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Feedback control of flow alignment in sheared liquid crystals
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Based on a continuum theory, we investigate the manipulation of the nonequilibrium behavior of a sheared
liquid crystal via closed-loop feedback control. Our goal is to stabilize a specific dynamical state, that is,
the stationary “flow alignment,” under conditions where the uncontrolled system displays oscillatory director
dynamics with in-plane symmetry. To this end we employ time-delayed feedback control (TDFC), where the
equation of motion for the ith component qi(t) of the order parameter tensor is supplemented by a control term
involving the difference qi(t) − qi(t − τ ). In this diagonal scheme, τ is the delay time. We demonstrate that the
TDFC method successfully stabilizes flow alignment for suitable values of the control strength K and τ ; these
values are determined by solving an exact eigenvalue equation. Moreover, our results show that only small values
of K are needed when the system is sheared from an isotropic equilibrium state, contrary to the case where the
equilibrium state is nematic.
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I. INTRODUCTION

Liquid crystals under shear can display a variety of
nonequilibrium dynamical states determining the motion of
the director of the (shear-induced or spontaneous) orientational
ordering. The simplest of these states is the stationary “flow
alignment” typically occurring at large shear rates and/or large
values of the (particle geometry-related) coupling parameter
λK. However, the systems can also display various types
of oscillatory motion, spatiotemporal symmetry breaking,
and even chaotic behavior [1–6]. The discovery of this rich
dynamical behavior has stimulated intense research both by
theoretical methods (such as continuum approaches [7–11]
and particle-based computer simulations [5,12–14]) and by
experiments (see, e.g., [15,16]).

The nonlinear orientational dynamics also has direct
implications for the rheological behavior of the system as
reflected, e.g., by nonmonotonic stress-strain curves (“consti-
tutive relations”) [17–23] and a non-Newtonian behavior of the
viscosity. Understanding the dynamics is thus a prerequisite
for the deliberate design of materials with specific rheological
properties, which are tunable by parameters such as particle
geometry, concentration (temperature), and external fields.

Beyond pure understanding, however, one may wish to
stabilize a certain dynamic state with a well-defined associated
rheology. A candidate for stabilization could be the stationary
shear-alignment state. Indeed, it has been shown [22,24] that
the viscosity in such a state is particularly low (“shear thin-
ning”), in fact, lower than the viscosity of the corresponding
unsheared system. In other words the stationary alignment of
the liquid crystal molecule in the shear flow tends to lower
frictional effects. This situation changes dramatically when
the nematic director starts to oscillate [22]. Thus, shear-aligned
systems may serve as particularly good lubricants.

In this paper we investigate the possibility to stabilize the
flow-aligned state by a continuum approach for the orienta-
tional dynamics [7,8], combined with the method of time-
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delayed feedback control (TDFC). The relevant dynamical
variable within the continuum approach is the second-rank
alignment tensor a(t) carrying five independent components.
In a previous short study [25] we have already shown the TDFC
to be successful if the dynamics of the full a(t) is simplified
into that of a two-dimensional director characterizing uniaxial,
shear-induced ordering within the shear plane. In the present
paper we release this somewhat artificial restriction and
investigate the full (in-plane) dynamics under TDFC. We
focus on conditions where the uncontrolled system displays
a wagging-like oscillatory motion within the shear plane. In
this situation it seems tempting to consider only a reduced
(three-dimensional) system involving only those components
of the order parameter a which describe in-plane dynamics.
However, as it was demonstrated in previous studies [2,26],
this reduction can predict a stable fixed point (the so-called
log rolling) which is actually unstable after inclusion of
the remaining components of the order parameter. We thus
consider the full five-dimensional dynamical system to explore
stability.

As in our earlier work [27], we did make some simplifying
assumptions. First, we do not consider back coupling of the
orientational dynamics onto the flow. Rather, we assume that
the velocity field is imposed externally. Extensions of the
theory incorporating such effects are proposed in a study
by Lima and Rey [28] as well as one by Heidenreich et al.
[23]. Second, we neglect the role of boundaries, which was
discussed by Tsuji and Rey [29] as well as in [23]. A third
assumption is that we consider our sheared system to be free
of defects (for corresponding extensions, see [30]). Moreover,
in the context of TDFC, we explore the interplay between
the performance of the control scheme, on the one hand,
and the nature of the underlying equilibrium phase from
which the liquid crystal is sheared, on the other hand. TDFC
is a closed-loop control method proposed by Pyragas [31],
which allows one to stabilize periodic and steady states which
would be unstable otherwise. In the meantime, TDFC has been
applied to a broad variety of nonlinear systems, including
semiconductor nanostructures [32–35], lasers [36,37], ex-
citable media [38–40], and neural systems [41–43] (see [44,45]
for overviews). Within the Pyragas method, the equations
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of motion are supplemented by control terms built on the
differences qi(t) − qi(t − τ ) between the present and an earlier
value of an appropriate system variable qi . This type of control
is noninvasive as the control forces vanish when the steady state
(or a periodic state with period T = nτ , with n = 1,2,3, . . . )
is reached. A general, analytic investigation of the application
of TDFC to steady states has been given in Ref. [46].

This paper is organized as follows. We start in Sec. II
with a review of the basic dynamical equations for the order
parameter a(t). In Sec. III A we summarize the dynamical
behavior occurring that depends on the shear rate and the cou-
pling parameter for two temperatures (and, correspondingly,
different phases) of the underlying equilibrium system (for a
full discussion based on a bifurcation analysis, see Ref. [27].
For each reduced temperature θ , we select a parameter set
in which the uncontrolled system displays oscillatory director
dynamics within the shear plane. The theoretical background
of the TDFC method is introduced in Sec. III B. Numerical
results for the selected parameter sets are presented in Sec. IV.
Finally, we give a conclusion and outlook.

II. BACKGROUND: CONTINUUM THEORY OF THE
ORIENTATIONAL DYNAMICS UNDER SHEAR

We employ a mesoscopic description of the system,
where the relevant dynamic variable is the orientational order
parameter averaged over some volume in space. In a sheared
liquid crystal, this order parameter corresponds to the time-
dependent, second-rank alignment tensor a = √

15/2〈 uu 〉,
where u describes the orientation of the molecular axis and
. . . indicates the symmetric traceless part of a tensor. The

average 〈. . .〉 is defined as (see Ref. [27])

〈· · · 〉 =
∫

S2
d2u . . . ρor(u,r,t), (2.1)

involving the orientational distribution function ρor (u,r,t)
[47]. The integral in Eq. (2.1) is performed over the unit sphere.
The orientational distribution is defined as ρor(u,r,t) =
N−1〈∑N

i=1 δ(u − ui(t))〉ens, where ui is the microscopic orien-
tation of particle i (i = 1, . . . ,N) and 〈. . .〉ens is an ensemble
average in a small volume dV around the space point r at
time t .

In the isotropic equilibrium state, all components of a
are zero, whereas nematic ordering (which may be uniaxial
or biaxial in character) is characterized by one or several
components of a being nonzero.

Switching on an external shear flow characterized by
a velocity field v, the alignment tensor becomes a time-
dependent quantity. Its equation of motion can be derived
from a generalized Fokker-Planck equation [8–10] or, alter-
natively, from irreversible thermodynamics [7], yielding for a
homogeneous system (in dimensionless form) [48]

da
dt

= 2 � · a + 2σ � · a − �′(a) +
√

3

2
λK �. (2.2)

In Eq. (2.2), � = [(∇v)T + ∇v]/2 is the strain rate tensor
(with the superscript T denoting the transpose of tensor
∇v) and � = [(∇v)T − ∇v]/2 is the vorticity. The symbol
x indicates the symmetric traceless part of a tensor x,

i.e., x = 1/2(x + xT ) − 1/3T r(x). In the present work we
consider a planar Couette flow characterized by v = γ̇ yex,
with γ̇ being the shear rate and ex being a unit vector. This
yields � = γ̇ exey and � = (γ̇ /2)(exey − eyex), respectively.
The (dimensionless) parameter λK is the so-called tumbling
parameter, which measures the coupling strength between
alignment and strain. This parameter is related to the shape
(i.e., the aspect ratio) of the particles [8]. The relaxation param-
eter σ plays only a minor role, and following previous works
[1,27,49–51], we set σ = 0. Finally, the (tensorial) quantity
�′(a) appearing in Eq. (2.2) corresponds to the derivative of
the free energy with respect to the (nonconserved) order pa-
rameter, i.e., �′(a) = ∂�/∂a. We employ the (dimensionless)
Landau–de Gennes (LG) expression for the free energy [52]
given by

� = θ

2
a : a −

√
6 (a · a) : a + 1

2
(a : a)2 , (2.3)

where the notation “:” stands for the trace over the product
of two tensors and “·” indicates conventional matrix mul-
tiplication. In Eq. (2.3), θ plays the role of an effective,
dimensionless temperature, which is the tuning parameter for
the isotropic-nematic transition in thermotropic liquid-crystal
systems. A first-order isotropic-nematic transition occurs at
θ = 1. For temperatures θ > 1 (θ < 1) the isotropic (nematic)
phase is stable, i.e., it corresponds to the lowest minimum of
the free energy. Upon “cooling down” from high temperatures,
the nematic state appears as a metastable phase already at
θ = 9/8. Crossing the phase transition (at θ = 1), the isotropic
phase remains as a metastable phase down to θ = 0, below
which it becomes unstable. We note that this general scenario
applies not only to thermotropic liquid crystals (where θ is
related to a true temperature) but also to lyotropic liquid
crystals and suspensions of colloidal rods. In these cases, the
isotropic-nematic transition is triggered by the concentration,
and θ has to be defined accordingly [27]; otherwise, the
approach remains the same.

Equation (2.2) is most conveniently solved by expanding a
and the other tensors appearing on the right side into a tensorial
basis set (see, e.g., [2]), e.g., a = ∑4

l=0 alTl , where al are the
(five) independent components of a and the (orthonormal)
tensors Tl involve linear combinations of the unit vectors ex,
ey, and ez (for explicit expressions, see, e.g., Ref. [2]). One
then obtains the five-dimensional dynamical system

q̇ = F, (2.4)

where the vector q = (a0,a1,a2,a3,a4) and the components of
the vector F are given by

F0 = −φ0,

F1 = −φ1 + γ̇ a2,

F2 = −φ2 − γ̇ a1 + 1
2

√
3λKγ̇ , (2.5)

F3 = −φ3 + 1
2 γ̇ a4,

F4 = −φ4 − 1
2 γ̇ a3.

In Eqs. (2.5), the quantities φl (l = 0, . . . ,4) represent the
components of the vector � [which consist of the projections
of �′(a) on the tensor basis]. These quantities are nonlinear
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functions of al ; explicit expressions are given in the
Appendix.

III. FEEDBACK CONTROL

A. Choosing candidate states

The dynamical behavior emerging from the mesoscopic
equations of motion (2.4) has been studied in detail for a variety
of temperatures θ (determining the behavior of the unsheared
system) and a broad range of shear rates γ̇ and shear coupling
parameters λK [1,2,26,27,49,53]. In particular in Ref. [27],
we have investigated systems at different temperatures via
a numerical bifurcation analysis (for numerical details, see
the Appendix of [27]). Special attention has been devoted
to systems sheared from the stable or metastable nematic
equilibrium phase (θ � 9/8). An exemplary dynamical state
diagram for the case θ = 0 is shown in Fig. 1 (data taken from
Ref. [27] and the diagram are consistent with earlier works,
i.e., [1,2,26]).

For large values of the shear rate (γ̇ � 4.5, i.e., above the
semicircle line in Fig. 1) the stable dynamical states have
in-plane symmetry. In this case the main director is restricted
to directions within the shear plane (i.e., the x-y plane),
implying that the components a3 = a4 = 0. At large values

FIG. 1. (Color online) Dynamical state diagram in the plane
spanned by the tumbling parameter λK and the (dimensionless) shear
rate γ̇ for a nematic system (θ = 0). The lines were obtained via
a codimension-2 bifurcation analysis as described in Ref. [27]. The
nearly vertical line represents a supercritical Hopf bifurcation line
(H). On the right side of the H line we find flow alignment (A),
corresponding to a stable fixed point. This is indicated by the notation
(1s,0u), where 1s and 0u mean one stable (s) and no unstable (u)
fixed point, respectively. Upon crossing the H line towards lower
values of λK, oscillatory in-plane states [wagging (W) and tumbling
(T)] become stable. As indicated by the notation (0s,3u) [and (0s,1u)]
there is no stable fixed point in this area, but three (one) unstable ones.
The cross marks the parameter set β I = (λK = 1.0,γ̇ = 5.0,θ = 0)
where we apply feedback control. The shaded areas appearing at
low γ̇ correspond to oscillatory states with out-of-plane symmetry.
The lines labeled LP1 and LP2 are limit point lines (saddle-node
bifurcation lines).

of the coupling parameter λK, this in-plane state is stationary
in character, reflecting that the nematic director is “frozen”
and encloses a fixed angle with the direction of the shear flow.
This is the so-called flow-alignment state, which we label by
A. Mathematically, the A state corresponds to a stable fixed
point of the dynamics. Decreasing the coupling parameter
λK (at fixed, large γ̇ ), one encounters a supercritical Hopf
bifurcation [27], and the system displays oscillatory states
with in-plane symmetry. These are the so-called wagging (W)
state, occurring at intermediate values of λK, and tumbling (T)
state, occurring at low λK. Both T and W are characterized
by the presence of stable limit cycles and, correspondingly,
unstable fixed points (for a more detailed discussion, see
Sec. IV). In the W state the angle between the nematic
director and the flow direction oscillates periodically between
a minimal and a maximal value, whereas in the T state, the
director performs full, in-plane rotations. We stress, however,
that there is no fundamental difference between W and T
motion in the sense that these states are not separated by a
bifurcation [27].

At lower shear rates, additional dynamical states appear
which are characterized by nonzero values for all five compo-
nents of the order parameter. Physically, this means that the
main director performs oscillations not only within the shear
plane but also out of this plane. Typical representatives are
the “kayaking wagging” (KW) and “kayaking tumbling” (KT)
states first observed in Ref. [54]. In Fig. 1, such out-of-plane
solutions occur in the shaded regions. We have also indicated
regions of bistability and complex chaotic behavior (for a more
detailed discussion, see Refs. [1,2,26,27]).

The main goal of the present paper is to explore the
stabilization of the fixed point corresponding to flow alignment
within a parameter range where the system is in an in-plane
oscillatory state (i.e., W or T). The specific position in param-
eter space is indicated by the cross in Fig. 1, corresponding to
the parameter set βI := (λK = 1.0,γ̇ = 5.0,θ = 0).

Our reasoning for focusing on in-plane situations is
twofold: First, the absence of stable out-of-plane solutions
allows us to focus on only three components of the order
parameter tensor, that is, a0, a1, and a2. Second, it has been
shown [27] that the out-of-plane states do not arise via a Hopf
bifurcation. Thus, there is no “natural” unstable fixed point
which one could try to stabilize via TDFC.

In addition to a nematic system, we also consider in our
study a system which is isotropic in the absence of shear
(θ = 1.20). A corresponding state diagram is shown in Fig. 2.
At large coupling parameters (λK � 0.75), the shear flow
induces first (γ̇ � 0.2) a “paranematic” ordering characterized
by very small values of the order parameters. With increasing
γ̇ , the system then transforms via a first-order transition into
a flow-aligned state (A). Interestingly, however, the system
can also display an in-plane oscillatory state, that is, wagging
(W). This behavior is rather surprising in view of the isotropic
nature of the underlying equilibrium state and was detected
only recently [27]. As seen from Fig. 2, the wagging occurs
in a parameter island located at lower values of λK. The
major part of the boundaries of this island represent Hopf
bifurcations. We select a parameter point within this wagging
island as a second candidate for feedback control. Specifically,
β II := (λK = 0.6,γ̇ = 0.8,θ = 1.20).
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STREHOBER, SCHÖLL, AND KLAPP PHYSICAL REVIEW E 88, 062509 (2013)

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.2

0.4

0.6

0.8

1

1.2

W

(1U,0S) A

(0U,1S)

(1U,2S)

λK

BTCP

GH

γ

H

FIG. 2. (Color online) Dynamical state diagram at θ = 1.20,
where the unsheared system is isotropic. The lines are obtained via
a codimension-2 bifurcation analysis as described in Ref. [27]. With
the bifurcation analysis we also detect special points like the cusp
point (CP), Bogdanov-Takens point (BT), and generalized Hopf point
(GH). The solid line (shaped like an oval) represents a supercritical
H bifurcation line, within which the system is in an oscillatory
(W) state. The cross marks the parameter set β II = (λK = 0.6,γ̇ =
0.8,θ = 1.20) selected as a second candidate for feedback control.
Outside this W regime (characterized by one unstable fixed point),
the system is in a stationary, flow-aligned state (A). The dashed lines
appearing in the bottom right corner of the diagram are limit point
lines (LP) (saddle-node bifurcation lines). Between the LP curves one
finds areas of bistability between paranematic and nematic states (for
details on that, see Ref. [27]). The notation regarding the fixed points
is as in Fig. 1.

Having identified suitable parameter sets (βI,β II) that apply
feedback control of steady states, we now turn to a detailed
discussion of (i) the stability of the corresponding steady
states and (ii) their behavior under TDFC with a diagonal
control scheme. The corresponding methods are outlined in
the Sec. III B. In Sec. IV, we will present the numerical results.

As already remarked in the Introduction, we perform
the stability analysis described below with the full, five-
dimensional system (see also discussion in Sec. IV A). In
this way we avoid difficulties arising if one considers the
three-component system alone.

B. Time-delayed feedback control

As a starting point for feedback control, we first need to de-
termine the steady states (fixed points) q� = (a�

0,a
�
1,a

�
2,a

�
3,a

�
4)

of the dynamical system [see Eq. (2.4)] corresponding to the
two parameter sets β I, βII. The fixed points fulfill the condition
q̇� = 0. We have solved these equations numerically.

For each fixed point, its linear stability can be checked by
considering the 5 × 5 Jacobian J of the dynamical system. The
elements Jij = ∂Fi/∂qj of J are given in the Appendix. Small
perturbations δq(t) away from the steady state evolve with
time as δ̇q(t) = Jδq(t). This linear equation can be solved
with the ansatz δq(t) = A exp[νt] (with A containing the
real amplitudes of the perturbation), yielding the eigenvalue

equation

νδq = Jδq. (3.1)

The eigenvalues can then be calculated from the characteristic
equation det (J − νI) = 0 (where I is the unity matrix).
Stability of the fixed point q� = (a�

0,a
�
1,a

�
2,a

�
3,a

�
4) requires that

all eigenvalues of J evaluated at this fixed point have negative
real parts, implying that perturbations die off with time.

We now aim to stabilize the unstable fixed point q�

corresponding to flow alignment within the range, where the
system ends up in wagging motion. To this end, we use the
TDFC method [31]. Following earlier work [46], we employ a
diagonal control scheme, where the control force acting on the
ith component (with i = 0,1,2,3,4) involves only the same
component. Explicitly,

q̇i = Fi(q,β) − K[qi(t) − qi(t − τ )], (3.2)

where K measures the strength of control and τ is the delay
time. Note that the feedback terms in Eq. (3.2) vanish when
the fixed point is fully stabilized, that is, if q�(t − τ ) = q∗(t).
The impact of the control on the phase portrait for the two
different parameter sets (βI, β II) is shown in Sec. IV.

To get a better insight into the role of the feedback control,
it is instructive to perform a (linear) stability analysis of the
delayed differential equations given in (3.2) [46]. In analogy
to the procedure discussed before [see Eq. (A.2) below], we
consider a small displacement from the fixed point δq(t). To
linear order, the dynamics of this displacement follows from
Eq. (3.2) as

δ̇q = (J − KI) δq(t) + Kδq(t − τ ). (3.3)

This equation can be solved with the exponential ansatz
δq(t) = B exp[μt], where B contains the amplitudes of the
displacement and μ is a complex number. Inserting this ansatz
into Eq. (3.3), one obtains the eigenvalue equation

{μ + K (1 − exp[−μτ ])}δq = Jδq. (3.4)

The corresponding characteristic equation yielding the eigen-
values μ is given by

det (J − {μ + K (1 − exp[−μτ ])}I) = 0. (3.5)

However, an even simpler way to calculate the eigenvalues
μ is based on the following notion: Equation (3.4) has
exactly the same form as the corresponding equation for
the uncontrolled case, Eq. (3.1). In other words, the linear
operator J has the same set of eigenfunctions δq in both the
uncontrolled and the controlled cases. This notion implies that
if the eigenvalues ν of the uncontrolled system are known, then
the eigenvalues μ of the controlled system can be calculated
from

μ + K (1 − exp[−μτ ]) = ν. (3.6)

We also stress that Eq. (3.6) is equivalent to the eigenvalue
equation derived in Ref. [46]. In that paper, the (diagonal)
feedback control of unstable steady states in a two-dimensional
dynamical system was studied from a general perspective,
that is, without reference to a particular physical system.
In particular, it was shown that Eq. (3.6) can be solved
analytically by using the Lambert function W [55]. The same
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strategy can be used in the present five-dimensional case
because we are using the same diagonal control scheme. To
see this, we rearrange Eq. (3.6) into

(μ + K − ν) τ = Kτ exp[−μτ ]. (3.7)

Setting z = (μ + K − ν) τ and multiplying both sides of
Eq. (3.7) by exp[z], we have

z exp[z] = Kτ exp[(K − ν) τ ] ≡ g. (3.8)

We can solve this equation with respect to z by using
z = W(z exp[z]) = W(g). After resubstituting [i.e., μτ = z −
(K − ν)τ ], we finally obtain the explicit formula

μτ = W (Kτ exp[−ντ + Kτ ]) + ντ − Kτ. (3.9)

We have calculated the eigenvalues both numerically [from
Eq. (3.5)] and analytically [from Eq. (3.9)] for a range of
control parameters K , τ for the two parameter sets β I and βII

(see Figs. 1 and 2, respectively). Notice that the TDFC scheme,
which is based on the coupling of a dynamical variable to
its own history [see Eq. (3.2)], creates an infinite number of
eigenvalues and corresponding eigenmodes [46].

IV. RESULTS

A. Fixed point stabilization in the nematic phase

We start by determining the (unstable) fixed points at the
parameter set β I (see Fig. 1). Since we are in the regime of
in-plane dynamic states (a3 = a4 = 0), we can visualize the
nullclines of the system, i.e., the geometrical shapes where
ȧi = 0, as two-dimensional surfaces in the three-dimensional
space spanned by (a0,a1,a2). These surfaces are shown in
Fig. 3.

The fixed points of the system are located where all three
nullclines intersect. As seen from Fig. 3, there are three
fixed points (indicated by small spheres). An analysis of
the corresponding Jacobian shows that all of these fixed
points are unstable (i.e., at least one eigenvalue has a positive
real part), as expected in the wagging regime. We remark
in this context that the fixed point q�

1 would actually be
stable if we had restricted ourselves to the analysis of the
three-dimensional system (a0,a1,a2). Indeed, in this case, all
three eigenvalues related to q�

1 have negative real parts. The
corresponding log-rolling state has been analyzed in Ref. [2].
In the full five-dimensional analysis, however, this fixed point
becomes unstable since the nematic director can “escape”
in further directions. The other fixed points, q�

2 and q�
3, are

unstable in both the three- and the five-component dynamical
systems.

Also indicated in Fig. 3 is the (stable) limit cycle emerging
around the fixed point q�

2. This limit cycle corresponds to
undamped oscillations of the order parameters as functions
of time. The corresponding period is close to that predicted
by linear stability analysis, T0 = 2π/|Im(ν)|, where ν is one
member of the (complex conjugate) pair of eigenvalues at
q�

2 that have a positive real part (numerically, we find ν ≈
0.49 + i4.61, yielding T0 ≈ 1.36). The dynamical evolution of
an unstable configuration of dynamical variables towards the
limit cycle is illustrated in Fig. 4(a). We now apply the TDFC
scheme described in Sec. III B. To illustrate the impact on the
phase portraits, we show in Figs. 4(b)–4(f) exemplary results

FIG. 3. (Color online) Nullclines corresponding to the dynamical
variables a0, a1, a2. The parameters are fixed to the set β I located
within the in-plane W regime (see Fig. 1). The striped, unichrome,
and checkerboard patterned surfaces are obtained from setting ȧ0 = 0,
ȧ1 = 0, and ȧ2 = 0, respectively (components a3 and a4 vanish at
β I). The small spheres indicate the intersections of all nullclines
and thus depict the (unstable) fixed points of the system, q�

1 =
(1.30034,0.139206,0.318084,0,0), q�

2 = (−0.563386,0.807425, −
0.217522,0,0), and q�

3 = (0.98609,0.232099,0.38358,0,0). The
white cycle corresponds to the stable limit cycle emerging around
q�

2.

for a fixed delay time, τ = 0.5, and different values of the
control strength K . All calculations have been started with the
same initial values for the order parameters, a0, a1, a2, and the
same history regarding the onset of control. Inspecting Fig. 4,
it is seen that for K � 0.3, the feedback control reduces the
diameter of the limit cycle but the dynamics remains oscillatory
at long times [see Figs. 4(b)–4(d)]. However, for K = 0.4 and
K = 0.5, the initially oscillatory motion becomes more and
more damped out with time, and the final state is the fixed
point q�

2. Physically, this means that the director freezes along
an in-plane direction, corresponding to flow alignment. Thus,
the control scheme has been successful.

A more systematic way to analyze the stability of the fixed
point q�

2 under feedback control is to monitor the complex
eigenvalues μ [see Eq. (3.4)]. Specifically, we consider the
largest real part of μ. Indeed, due to the transcendental
character of Eq. (3.6), the spectrum of eigenvalues of the
controlled system is infinite due to the infinite number of
branches of the Lambert W function (multileaf structure).
Stabilization (within the linear approximation) of the fixed
point then means that max[Re (μ)] is negative at the values of
K and τ considered.

To get a first insight into the ranges of control parameters
where TDFC works, we plot in Fig. 5 the quantity max[Re (μ)]
as a function of τ for different values of the control strength
K . All curves start at the value of the real part corresponding
to τ = 0 where the control terms in Eq. (3.2) vanish. The
positive value indicates the instability of the steady state. Upon
an increase of the delay time from zero, the largest real parts
corresponding to different K first decrease up to a certain
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FIG. 4. (Color online) Phase portraits of the dynamical variables
ai (i = 0,1,2). Parameters are fixed to the set β I located within the
in-plane W regime (see Fig. 1). The central small red dot marks
the (unstable) fixed point. (a) Uncontrolled system (K = 0) with the
initial condition ainit

0 = −0.57, ainit
1 = 0.5, ainit

2 = −0.22. The initial
condition is indicated with a black diamond. (b)–(f) Systems under
time-delayed feedback control [see Eq. (3.2)] with control strength
(b) K = 0.1, (c) 0.2, (d) 0.3, (e) 0.4, and (f) 0.5, respectively, and
delay time τ = 0.5. In all cases in (b)–(f), the control starts at t =
0, assuming that ai(t) = ainit

i in the interval [−τ,0]. In (a)–(d) the
blue (dark gray) trajectories approach stable limit cycles, which are
plotted as thick red (medium gray) cycles. In (b)–(f) the limit cycle
of the uncontrolled system in (a) is replotted for reference as a green
(light gray) cycle. For (e) and (f) the trajectories end at the fixed
point.

delay time and subsequently display an oscillatory behavior.
However, for the cases K = 0.1 and K = 0.2, the largest real
part remains positive. Only for K � 0.3 do values of τ where
the largest real parts become negative exist, indicating that the
control is successful.

0 1 2 3 4 5 6 7 8 9 10
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−0.4

−0.3
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−0.1
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0.1

0.2

0.3

0.4
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m
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μ
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K=0.10
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K=0.30
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K=0.50

FIG. 5. (Color online) Largest real part of the complex eigenval-
ues μ vs τ for different values of K . The dot-dashed vertical lines
correspond to multiples of T0 = 2π/|Im(ν)| (T0 ≈ 1.36), where ν is
the eigenvalue of the uncontrolled system at the fixed point q�

2 (see
Fig. 3). The solid vertical lines are shifted relative to the dashed
lines by T0/2. The dashed lines in the lower part indicate some lower
branches of eigenvalues for K = 0.30. The other parameters are fixed
to the set β I located within the in-plane W regime (see Fig. 1).

Following the analysis in Ref. [46], it is possible to
analytically determine the minimum value of K required to
control the system at specific values of τ . The boundary
of stability is determined by the condition Re(μ) = 0, or
equivalently, μ = i� (with � being real). Inserting this into
Eq. (3.6), we find

Re(ν) = K(1 − cos �τ ),
(4.1)

Im(ν) = � + K sin �τ.

From the first equation in Eq. (4.1) it follows that at the
boundary of stability, K varies between Re(ν)/2 and ∞ (since
cos �τ is bounded between −1 and 1). Thus, the minimal
value of K is given by

Kmin = Re(ν)/2, (4.2)

corresponding to cos �τ = −1. The fixed point q�
2 considered

here is characterized by Re(ν) ≈ 0.49, yielding Kmin ≈ 0.25
according to Eq. (4.2). This is consistent with the results
displayed in Fig. 5. We can also obtain a constraint for the delay
times corresponding to the stability boundary. Specifically, the
condition cos �τ = −1 requires that

�τ = (2n + 1)π, n = 0,1,2, . . . , (4.3)

Equation (4.3) immediately implies that sin �τ = 0. From the
second equation of Eq. (4.1) it therefore follows that � =
Im(ν). Combining this with Eq. (4.3), we obtain the following
condition for the delay times at minimum K:

τ = π

Im(ν)
(2n + 1)

= T0

(
n + 1

2

)
, n = 0,1,2, . . . , (4.4)
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FIG. 6. (Color online) Largest real part of the complex eigenval-
ues μ in the K-τ plane (only negative values are shown). The black
contours bound regions where the largest real part is negative. The
shear parameters are fixed to the set β I located within the in-plane W
regime (see Fig. 1).

where we have used T0 = 2π/|Im(ν)|. We conclude that both
of the control parameters, K and τ , required to stabilize the
fixed point are intimately related to the eigenvalues of the
uncontrolled system

A further interesting case occurs when cos �τ = 1 in
Eq. (4.1). In this case, control is essentially impossible since
the corresponding value of the control strength [at finite
values of Re(ν)] is K = ∞. The corresponding delay times
can be found using the same arguments as those leading
to Eq. (4.4). Specifically, one has sin �τ = 0 [and thus
� = Im(ν) = 2π/T0], but this time �τ is an even multiple
of π [contrary to Eq. (4.3)]. We therefore find that at delay
times τ = nT0 with n = 0,1,2, . . ., stabilization via TDFC is
not possible for any finite value of K . The important role of the
delay time is reflected in Fig. 5. For all values of K considered,
we find the minima of the functions max[Re(μ)] to occur
at τ = (n + 1/2)T0, while maxima occur at even multiples
of T0. Further (analytic) results on the domain of control in
the (K,τ ) plane can be found in Ref. [46], where the same
diagonal control scheme has been employed to stabilize a fixed
point.

So far we have focused on some specific values of K . To get
an overall “stability map” we show in Fig. 6 the real part of the
largest eigenvalue in the K-τ plane (only negative values are
plotted). The black contours indicate the control parameters
where the real part of the largest eigenvalue becomes zero.
Within the black contours the real part is negative (colored in
the plot); therefore these lines bound the regions where TDFC
is successful. It is seen that the areas of stabilization shrink
with increasing delay time and eventually disappear. This is
due to the scaling behavior of the eigenvalue spectrum for large
τ [56,57].

B. Stabilization in the isotropic phase

As a second example for the stabilization of a fixed point
we now consider the reduced temperature θ = 1.20, at which

FIG. 7. (Color online) Same as Fig. 3, but for the parameter set
β II located within the island of W dynamics, which appears on shear-
ing from the isotropic phase (see Fig. 2). The small sphere indicates
the unstable fixed point, q∗

1 = [−0.283501,0.49587,0.108511,0,0].
The white cycle corresponds to the stable limit cycle emerging
around q�

1.

the equilibrium (i.e., zero-shear) system is orientationally
disordered. The presence of shear then induces either flow
alignment or oscillatory dynamics (of type W). As seen from
Fig. 2, stable W motion occurs at rather small values of the
coupling parameter λK and intermediate values of the shear
rate. Within this “island” of W motion, we now focus on the
parameter set βII. The corresponding nullclines (pertaining to
the components a0, a1, and a2) are shown in Fig. 7. Contrary
to the situation within the nematic phase discussed in the
previous paragraph, we find at β II only one (unstable) fixed
point, q∗

1, and one stable limit cycle. The relevant eigenvalue
of the uncontrolled system at the fixed point is given by
ν ≈ 0.027 + i0.65. From that, we find the oscillation period
T0 = 2π/|Im(ν)| ≈ 9.68.

In Fig. 8(a) we replot this limit cycle, supplemented by
phase portraits illustrating the impact of TDFC. It is seen
that the feedback control has a significant effect already at
very small values of the control strength, that is, at K = 0.03,
although the chosen time delay is rather large (τ = 5.0). This
already indicates that the system reacts more sensitively to
TDFC compared to the system considered before.

The fact that small K are sufficient to stabilize the fixed
point is supported by the behavior of the largest real part of the
eigenvalue μ plotted as a function of τ in Fig. 9. Clearly, the
functions have the same qualitative behavior as those obtained
in the nematic phase (see Fig. 5); however, the numerical values
of K are much smaller.

Finally, we present in Fig. 10 the ranges of control
parameters where TDFC is successful; the boundaries have
again been obtained from Eqs. (4.2) and (4.4), respec-
tively. Compared to the nematic system, we observe a
much larger number of areas where the fixed point can
be stabilized. This underlines our finding that less effort is
required to stabilize liquid-crystalline systems sheared from
the isotropic phase than systems sheared from the nematic
phase.
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FIG. 8. (Color online) Phase portraits of the dynamical variables
ai (i = 0,1,2). The central small dot marks the (unstable) fixed point.
(a) Uncontrolled system (K = 0) with initial condition ainit

0 = −0.20,
ainit

1 = 0.4, ainit
2 = 0.1. (b)–(f) Systems under time-delayed feedback

control [see Eq. (3.2)] with the control strength (b) K = 0.03,
(c) 0.05, (d) 0.1, (e) 0.15, and (f) 0.2, respectively, and delay time
τ = 5.0. In all cases in (b)–(f), the control starts at t = 0, assuming
that ai(t) = ainit

i in the interval [−τ,0]. In (a) the blue (dark gray)
trajectory approaches a stable limit cycle, which is plotted as a thick
red (medium gray) cycle. In (b)–(f) the limit cycle of the uncontrolled
system in (a) is replotted for reference as a green (light gray) cycle.
For (b)–(f) all trajectories end in the fixed point. The shear parameters
are fixed to the set β II; see Fig. 2.

V. CONCLUSIONS

In the present paper we have discussed a five-dimensional
dynamical system describing the director dynamics of sheared
liquid crystal under time-delayed feedback control. The goal
was to stabilize the stationary, flow-aligned state for shear
rates and shear coupling parameters, where the uncontrolled
system performs an oscillatory wagging motion in the shear
plane. To this end we have applied a diagonal feedback control
scheme involving a single delay time τ . Following earlier
theoretical work [46], we have analytically studied the (linear)
stability problem of the controlled system, yielding explicit
expressions for the domain of control. One main result is
that the optimal values of control strength and delay time
are closely related to the relevant complex eigenvalue of the

0 2 4 6 8 10

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

τ/T0

m
ax

[R
e(

μ
)]

K=0.03
K=0.05
K=0.10

FIG. 9. (Color online) Largest real part of the complex eigenval-
ues μ vs τ for different values of K (the shear parameters are fixed to
the set β II; see Fig. 2). The dash-dotted vertical lines correspond to
multiples of T0 = 2π/|Im(ν)| (T0 ≈ 9.68), where ν is the eigenvalue
of the uncontrolled system at the fixed point q�

1 (see Fig. 7). The solid
vertical lines are shifted relative to the dash-dotted lines by T0/2.
The dashed lines in the lower part indicate some lower branches of
eigenvalues for K = 0.03.

corresponding uncontrolled system, that is, the sheared liquid
crystal in the wagging state. Interestingly, there is also a strong
influence of the equilibrium state from which the system was
sheared: in a system sheared from the isotropic phase, the
control strength required to stabilize flow alignment is much
smaller than in a sheared nematic system. This shows that
interaction effects between the particles (which are responsible
for the isotropic-nematic transition) are crucially important.

From a more general perspective, the present study thus
shows that TDFC of unstable steady states, which has already

FIG. 10. (Color online) Largest real part of the complex eigen-
values μ in the K-τ plane. The black contours bound regions where
the largest real part is negative; these regions are colored according
to the color map. The shear parameters are fixed to the set β II; see
Fig. 2.
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been applied to a variety of optical and neural systems
[37,42,58,59] is also possible and useful in the context of
nonequilibrium soft-matter systems such as sheared complex
fluids. In that case, stabilization of the flow-aligned state seems
particularly interesting because flow alignment is character-
ized by a small shear viscosity (as opposed to that of oscillatory
states). Nevertheless, from a fundamental point of view it
would be very interesting to extend the present analysis to the
(time-delayed) feedback control of oscillatory states, which are
also observed experimentally (e.g., in suspensions of tobacco
viruses) [16,60]. Of course, these considerations prompt the
question how a closed-loop feedback scheme such as the one
proposed here could be realized experimentally.

In that context we would like to note that the control
targets chosen in our study, that is, the components of the
order parameter tensor a(t), are related to material properties
accessible in experiments. In particular, the components
a1 and a2 are related to the so-called flow angle [24] (i.e.,
the angle between the nematic director and the flow direction)
and to birefringence [61–63]. Moreover, there is a direct
relation between the alignment and the stress tensor, which
can be measured in rheological experiments. This offers an
additional route to extract at least some (typically nondiagonal)
components of a. Given that it can be difficult to monitor all
components of a at once, the present diagonal control scheme,
where all ai (i = 0, . . . ,4) are treated on the same footing, may
seem too artificial. We note, however, that the control scheme
could be easily modified such that only some experimentally
accessible components of a are controlled (see Ref. [64] for
an application in a laser with feedback). The only drawback is
that an analytical treatment is then impossible.

We further note that additive terms, such as the control
terms in our TDFC scheme, also arise if the system is under
the influence of an external (magnetic or electrical) field. For
example, a magnetic field H would lead to an additional free
energy contribution of the form � = −H · a · H , yielding
additive terms ∝ H 2 in the equation of motion [see Eq. (2.5)].
One idea could therefore be to choose the strength of the
external field, or, rather, of H 2, to be linearly dependent
on the order parameters to generate a linear control scheme
such as the one used here. Further possibilities to detect, and
thus to control, the orientational motion could arise if the
particles carry electric or magnetic moments on their own,
such that time-dependent director motion directly leads to
electromagnetic fields. Theoretically, the dynamical properties
of such systems (without feedback control) have already been
investigated [48].
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APPENDIX

The components of vector � [consists of projections of
�′(a) on to the tensor basis] are as follows:

φ0 = (θ − 3a0 + 2a2)a0 + 3
(
a2

1 + a2
2

) − 3
2

(
a2

3 + a2
4

)
,

φ1 = (θ + 6a0 + 2a2)a1 − 3
2

√
3
(
a2

3 − a2
4

)
,

φ2 = (θ + 6a0 + 2a2)a2 − 3
√

3a3a4, (A1)

φ3 = (θ − 3a0 + 2a2)a3 − 3
√

3(a1a3 + a2a4),

φ4 = (θ − 3a0 + 2a2)a4 − 3
√

3(a2a3 − a1a4).

See also Refs. [22,24,27].
The elements of the Jacobian, Jij = ∂Fi/∂qj , are given by

J00 = −(
θ − 6a0 + 4a2

0 + 2a2
)
, (A2)

J01 = −(4a0a1 + 6a1), (A3)

J02 = −(4a0a2 + 6a2), (A4)

J03 = −(4a0a3 − 3a3), (A5)

J04 = −(4a0a4 − 3a4), (A6)

J10 = −[(6 + 4a0)a1], (A7)

J11 = −(
θ + 6a0 + 2a2 + 4a2

1

)
, (A8)

J12 = −(4a1a2) + γ̇ , (A9)

J13 = −(4a1a3 − 3
√

3a3), (A10)

J14 = −(4a1a4 + 3
√

3a4), (A11)

J20 = −[(6 + 4a0)a2], (A12)

J21 = −(4a1a2) − γ̇ , (A13)

J22 = −(
θ + 6a0 + 2a2 + 4a2

2

)
, (A14)

J23 = −(4a2a3 − 3
√

3a4), (A15)

J24 = −(4a2a4 − 3
√

3a3), (A16)

J30 = −[(−3 + 4a0)a3], (A17)

J31 = −(4a1a3 − 3
√

3a3), (A18)

J32 = −(4a2a3 − 3
√

3a4), (A19)

J33 = −[
4a2

3 − 3
√

3a1 + (θ − 3a0 + 2a2)
]
, (A20)

J34 = −(4a4a3 − 3
√

3a2) + 1
2 γ̇ , (A21)

J40 = −[(−3 + 4a0)a4], (A22)

J41 = −(4a1a4 + 3
√

3a4), (A23)

J42 = −(4a2a4 − 3
√

3a3), (A24)

J43 = −(4a3a4 − 3
√

3a2) − 1
2 γ̇ , (A25)

J44 = −[
4a2

4 + 3
√

3a1 + (θ − 3a0 + 2a2)
]
. (A26)
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