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The Onsager theory is known to be inaccurate in its prediction of the critical transition density for small aspect
ratio hard rods. In this paper we generalize the Onsager theory in two dimensions by taking into account the
short-range order as well as the higher-order virial coefficients, up to the fourth order. By carrying out molecular
dynamics (MD) simulations on “molecules” comprising linked hard disks with an aspect ratio � ranging from
5 to 13, we show that the generalized theory is much improved as compared to the traditional theory, with its
predictions of the transition density agreeing well with the simulation results. This indicates the importance of
short-range order considerations (in conjunction with steric repulsion) for molecules with � � 10, a group which
includes the most commonly encountered thermotropic liquid crystals. MD simulations further yield evidence
for hexagonal order for molecules with � � 8, indicating an intermediate hexagonal phase before solidifying at
higher densities.
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I. INTRODUCTION

First among all the liquid crystal (LC) theories is the
theory of Onsager [1–6]. This is not only because it is the
first theory to show that orientational order can arise from
molecular shape anisotropy, but also because of its subsequent
influence in diverse areas of physics and applied mathematics.
Onsager treated liquid crystal molecules as interacting hard
rods in which the free energy can be expanded as virial
coefficients, in terms of the orientational distribution function.
For a system of N rods in a volume V at temperature
T , the free energy can be calculated to the first order of
density as

F

NkBT
= − ln Z

N
= ln(ρηλ3) +

∫
d�f (�) ln f (�)

− ρ

2

∫ ∫
d�1d�2β1(�1,�2)f (�1)f (�2). (1)

Here F denotes the free energy, kB the Boltzmann constant,
Z the partition function, ρ the number density, f the angular
(orientational) distribution function, � the solid angle, and
λ and η are constants which do not play a role in the
theory. By considering only a steric repulsive interaction
between the rods, the second virial coefficient β1 is simply
the excluded volume of two rods. By using trial orientational
distribution functions, the free energy can be minimized to
obtain the orientational state of the rods at any given density.
In three dimensions, the Onsager theory qualitatively predicts
a first-order isotropic-nematic transition (second order in
two dimensions), but the transition density is too low and
the density discontinuity is too large compared with the
experiments and simulations. Moreover, since only the steric
interaction is considered, the transition is entirely independent
of the temperature.

The shortcoming of the Onsager theory does not lie in its ba-
sic approach, which is rigorous, but rather in its omissions and
approximation. The first approximation is the consideration of
only a steric repulsive interaction. Under this approximation,
the theory is only sensitive to density variations, with no
temperature dependence. The second approximation can be
stated as follows: “There is no short-range order apart from the

long-range order.” In other words, if we describe the orienta-
tional distribution of two nearest-neighbor molecules, labeled
A and B, by f (2)(θa,θb), where the superscript “(2)” means that
the distribution function is a two-particle distribution function
and θa(b) denotes the polar orientation angle of molecule A(B)
relative to a laboratory coordinate; then Onsager has made
the approximation by writing f (2)(θa,θb) ∼= f (1)(θa)f (1)(θb).
In a homogeneous system, we do not expect f (1)(θa) to differ
from f (1)(θb); hence they both denote the (same) long-range
orientational order, i.e., short-range order does not play a
role in the Onsager theory. Originally intended for rodlike
molecules with very large aspect ratios, the theory predicts in
three dimensions (3D) a strong first-order orientational phase
transition [and a continuous transition in two dimensions (2D)]
as the density is varied, with a large density change. Although
there is no rigorous proof, the suspicion has always been that
the Onsager theory is indeed valid in the large aspect ratio
limit, but it is well known that its prediction is inaccurate
in the small aspect ratio regime [7], e.g., aspect ratio less
than 8–10, the group which can encompass some of the most
commonly encountered thermotropic nematic liquid crystal
molecules.

In this paper we generalize the Onsager theory along two
directions. First, short-range order will be included through
the consideration of the two-body distribution function. This
is described in Sec. II. Second, by including the higher-
order virial coefficients, we intend to make the theory more
accurate beyond the low density limit. Owing to the very
significant multidimensional calculations involved, we shall
limit ourselves to two spatial dimensions (2D), with the
hard-core steric repulsive interactions between the molecules.
Here a “molecule” with aspect ratio � is modeled by � hard
disks of diameter 1, rigidly linked together with their centers
along a straight line. This aspect is detailed in Sec. III. To
obtain the thermodynamic properties of the system requires
minimizing the total free energy. This is described in Sec. IV.
The effect of the short-range order is checked by obtaining
the theory predictions with and without the short-range order.
It is seen that without the short-range order, including the
higher-order virial coefficients actually makes the predictions
even worse than the original Onsager theory, i.e., the predicted
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isotropic-nematic transition density becomes much lower than
that seen in the simulations, and increasingly so with increasing
orders of the virial coefficients. In Sec. V we compare the
predictions of the generalized theory with the results of
molecular dynamics (MD) simulations. It is shown that not
only does the nematic-isotropic transition move to higher
densities with the inclusion of the short-range order, but the
accuracy of the theory prediction is also extended to smaller
aspect ratio molecules. We conclude in Sec. VI by noting some
of the implications and the potential for further works.

II. SHORT-RANGE ORDER

Short-range orientational order in liquid crystals is defined
by the correlation in the orientations of the neighboring rodlike
molecules. While known to exist and even observed either
through experiments or simulations [7–14], short-range order
has been ignored in most LC theories and is by itself a
somewhat controversial subject with regard to how strong the
effect can be, thermodynamically. However, its introduction
into the problem can enrich the theory. In particular, it
becomes theoretically possible to have an orientationally
isotropic state with strong short-range order but without
long-range orientational order. Such considerations have been
absent in the most popular theories such as the Landau–de
Gennes theory, the Onsager theory, and the Maier-Saupe
theory.

Spatially extended short-range orientational order with
an added degree of thermodynamic stability is sometimes
also known as cybotactic clusters [7,11–16] (i.e., a group
of molecules with the same alignment). The term cybotactic
clusters has been used in particular to denote the pretransitional
fluctuation effect above the smectic liquid crystalline phase,
although it has also been used more loosely to denote more
transient short-range orderings that may appear in the isotropic
phase of nematic liquid crystals.

From our simulation results as shown in Fig. 1, short-range
order in the form of cybotactic clusters can be important in
those systems in which the aspect ratio of the anisotropic
molecules is less than 6–8 (here the aspect ratio is 5).
For large aspect ratios such clusters may be more difficult
to identify, although short-range order may still exist. The
state shown in Fig. 1 obviously has a lower free energy
(compared to the state of overall long-range orientational
order), owing to higher orientational entropy. In fact, in this
particular case the Onsager theory’s prediction is wrong, and
this fact has been known previously [7]. However, all it
means is that the Onsager theory probably should never be
applied to molecules with such a small aspect ratio (5 in this
case).

Short-range orientational order introduces a mesoscale into
the problem—the short-range correlation length. In the case
of cybotactic clusters, its scale is roughly the aspect ratio
�. Its consideration can potentially reconcile the theory to
the small density change at the nematic-isotropic transition
because the density is a local characteristic and hence is
strongly coupled to short-range orientational order and is
only weakly coupled to long-range orientational order. The
appearance of the latter is of course the criterion for the nematic
order. This view was proposed by some earlier works [8,9].

FIG. 1. (Color online) Simulation results for molecules with
aspect ratio 5. Strong short-range order, in the form of 2D cybotatic
clusters, is clearly seen. The cluster size is determined by the aspect
ratio. Such strong short-range order is especially significant for the
short aspect ratio molecules. Through strong short-range ordering,
the clusters have a reduced aspect ratio as compared to individual
molecules. Such an arrangement clearly has higher entropy than a
state with long-range orientational order.

In this context, other theories which should be mentioned
are as follows. By adopting the cluster variational approach,
Sheng and Wojtowicz developed a constant coupling theory of
nematics [17] that is an extension of the Maier-Saupe theory
by including some short-range order. Tao, Sheng, and Lin also
extended the mean field theory of the isotropic-nematic (I-N)
transition by the inclusion of the isotropic, density-dependent
component of the molecular interaction. The magnitude of
(Tc − T ∗)/Tc and the density change at the transition agreed
well with the experiments [18]. More recently, a mean field
type of theory for nematics, which includes cybotactic short-
range ordering, has been proposed [12].

In 2D, the Onsager theory may be written as

F

NkBT
= − ln Z

N
= ln(ρηλ2) +

∫
dθf (θ ) ln f (θ )

− ρ

2

∫ ∫
dθadθbβ1(θa,θb)f (θa)f (θb), (2)

where θ denotes the angle with respect to the z axis
of the planar laboratory coordinate, and f (θ ) without the
superscript implicitly implies a one-body distribution func-
tion. In the Onsager theory the approximation f (2)(θa,θb) ∼=
f (1)(θa)f (1)(θb) was used. However, it is well known that
one can write f (2)(θa,θb) alternatively as f (2)(θa,θb) =
f (1)(θa)h(θb|θa), where h(θb|θa) has the meaning of the
orientational distribution of particle B, given that particle A

is oriented at θa relative to the laboratory coordinate. Here
h has exactly the meaning of short-range order, since it
depends only on the relative orientation between particles A

and B.
To introduce short-range order into the entropy term, let

us start with
∫

dθaf (θa) ln f (θa), the orientational entropy
term in the Onsager theory. It is clear that we can rewrite it
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as follows:

∫
dθaf (θa) ln f (θa)

= 1

2

∫
dθa

∫
dθbf (θa)f (θb) ln[f (θa)f (θb)]

∼= 1

2

∫
dθa

∫
dθbf

(2)(θa,θb) ln[f (2)(θa,θb)]

= 1

2

∫
dθa

∫
dθbf (θa)h(θb|θa) ln[f (θa)h(θb|θa)]

= 1

2

∫
dθaf (θa) ln f (θa)

+ 1

2

∫
dθbh(θb|θa) ln h(θb|θa). (3)

The two molecules A and B should be nearest neighbors,
since otherwise in the virial coefficient calculations they
do not interact. We treat h(θb|θa) to be independent of the
distance between the molecules A and B. It can be regarded
as some proper average of the correlation functions within
the correlation length. As h(θb|θa) is dependent only on the
relative angle 	θ between the neighboring A and B, we can
write h(θb|θa) = h(	θ) below. It should be noted that that there
are always the normalization conditions of the distribution

functions: ∫ 2π

0
f (θa)dθa = 1,∫ 2π

0
h(	θ)d(	θ) = 1.

Equation (2) can now be rewritten as

F

NkBT
= 1

2

∫
dθf (θ ) ln f (θ )

+ 1

2

∫
d(	θ )h(	θ) ln h(	θ)

− ρ

2

∫
d(	θ )β1(	θ)h(	θ). (4)

In Eq. (4) we have taken note of the fact that β1, the second
virial coefficient, depends only on the relative angle between
the two molecules, hence the integration of f (θa) can be
immediately carried out (to yield 1).

In anticipation of adding higher-order virial co-
efficients to Eq. (4), one can expect that there
can be terms such as f (3)(θa,θb,θc)β2(θa,θb,θc) and
f (4)(θa,θb,θc,θd )β3(θa,θb,θc,θd ), the three-body distribution
function and four-body distribution function multiplied by
their respective third and fourth virial coefficient. For the
entropy term, one can write for f (3)(θa,θb,θc) the following
approximate expression:

∫
dθaf (θa) ln f (θa) = 1

3

∫
dθa

∫
dθb

∫
dθcf (θa)f (θb)f (θc) ln[f (θa)f (θb)f (θc)]

∼= 1

3

∫
dθa

∫
dθb

∫
dθcf

(3)(θa,θb,θc) ln[f (3)(θa,θb,θc)]

= 1

3

∫
dθa

∫
dθb

∫
dθcf (θa)h(	θ)f (θc) ln[f (θa)h(	θ)f (θc)]

= 2

3

∫
dθaf (θa) ln f (θa) + 1

3

∫
d	θh(	θ) ln h(	θ), (5)

where f (3)(θa,θb,θc) = f (θa)h(θb − θa)f (θc) instead of f (2)(θa,θb) in the third line of Eq. (5). It can be seen that such a
replacement results in a change of coefficients (2/3 and 1/3, instead of 1/2 and 1/2) in front of the two terms in the last line of
Eq. (5). For the four-particle distribution function, a similar treatment leads to the respective coefficients of 3/4 and 1/4. Since
we have virial coefficients up to the fourth order, we shall treat the entropy term as

χ

∫
dθf (θ ) ln f (θ ) + (1 − χ )

∫
d(	θ )g(	θ ) ln g(	θ ), (6)

where χ is a parameter whose value falls between 0.5 and 0.75. The two limiting values represent the upper and lower bounds
on the importance of the short-range order contribution to entropy in our theory.

By adding short-range order, the free energy of the generalized Onsager theory has the following form:

F/NkT = ln(ρηλ2) − ln(2π ) − 1 + χ

∫
dθf (θ ) ln f (θ ) + (1 − χ )

∫
d	θh(	θ ) ln h(	θ )

− 1

2
ρ

∫ ∫
dθadθbβ1(θa,θb)f (θa)h(θa − θb)

− 1

3
ρ2

∫ ∫ ∫
dθadθbdθcβ2(θa,θb,θc)f (θa)f (θb)h(θc − θa)

− 1

4
ρ3

∫ ∫ ∫ ∫
dθadθbdθcdθdβ3(θa,θb,θc,θd )f (θa)f (θb)f (θc)h(θd − θa) − · · · . (7a)
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Since the pressure P = − ∂F
∂V

= ρ2

N
∂F
∂ρ

, the equation of state may be obtained from the free energy as

P

kT
= ρ

[
1 − 1

2
ρ

∫ ∫
dθadθbβ1(θa,θb)f (θa)h(θa − θb) − 2

3
ρ2

∫ ∫ ∫
dθadθbdθcβ2(θa,θb,θc)f (θa)f (θb)h(θc − θa)

− 3

4
ρ3

∫ ∫ ∫ ∫
dθadθbdθcdθdβ3(θa,θb,θc,θd )f (θa)f (θb)f (θc)h(θd − θa) − · · ·

]
, (7b)

where ρ = N/V is the number density, η is a dimensionless
constant, and λ is the thermal wavelength. 0.5 < χ < 0.75 is
the parameter which adjusts the entropy contribution of the
short-range order. It will be seen below that the simulation
results fall between the theory predictions using the upper and
lower bound values of χ .

III. VIRIAL COEFFICIENTS

Virial coefficients are the irreducible parts of the cluster
integrals, which in turn are the coefficients of the cluster
expansion for the equation of state [19]. For 2D anisotropic
molecules with fixed orientations, the respective virial coeffi-
cients up to the fourth order are given by

β1(θ1,θ2) = 1

A

∫ ∫
A

d�r1d�r212(�r1,�r2,θ1,θ2), (8a)

β2(θ1,θ2,θ3) = 1

2A

∫ ∫ ∫
d�r1d�r2d�r3121323, (8b)

β3(θ1,θ2,θ3,θ4) = 1

6A

[
3 × (

vc1
3

) + 6 × (
vc2

3

) + (
vc3

3

)]
,

(8c)

vc1
3 =

∫ ∫ ∫
�r1,�r2,�r3,�r4

d�r1d�r2d�r3d�r414243132, (8d)

vc2
3 =

∫ ∫ ∫
�r1,�r2,�r3,�r4

d�r1d�r2d�r3d�r41424341223, (8e)

vc3
3 =

∫ ∫ ∫
�r1,�r2,�r3,�r4

d�r1d�r2d�r3d�r4142434122331,

(8f)

where 12(x,y,θ1,θ2) = exp[−v12(x,y,θ1,θ2)/kBT ] − 1,
v12(x,y,θ1,θ2) denotes the two-body interaction potential
between two molecules, d�r = dxdy, �r = (x,y), and we have
used 1, 2, 3, 4 instead of a, b, c, d to denote the molecules. For
the hard-core steric repulsive potential, 12 = 0 when two
molecules do not overlap, and 12 = −1 in spatial regions
where there is overlap. The Onsager theory for molecules
interacting with the Gay-Berne potential has been studied by
Ginzburg, Glaser, and Clark [20].

In this paper we consider a 2D model of anisotropic
molecules, each comprising � nonintersecting, touching hard
disks with radius 1, linked together with their centers aligned
rigidly along a straight line. The disks are “hard” in the sense
of having infinite positive interaction energy if they intersect.
The molecules described above have an aspect ratio �.

In two-dimensional systems, the fourth virial coefficient is a
ten-dimensional integral, impossible for the usual integration
method. In this project we choose to use the Monte Carlo
integration approach since this method is less sensitive to the
dimensionality of the integral. The Monte Carlo integration
method is faster than ordinary integration when the dimension
of the integral is larger than 4. Since the trials of the Monte
Carlo method are independent of each other, the parallel code
for the Monte Carlo integration can be very efficient. We have
carried out the numerical evaluation of the virial coefficients
and stored them in computer memory for the purpose of free-
energy evaluations.

It should be mentioned that in 2D, the true picture of a
phase transition is the change in the behavior of the molecular
correlation function, from exponential decay as a function
of separation below the transition to quasi-long-range order
characterized by power-law decay above the transition [21].
However, in the present case, with a limited number of
virial coefficients, and hence a limited range of molecular
separations, it is impossible to delineate such a phase transition
picture. It will be shown that in spite of such limitations, the
incorporation of short-range order, in conjunction with the
higher-order virial coefficients, can still reasonably predict
the transition density even at the small aspect ratio regime.

IV. FREE-ENERGY MINIMIZATION

In previous comparisons between the Onsager theory
predictions and simulations, the Onsager theory generally
predicts a lower phase transition density than that observed in
simulations. Hence it is desirable to see whether the extension
of the virial coefficients to higher order can improve the
situation. However, that requires the minimization of the free
energy, given by Eq. (7). For this purpose, we expand the
one-body distribution function as

f (θ ) = 1

2π

[
1 +

∞∑
n=1

a2n cos(2nθ )

]
, (9)

h(	θ ) = 1

2π

[
1 +

∞∑
n=1

b2n cos(2n	θ )

]
. (10)

By substituting Eqs. (9) and (10) into Eq. (7), the free energy
becomes a function of the set of scalar parameters {a2n,b2n}.
It is noted that only the even order appears, owing to the
symmetry of the molecules, i.e., there is no difference between
the heads and tails. Also, from Eqs. (9) and (10) it is easy to
see that a2n,b2n � 2.
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FIG. 2. (Color online) Isotropic-nematic transition for molecules with aspect ratio � = 9, predicted by the Onsager theory with the inclusion
of virial coefficents up to the fourth order, but without the consideration of short-range order. (a) The order parameters a2, a4, a6, and a8 plotted
as a function of density. (b) Free energy and pressure plotted as a function of density. The density is measured in units of ρo. There is a tiny
kink in the free-energy curve, at around ρ/ρo = 0.26. The kink is more visible in the pressure curve. In 2D, the transition is second order. In
this case the simulation results show the transition density isat ρ/ρo = 0.44.

A. Integration with the basis function

We first perform the integration of the virial coefficients
with the basis functions. Thus we have∫ 2π

0
dθ1

∫ 2π

0
dθ2β1(θ1,θ2)f (θ1)h(θ2 − θ1)

= B0 +
∞∑

n=1

B1
2nb2n, (11a)

where

B0 = 1

2π

∫ 2π

0
dθβ1(θ ), (11b)

B1
2n = 1

2π

∫ 2π

0
dθβ1(θ )cos[2n(θ )]. (11c)

It should be noted that up to the second virial coefficient,
the a2n’s that represent long-range order do not appear. That
is clear from the fact that β1 depends only on the relative
orientation between two molecules, and with the introduction
of short-range order only the h(	θ ) matters. f (θ1) integrates
to 1. Hence in the generalized theory it is necessary to go to
higher-order virial coefficients before the long-range order can
be evaluated. Similar to the above, we can reduce the third- and
fourth-order virial coefficients into expressions involving the
summation of scalar coefficients and the results of integrals of
the β functions with the trigonometric functions. Details are
given in Appendix A, where the expressions for the free energy
and pressure, in terms of the coefficients, are also presented.

The state of the minimum free energy, together with
its pressure versus density behavior, can be obtained by
minimizing with respect to {a2n,b2n}. Since we are mainly
interested in the behavior of (a2,a4) and (b2,b4), we retain
terms up to n = 4 in the numerical minimization.

B. Results with and without short-range order

We would like to check the importance of short-range
order in the generalized theory. For this purpose we set
χ = 1 in Eqs. (A13) and (A14), i.e., no short-range order, as
well as express f (n)(θ1,θ2, − θn) = �i=1,−nf (θi) in the virial
coefficients. In this manner, we find that the inclusion of the
higher-order virial coefficients actually lowers the transition

density. This is seen in Figs. 2(a) and 2(b) for the case of
molecules with aspect ratio � = 9. In Fig. 2(a), it is clear
that the isotropic-nematic transition occurs at a nondimen-
sionalized density of ρ/ρo = 0.26 when one considers virial
coefficients up to the fourth order, where ρo is the inverse
of the volume (area) of a single molecule, ρo = (π�/4)−1.
The simulation results (see below) have indicated a transition
density of ρ/ρo = 0.44. So the inclusion of the higher virial
coefficients, without short-range order, actually does not help.
In order to have a clear view of the trend, in Fig. 3 we show
the transition densities plotted as a function of the aspect ratio,
for the Onsager theory with inclusion of the second virial
coefficient (the original theory), and the third and fourth virial
coefficients. It is seen that the trend is a continuous downward
shift, past the simulation value of 0.44.

C. Spatial dependence of short-range order

Short-range order is usually a function of both relative
orientation and spatial separation. However, in the present case
the short-range order function h is a function of the relative
orientation only, between the neighboring molecules. This is

FIG. 3. (Color online) Transition density, measured in units of
ρo, plotted as a function of the molecular aspect ratio, for the Onsager
theory with the inclusion of virial coefficents up to the second, third,
and fourth order, plotted as a function of the molecular aspect ratio.
The simulation result, ρ/ρo = 0.44 for aspect ratio 9, lies between
the black (square) and red (circle) curve. For the Onsager theory with
only the second-order virial coefficient (black square curve), there is
no nematic-isotropic transition for an aspect ratio of lower than 6.
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because, within the context of the Onsager theory, the relative
spatial separation is an integration variable in the calculation
of the virial coefficient, hence it cannot appear explicitly.
However, we can estimate the spatial dependence, over short
separations and small 	θ , by using the formula f (	θ,nw) =
[h(	θ )/h(0)]n, n � 1. Here f denotes the approximate short-
range order, and w denotes the average separation between
the centers of two molecules, which is constrained by the
lower bound w � 1 + L sin 	θ . The rationale underlying this
formula is that the probability of having a relative orienta-
tional angle 	θ between two molecules separated by n − 1
molecules in between is the product of the nearest-neighbor
orientational short-range order. But this obviously can only be
a rough estimate. A better formulation and approach to obtain
the spatial dependence of the short-range order is presently
under pursuit.

V. MOLECULAR DYNAMICS (MD) SIMULATIONS

It is always important to check the results of theory by
either experiments or simulations. In the present case we wish
to obtain the characteristics of the isotropic-nematic phase
transition from the MD simulations, to be compared with the
predictions of the generalized Onsager theory. The standard
MD simulations are based on using Newton’s law, �F = m�a,
in discretized form, both spatially and temporally. There are
now standard books [22,23] on this subject which one can
follow to resolve the complications (such as maintaining a
fixed temperature) of the discretization, therefore we will
not provide details of the procedures here. However, for the
steric repulsion part the MD simulation is not quite standard,
although there are literature papers on the subject [24–26].

The complication of MD simulations by using a hard-core
repulsive interaction is that the collision time is essentially
zero. Hence one cannot use the discretized version of Newton’s
law to follow the trajectory. Instead, we have to use energy and
(translational and angular) momenta conservation to determine
the postcollision status. Details on the equations governing the
molecular dynamics simulations are given in Appendix B.

A. Orientational correlation function

Phase transitions in 2D have been studied extensively,
and it is known that (1) there can be no true long-range
order—only quasi-long-range order exists in 2D, which means
that the ordering decays in a power-law fashion as a function
of separation distance, and (2) a 2D phase transition is
characterized by a change in behavior from exponential decay
of the correlation function to a power-law decay. In our MD
simulations we therefore measure the following function:

α2n(r) = 〈cos[2n{θ (0) − θ (r)}]〉, (12)

where 〈· · ·〉 is a normalized average (as a function of time) over
all pairs separated by a distance r , with one at the center and
another falling within a circular annulus with chosen width
	r . For molecules with aspect ratio 9, the results are shown
in Fig. 4 for the case of n = 1.

Another interesting point one can see in Fig. 4 is that below
the transition density, the decay of the orientational order
becomes much steeper (i.e., exponential) when the separation

FIG. 4. (Color online) Orientational function plotted as a function
of distance of separation, measured in units of the disk diameter,
for the case of aspect ratio � = 9. Since the plot is in a log-log
scale, it is seen clearly that at a density of 0.44 the orientational
correlation function acquires a power-law character. Hence ρ/ρo =
0.44 is denoted the transition density. Distance is in units of hard disk
diameter.

is larger than ∼9. This is precisely the indication for the
existence of cybostatic clusters whose overall aspect ratio is
roughly on the order of the aspect ratio of the molecules.

B. Comparison with the predictions of the
generalized Onsager theory

From simulations it is clear that since the orientational
order is not a fixed constant, it would not be a good
quantity to compare with the Onsager theory. However, the
transition density is a rather robust quantity and hence can
be meaningfully compared. In Fig. 5 we show that by using
the upper and lower bounds of χ , 0.75 and 0.5, the predicted
transition densities form a narrow band in which the simulation
results are found. In Fig. 5 the red circle curve indicates the
Onsager theory with the inclusion of up to the fourth-order
virial coefficients. It lies much below the simulation results.
Since the difference in the generalized theory and its original

FIG. 5. (Color online) Comparison between the predicted transi-
tion density values, in units of ρo, and those observed in simulations,
plotted as a function of the aspect ratio. It is seen that the simulation
results fall right between the upper and lower bounds of the predicted
values. The Onsager theory predictions, with the inclusion of up to
the fourth-order virial coefficients, lie much lower than the simulation
results. Hence the inclusion of the short-range order is the crucial
element that enables the good agreement.
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FIG. 6. (Color online) Hexatic order observed for the aspect ratio � = 8 case, at a density of ρ/ρo = 0.64. (a) A real space picture of
the configuration. The red (circle) lines delineate a locally hexatic ordering. (b) The n = 3 order parameter, the hexatic order (blue triangle
symbols), is dominant over the lower-order parameters. Here the distance is measured in units of hard disk diameter. The hexatic order appears
only within a very narrow density range. At ρ/ρo = 0.65 it is already a solid, as characterized by a rather flat correlation function as a function
of distance (measured in units of the hard disk diameter). At densities below ρ/ρo = 0.63 the dominant order is n = 1. The nematic-isotropic
transition occurs at ρ/ρo = 0.50. Sharp drops are observed at separations roughly corresponding to the aspect ratio times the diameter. The
drops are due to the fact that at such separations one is very likely to be observing two molecules in different cybostatic clusters.

version lies in the consideration of short-range order, one can
conclude that for those liquid crystal molecules with aspect
ratios of less than 10, the consideration of short-range order
must constitute a very important element.

From Fig. 5 one can also extrapolate the simulation results
to larger aspect ratio molecules. From the trend seen, it is
speculated that the original Onsager theory can be accurate in
predicting the transition density when the aspect ratio � > 20.
That is, the consideration of short-range order may not be
physically relevant when the aspect ratio is large. One possible
reason for this scenario is that the formation of cybostatic
clusters is not favored since they are too costly in terms of the
entropy. One can visualize from Fig. 1 that in order for there
to be an easily identifiable cybostatic cluster, the ends of the
molecules within a given cluster should align relatively well.
However, for large aspect ratio molecules such an alignment
would be very costly in terms of entropy.

C. Observation of hexatic order

Hexatic order is an inevitable consequence of the tight
packing geometry in a system of hard spheres or disks [27–29].
When the molecules or particles deviate from the spherical
geometry, it is expected that the hexatic order would not
suddenly disappear. Instead, such an order should decrease
in importance as the aspect ratio of the molecules increases.
This is indeed the case observed in our MD simulation results
as shown in Fig. 6(a). In particular, for � = 8 the magnitude
of the hexatic order (n = 3) is larger than the nematic order
(n = 1). It is the dominant order as seen in Fig. 6(b). For aspect

ratio � = 5 the hexatic order is dominant over a much wider
density range. In fact, the transition from the isotropic phase
is directly into the hexatic phase, at ρ/ρo = 0.68.

VI. CONCLUDING REMARKS

The main point of this paper is to emphasize the importance
of short-range order in small aspect ratio liquid crystalline
molecular systems, together with an approach to introduce the
short-range order into free-energy calculations. From the mag-
nitude of the numerical effort required in the evaluation of the
higher-order virial coefficients, the extension of the Onsager
approach to 3D systems may not be feasible, especially if the
attractive interaction is considered in conjunction with a steric
repulsive interaction. However, our experience does suggest
that while the steric interaction is the most important at the
microscale, an attractive van der Waals interaction may operate
on the meso- to macroscale. How to couple the interactions
between these two scales should be the focus of future theories
on liquid crystals.
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APPENDIX A: VIRIAL COEFFICIENTS, FREE ENERGY,
AND PRESSURE EXPRESSIONS

The third viral coefficient can be expressed as

∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3β2(θ1,θ2,θ3)f (θ1)f (θ2)h(θ3 − θ1)

= C0 +
∞∑

n=1

C1
2nb2n +

∞∑
m=1

C2
2ma2ma2m +

∞∑
m,n=1

C3
2m,2na2mamb2n, (A1)
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where

C0 =
(

1

2π

)3 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3β2(θ1,θ2,θ3), (A2)

C1
2n =

(
1

2π

)3 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3β2(θ1,θ2,θ3)cos[2n(θ3 − θ1)], (A3)

C2
2m =

(
1

2π

)3 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3β2(θ1,θ2,θ3)cos(2mθ1)cos(2mθ2), (A4)

C3
2m,2n =

(
1

2π

)3 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3β2(θ1,θ2,θ3)cos(2mθ1)cos(2mθ2)cos[2n(θ3 − θ1)]. (A5)

For the fourth-order virial coefficient, we have∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)f (θ1)f (θ2)f (θ3)h(θ4 − θ1)

= D0 +
∞∑

n=1

D1
2nb2n +

∞∑
n=1

D2
2na2na2n +

∞∑
m,n,p=1

D3
2m,2n,2pa2ma2na2p +

∞∑
m,n=1

D4
2m,2na2ma2mb2n

+
∞∑

m,n,p=1

D5
2m,2n,2p,2qa2ma2na2pb2q, (A6)

where

D0 =
(

1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4), (A7)

D1
2n =

(
1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)cos[2n(θ4 − θ1)], (A8)

D2
2n = 3

(
1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)cos(2nθ1)cos(2nθ2), (A9)

D3
2m,2n,2p =

(
1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)cos(2mθ1)cos(2nθ2)cos(2pθ3), (A10)

D4
2m,2n = 2

(
1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)cos(2mθ1)cos(2mθ2)cos[2n(θ4 − θ1)]

+
(

1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)cos(2mθ2)cos(2mθ3)cos[2n(θ4 − θ1)], (A11)

D5
2m,2n,2p,2q =

(
1

2π

)4 ∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2π

0
dθ3

∫ 2π

0
dθ4β3(θ1,θ2,θ3,θ4)cos(2mθ1)cos(2nθ2)cos(2pθ3)cos[2q(θ4 − θ1)].

(A12)

The resulting free energy is therefore given by

F/NkBT = ln ρ + χ

2π

∫ 2π

0
dθ

[
1 +

∞∑
n=1

a2ncos(2nθ )

]
ln

[
1 +

∞∑
n=1

a2ncos(2nθ )

]

+ 1 − χ

2π

∫ 2π

0
dθ

[
1 +

∞∑
n=1

b2ncos(2nθ )

]
ln

[
1 +

∞∑
n=1

b2ncos(2nθ )

]

− ρ

2

[
B0 +

∞∑
n=1

B1
2nb2n

]
− ρ2

3

[
C0 +

∞∑
n=1

C1
2nb2n +

∞∑
m=1

C2
2ma2ma2m +

∞∑
m,n=1

C3
2m,2na2ma2mb2n

]

− ρ3

4

[
D0 +

∞∑
n=1

D1
2nb2n +

∞∑
n=1

D1
2na2na2n +

∞∑
m,n,p=1

D3
2m,2n,2pa2ma2na2p +

∞∑
m,n=1

D4
2m,2na2ma2mb2n

+
∞∑

m,n,p,q=1

D5
2m,2n,2p,2qa2ma2na2pb2q

]
, (A13)
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and the equation of state is given by

P

ρkBT
= 1 − ρ

2

[
B0 +

∞∑
n=1

B1
2nb2n

]
− 2ρ2

3

[
C0 +

∞∑
n=1

C1
2nb2n +

∞∑
m=1

C2
2ma2ma2m +

∞∑
m,n=1

C3
2m,2na2ma2mb2n

]

− 3ρ3

4

[
D0 +

∞∑
n=1

D1
2nb2n +

∞∑
n=1

D1
2na2na2n +

∞∑
m,n,p=1

D3
2m,2n,2pa2ma2na2p +

∞∑
m,n=1

D4
2m,2na2ma2mb2n

+
∞∑

m,n,p,q=1

D5
2m,2n,2p,2qa2ma2na2pb2q

]
. (A14)

APPENDIX B: GOVERNING EQUATIONS FOR
MOLECULAR DYNAMICS SIMULATIONS

Since the molecules are anisotropic, the center of mass
position and orientation of each are given by

�r(t) = �r(0) + �v(0)t, (B1)

�u(t) = cos[θ (t)]̂i + sin[θ (t)]ĵ , (B2)

where θ (t) = θ (0) + ωt (with θ̇ω), so that

�u(t) = �u(0)cos[ω(0)t)] + �ω(0)

ω(0)
× �u(0)sin[ω(0)t]. (B3)

Here �r and �v are the position and velocity of the center of mass,
respectively, �u is a unit vector indicating the orientation of the

anisotropic molecule, and �ω = |�ω|�

k is its angular velocity.
The above two equations describe the time evolution of a
molecule in its free-moving state. However, it is inevitable that
a collision with another molecule will occur. We consider only
two-body collisions, since it is rare for three bodies to collide
simultaneously. When a collision occurs, it punctuates the free
motion of the molecule and the time evolution as expressed
by Eq. (B1) has to start again. Hence in Eq. (B1) the time 0
may be regarded as the instant of the last collision. In order to
simulate the system’s dynamics, it is important to (1) find the
time duration to the next collision, and (2) find the linear and
angular momenta change caused by the collision. For (2), one
can appeal to the energy and momentum conservation laws,
which states that for two colliding molecules i and j ,

m�v′
i = m�vi + Pij �n, m�v′

j = m�vj − Pij �n, (B4)

I �ω′
j = I �ωj − �rj × Pij �n, I �ω′

i = I �ωi + �ri × Pij �n, (B5)

where I denotes the moment of inertia, and the momentum
change Pij may be obtained by adding the following condition:

1
2m

( �vi
2 + �vj

2) + 1
2I

( �ω2
i + �ω2

j

)
= 1

2m
(�v′2

i + �v′2
j

) + 1
2I

( �ω′2
i + �ω′2

j

)
. (B6)

By substituting Eqs. (B4) and (B5) into Eq. (B6), we obtain

Pij = −�n · (�vi − �vj + �ωi × �ri − �ωj × �rj )
1
m

+ 1
2I

[(�ri × �n)2 + (�rj × �n)2]
. (B7)

For (1), finding the time to the next collision t , we use the
condition that

| �ρi(t) − �ρj (t)|2 − 1 = 0, (B8)

and

�ρi(t) = �ri(t) + �ui(t)	ri(t), �ρj (t) = �rj (t) + �uj (t)	rj (t),

(B9)

where t = 0 is defined to be the time of the previous step, just
before the collision, the vectors �ρi,i(t) denote the positions
for the centers of the two colliding disks, and 	ri,j (t) are
their respective distances from the centers of mass of the two
molecules. To find the two relevant disks that will collide,
one just has to move the time one step forward. If the two
molecules overlap, then go back to the previous step, and the
two overlapping disks are the relevant disks to be considered.
(See Fig. 7.) From the previous equations, it follows that

�ρi(t) − �ρj (t) = �ri(t) + �ui(t)	ri − �rj (t) − �uj (t)	rj

= (�ri − �rj ) + (�vi − �vj )t + [�ui	ricos(ωit)

− �uj	rj cos(ωj t)]

+
[ �ωi

ωi

× �ui	risin(ωit)

− �ωj

ωj

× �uj	rj sin(ωj t)

]
. (B10)

FIG. 7. (Color online) A diagram illustrating two colliding
molecules with aspect ratio 5. Here �r denotes the center of mass,
and �ρ denotes the center of the disk that is in contact with the other
molecule. The black arrow denotes the difference �ρ2(t) − �ρ1(t), the
magnitude of which is to be compared with the disk diameter.
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By regarding ωi,j t 	 1, we expand cos(ωi,j t) and sin(ωi,j t)
to sixth and fifth order in ωi,j t , respectively. Then Eq. (B8)
becomes a sixth-order polynomial equation for t . We take the
smallest solution to be the time to collision.

To start the simulation, we use random configurations for
low densities, and use ordered “crystalline” configurations
for high densities. About 1000 molecules were used in the
simulations, with a periodic boundary condition.
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