the entire frequency range.
Specifically, surface resistance is demonstrated to differen-
tially affect the high-frequency response of the IPMC, by
increasing resistive effects, and the low-frequency response, by
modulating double layer formation and counterion diffusion
phenomena.

The model posits that IPMC sensing is controlled by elec-
trical properties that can be identified a priori with traditional
impedance analysis, and no additional ad hoc parameter is
required for predicting the relation between the electrical
output and the mechanical input deformation. Indeed, we find
that the IPMC can be described through a distributed circuit
model, where (i) the through-the-thickness charge dynamics
is associated with a Randles impedance in series connection
with a voltage source that is linearly proportional to the IPMC
curvature and (ii) the surface charge dynamics is controlled
by the surface resistance of the electrodes. The constant of
proportionality between the voltage source and the curvature
depends only on the ionomer thickness and the thermal voltage.
In conclusion, this study shows that IPMC sensing is controlled
by the electrical properties and accurate modeling of resistive
and reactive phenomena suffices to establish predictive models
of sensing.
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