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I. INTRODUCTION

Nanosystems have been studied in several different fields
such as physical chemistry, physics, biology, and medicine,
just to name a few [1–4]. The ability to manipulate nanopar-
ticles (NPs) and atoms at will dates from relatively recent
times [5], but Hill [6,7] already drew the basis of the
thermodynamics that he called “of small systems” in the
1960s. These small systems show a behavior different from
those involving a big number of particles (of the order of
Avogadro’s number) sometimes called “nanosize effect”. For
example, when size goes down, NPs show a decrease in
melting temperature [8], a decrease in redox potential [9], an
improvement in the catalytic activity [10], structural changes
involving a transition from fcc to icosahedral symmetry [4,11],
and may even exhibit magnetism which is absent in the bulk
material [11]. In many cases, these nanomaterials present
scaling laws of their properties with the reciprocal of the
size [11]. From the theoretical point of view, NPs qualify
as “small systems” in the sense considered by Hill, because
they are composed of a few hundred (at the most a few
thousand) units. Therefore, the formalism developed by this
author can be used to describe the physical behavior of NPs.
The calculation of their properties by statistical mechanics
involves an ensemble average; this means to average over
all possible NP configurations. A priori it would seem that
we have the formidable problem of infinite contributions.
However, in many cases the average may be weighted in such
a way that many configurations may be neglected. A more
rigorous discussion of this topic can be found in Chapter 10
of Ref. [12]. Hence, a good approach should consider the
more compact configurations, such as the shape most favored
in the experiments, like icosahedra, octahedra, decahedra,
cuboctahedra, etc. [4,10,12,13].

The study of surface adsorption processes in finite systems
is critical to the understanding of matter at the nanoscale. This
is particularly important in NPs, since adsorption on them

is related to a large number of applications, ranging from
catalysis and electrocatalysis to nanomedicine [10,13–17]. An
example of the controlled decoration of NPs can be found
in the electrochemical generation of core-shell NPs [18–20]
where even the targeted decoration of selected facets may be
achieved. It is generally found that the adsorptive properties
of NPs can be affected by factors such as size and shape of
the core, chemical composition, and under or oversaturation
conditions [18].

Many of the early simulations involve the use of many-body
potentials and off-lattice models, which are expensive from a
computational point of view [21–23]. A suitable alternative to
circumvent this problem is the use of lattice models, where
the particles of the system may be assumed to occupy discrete
positions in space. This approach has been used successfully in
a number of studies of supported NPs [24–27] to consider the
change in the shape and surface morphology of the NP under
the influence of the reaction media. A similar approach has
been applied recently to unsupported NPs [28]. While most of
the simulations performed in the present work are feasible in a
couple of days in an ordinary computer, the systems considered
are still rather small as compared with experimental ones,
which in some cases involve nanoparticles made of a number
of atoms laying order of magnitudes over those simulated
here. In this respect, theoretical approaches involving little
computational effort are highly desirable. Note that it takes
about 2 or 3 days to obtain a typical adsorption isotherm
by using grand canonical Monte Carlo (GCMC) simulations,
while the corresponding theoretical isotherm can be obtained
in seconds.

Returning to theoretical modeling of adsorption, the sim-
plest model is to consider an adsorption energy distribution
(AED) in the case of an infinite surface, determined by
inverting the following integral equation [29]:

θ (T ,μ) =
∫

θL(T ,μ,ε)f (ε)dε, (1)
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where θ (T ,μ) is the mean total coverage at temperature T and
chemical potential μ, θL is the local coverage (usually called
the local isotherm) corresponding to an adsorptive energy,
and f (ε) is the AED. Equation (1) is strictly and generally
valid only for noninteracting particles and, for this reason this
is considered an unrealistic model, even for infinite surfaces.
An improvement of the previous model is to consider adsorbed
particles interacting with each other. In this case, Eq. (1) should
be rewritten by

θ (T ,μ) =
∫

...

∫
θL(T ,μ,ε1,...εm)f (ε1,...εm)dε1,...dεm,

(2)

where now θ (T ,μ) not only depends on the adsorptive energy
at a given point on the surface but also on the adsorptive
energy at (in general)“m” neighboring points, and f (ε1,...εm)
is a multivariate probability distribution which specifies how
adsorptive energies are spatially distributed, or in other words,
the energetic topography of the surface. In this context,
Bulnes et al. [30,31] analyzed the case of bivariate surfaces,
with particles interacting through a repulsive interaction by
Monte Carlo (MC) simulations. Despite the complexity of
the surface, different quantities were identified which scale
obeying power laws as a function of the patch length and
the difference of adsorptive energy between strong and weak
adsorption sites. These findings provided a method to char-
acterize the energetic topography of a class of heterogeneous
surfaces which can be approximately represented as bivariate
surfaces.

In a previous work, we have described adsorption on
nanoparticles of different sizes and shapes [28]. Using a
lattice-gas model and GCMC simulations, we have analyzed
adsorption isotherms, differential heats of adsorption, and
other relevant thermodynamic properties as a function of
nanoparticle size in a wide range of attractive interactions.

In the present work, we focus our interest on the study of
the adsorption on NPs from a rather theoretical point of view,
in the framework provided by Eq. (2). Different surface sites
can be distinguished on the surface of an NP; for example, in
the case of an icosahedral NP, we find at least three types of
sites (vertices, edges, and facets) and in the case of truncated
octahedral, at least four types of sites (vertices, edges, and two
different facets). For this reason, we will consider the surface
of an NP as a heterogeneous surface. Similarly, the adsorption
energy depends on the neighboring points, so the surface
behaves like a multivariate topography. This heterogeneity
can be tackled within a detailed mean-field approximation
(DMFA). As discussed below, the effect of curvature at the NP
is the main reason why we need an enhanced description.

Rather than attempting to reproduce exactly the experi-
mental environment, we will try to identify and character-
ize the most prominent features describing the adsorption
phenomenon at the nanoscale. It must be emphasized that a
direct extrapolation of the theoretical results to experiments,
in general is a very difficult task and feedback from both
parties would be required before drawing any conclusion.
However, the trends observed in the simulations can serve
experimentalists to diagram new experimental strategies and
even understand the behavior of and the physics behind
nanomaterials.

The paper is organized as follows. Section II describes
the lattice-gas model applied to NPs, DMFA, and some
basic definitions. Section III compares the results obtained
from GCMC simulations with those from DMFA. Section IV
summarizes the conclusions drawn.

II. LATTICE-GAS MODEL AND THEORY

A. Model

In this section, the main features of the lattice-gas model
used to study the adsorption on a seed-NP surface are defined.
We use the same nomenclature and definitions given in our
previous work [28]. The preexisting substrate (seed-NP) is
modeled as a set of NA type-A particles of a given geometry.
This heterogeneous substrate is exposed to a monoatomic gas
of B particles whose thermodynamic state is characterized by
its chemical potential μ and temperature T . The M adsorption
sites for the B particles are located on the surface of the seed NP
and its magnitude depends on the NP size. No exchange moves
between A and B particles characteristic of alloy processes are
allowed.

Taking into account coordination with nearest neighbors
(NN), we can represent different types of adsorption sites such
as vertices, edges, and facets. The most important quantities
in the model involve the NN interaction energy between B
particles with each other and the interaction energy between
A and B particles, denoted with wBB and wAB , respectively.
To describe a system of NB particles (NB � M) adsorbed at a
given T and μ, the occupation variable ci is introduced ( ci = 0
or 1, if the corresponding site i is empty or occupied by a B
particle, respectively). The adsorbed phase is characterized by
the Hamiltonian:

H = wBB

∑
〈i,j〉

cicj +
M∑
i=1

(εi − μ)ci, (3)

where 〈i,j 〉 represents pairs of NN sites on the NP surface and
εi is the adsorption energy of a B particle on a surface site i.

The adsorption-desorption process is simulated by a stan-
dard importance sampling MC method in the grand canonical
ensemble. We consider that the seed NP is in contact with an
ideal gas phase of particles. To satisfy the principle of detailed
balance we used the Metropolis algorithm [32,33]. A Monte
Carlo Step (MCS) corresponds to M attempts to change the
state of the system. Before sampling the quantities of interest,
thermodynamic equilibrium had to be established. For all our
simulations, the equilibrium state was obtained discarding the
first 5 × 106 MCSs. Then, the next 2 × 106 MCSs were used
to compute averages.

The mean coverage θ is obtained as a simple average:

θ (μ) = 〈NB〉
M

, (4)

where 〈· · · 〉 means the average over the MC simulation run.

B. Theory: Detailed mean-field approximation

Let us consider the adsorptive energy εi of a given site
i of a heterogeneous surface as an energy level of an
adsorbed particle. Due to lateral interactions, this energy
level is effectively split into a number of sublevels with total
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(a) (b)

(c) (d)

FIG. 1. (Color online) Schematic representation of an icosahe-
dral nanoparticle. (a) The adsorption sites at the facets, edges, and
vertices are represented by black, red, and blue spheres, respectively.
Energy assignation to each type of site according to the different
approximations: (b) DMFA3, (c) DMFA4, and (d) DMFA6.

adsorption energy:

Eγ = εi + wγ , (5)

where wγ is the interaction energy of the particle adsorbed
on the given site i with a neighborhood characterized by an
index γ . Then, assuming that each site can only be occupied
by a single particle, and if the effective energy levels γ are
different (this is strictly true for a continuous distribution of
adsorptive energies), the statistical ensemble of NB adsorbed
particles would be described by the Fermi-Dirac statistics:

θγ

(
Eγ

) = exp[−(Eγ − μ)/kBT ]

1 + exp[−(Eγ − μ)/kBT ]
, (6)

where θγ is the mean occupation number corresponding to
level γ and kB is the Boltzmann constant.

Icosahedral NPs are characterized, at least, by three
different types of adsorbate-substrate energies, εi =
{wAB,2wAB,3wAB}, which, according to the coordination
number of the site correspond to vertex, edge, and facet sites,
respectively [see Fig. 1(a)].

Likewise, octahedral NPs have, at least, four types of
adsorbate-substrate energies, εi = {wAB,2wAB,3wAB,4wAB},
that correspond to vertex, edge, (111)-facet, and (100)-facet
sites, respectively [see Fig. 8(a)]. In relation to the particular
case of icosahedral NPs, the simplest DMFA consists of
distinguishing three levels, γ = 1(vertices), γ = 2(edges),
and γ = 3(facets); see Fig. 1(b). We denote this approach as
DMFA3. The corresponding interaction energies, calculated
in the framework of the mean-field approximation, result in

wγ = [(number of neighbor sites type 1) × (probability of finding a site 1 occupied)

+ (number of neighbor sites type 2) × (probability of finding a site 2 occupied)

+ (number of neighbor sites type 3) × (probability of finding a site 3 occupied)] × wBB. (7)

Accordingly,

w1 = 5wBBθ2, (8)

w2 = 4wBBθ3 + 2wBBθ2, (9)

and

w3 = 6wBBθ3. (10)

Therefore, the total adsorption energies are

E1 = wAB + 5wBBθ2, (11)

E2 = 2wAB + 4wBBθ3 + 2wBBθ2, (12)

and

E3 = 3wAB + 6wBBθ3. (13)

From Eqs. (6) and (11)–(13), the partial adsorption
isotherms can be obtained:

θ1 = exp [− (wAB + 5wBBθ2 − μ) /kBT ]

1 + exp [− (wAB + 5wBBθ2 − μ) /kBT ]
, (14)

θ2 = exp [− (2wAB + 4wBBθ3 + 2wBBθ2 − μ) /kBT ]

1 + exp [− (2wAB + 4wBBθ3 + 2wBBθ2 − μ) /kBT ]
,

(15)

and

θ3 = exp [− (3wAB + 6wBBθ3 − μ) /kBT ]

1 + exp [− (3wAB + 6wBBθ3 − μ) /kBT ]
. (16)

On the other hand, the total number of sites on the surface
of a NP (M) can be characterized by a natural number n, which
denotes the “nth” member of the geometrical family to which
the NP belongs. For example, in the case of icosahedral NP
with n = 1 we get M = 12, the lowest value of the number of
surface sites for this kind of NP shape [28,34]. The quantity of
adsorption sites for each γ -type site Nγ is shown in Table I for
the particular case of icosahedral NP; similar equations follow
for other families [28,34]. With this in mind, we can build the
corresponding frequencies of occurrence fγ ’s that, in the case
of icosahedral NPs, can be written as

f1 = 6

5n2 + 1
, (17)

f2 = 15 (n − 1)

5n2 + 1
, (18)

and

f3 = 5(n2 − 3n + 2)

5n2 + 1
. (19)
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TABLE I. Different quantities characterizing the geometry, energy, and frequency of occurrence for the different theoretical approximations
applied to a given family of icosahedral NPs.

DMFA3 DMFA4 DMFA6

N1 12 12 12
N2 30(n − 1) 30(n − 3) 30(n − 3)
N3 10(n2 − 3n + 2) 10(n2 − 3n + 2) 60(n − 4)
N4 – 60 60
N5 – – 60
N6 – – 10

[
(n − 3)2 − 3 (n − 3) + 2

]
E1 wAB + 5wBBθ2 wAB + 5wBBθ4 wAB + 5wBBθ4

E2 2wAB + 4wBBθ3 + 2wBBθ2 2wAB + 2wBBθ2 + 4wBBθ3 2wAB + 2wBBθ2 + 4wBBθ3

E3 3wAB + 6wBBθ3 3wAB + 6wBBθ3 3wAB + 2wBBθ2 + 2wBBθ3 + 2wBBθ6

E4 – 2wAB + wBBθ1 + wBBθ2 + 2wBBθ3 + 2wBBθ4 2wAB + wBBθ1 + wBBθ2 + 2wBBθ4 + 2wBBθ5

E5 – – 3wAB + 2wBBθ2 + 2wBBθ3 + 2wBBθ4

E6 – – 3wAB + 6wBBθ6

f1
6

5n2+1
6

5n2+1
6

5n2+1

f2
15(n−1)
5n2+1

15(n−3)
5n2+1

15(n−3)
5n2+1

f3
5(n2−3n+2)

5n2+1
5(n2−3n+2)

5n2+1
30(n−4)
5n2+1

f4 – 30
5n2+1

30
5n2+1

f5 – – 30
5n2+1

f6 – –
5[(n−3)2−3(n−3)+2]

5n2+1

The system of Eqs. (14)–(16) can be easily calculated
through a standard root-finding computing procedure; in our
case, we used MAPLE software. Finally, the overall mean cover-
age is obtained as the weighted average of the partial coverage:

θ (μ) =
3∑

γ=1

fγ θγ . (20)

The accuracy of the total adsorption isotherm [Eq. (20)]
can be improved by adding more detail to the model. This is
possible by increasing the levels of the approximation given
by Eqs. (14)–(16). Taking into account the environment of
the adsorbed particles, different levels can be distinguished.
To this aim, we also consider γmax = 4 and γmax = 6, and we
denote such approaches as DMFA4 and DMFA6, respectively.
Figures 1(c) and 1(d) show the new levels corresponding to
DMFA4 and DMFA6, respectively. Table I depicts the total
adsorption energy and frequency for these cases. Then the
total coverage is calculated, as in the case of DMFA3, using
MAPLE software.

III. RESULTS

In order to rationalize our analysis, three different cases are
considered, according to the interaction energies involved in
the adsorption process:

case I: wBB/kBT = 0.0 and wAB/kBT < 0.0,
case II: wBB/kBT > 0.0 and wAB/kBT = −1.0,
case III: wBB/kBT = −2.0 and wAB/kBT < 0.0.
Figure 2 shows the adsorption isotherms for case I,

n = 7 (NA = 923, M = 492) and five different values
of wAB/kBT = 0.0, −1.0, −5.0, −10.0, and −20.0 for
wBB/kBT = 0.0. Symbols, colored lines, and dashed lines
represent GCMC simulations, DMFA4, and DMFA3 data,

respectively. The condition wAB/kBT = 0.0 corresponds to
the Langmuir case, the adsorption isotherm being a “sigmoid”
as expected. As wAB/kBT takes negative values (attractive
interactions), two plateaus are formed and three different
adsorption processes can be visualized: (i) facet sites are filled
first up to θ = 5(n2 − 3n + 2)/(5n2 + 1) ≈ 0.61; (ii) the filling
of edge sites is completed up to θ = 5(n2 − 3n + 2)/(5n2 +
1) + 15(n − 1)/(5n2 + 1) ≈0.98; and (iii) the monolayer is
formed and θ = 1.0.

The analysis of Fig. 2 indicates that (1) the NP be-
haves as a heterogeneous surface with only three different

FIG. 2. (Color online) Adsorption isotherms for case I as de-
scribed in the text, for n = 7 and wAB/kBT = 0.0, −1.0, −5.0,
−10.0, and −20.0. Symbols, continuous lines, and dashed lines rep-
resent GCMC simulations, DMFA4, and DMFA3 data, respectively.
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(a)

(b)

FIG. 3. (Color online) Adsorption isotherms for case II as de-
scribed in the text, for n = 7 and wBB/kBT = 0.0, 1.50, 3.00, 4.50,
and 5.25. Symbols, continuous lines, and dashed lines represent
GCMC simulations, DMFA4, and DMFA3 data, respectively.

adsorption energies; (2) DMFA4 reduces to DMFA3; and (3)
the theoretical results reproduce exactly the GCMC data. The
thermodynamic behavior of this type of NP has been reported
previously in [28].

Figure 3 shows the results corresponding to case II.
The curves were obtained for n = 7 and different values of
wBB/kBT = 0.0, 1.50, 3.00, 4.50, and 5.25 for wAB/kBT =
−1.0. These energetic conditions remind us of those of
adsorption of anions or some cases of molecular capping on
metallic surfaces, where repulsive interactions predominate.
Figure 2 shows the symbology used. As wBB/kBT increases,
two well-defined plateaus appear in the simulation curves at
coverage θ = 1/3 and θ = 2/3. The first (second) plateau
corresponds to the formation of the (

√
3 × √

3) [(
√

3 × √
3)∗]

structure on the flat surfaces (see insets in Fig. 3).
With respect to the theory, there are a wide range of

wBB/kBT ’s (wBB/kBT � 2), where the mean-field approx-
imation provides an excellent fitting of the simulation data.
This is important since most of the experiments in surface
science are carried out in this range of interaction energy.
For high values of wBB/kBT , DMFA3 and DMFA4 do not
predict the existence of ordered phases; consequently the
differences between analytical and GCMC results turn out to be
significantly large. The explanation of this behavior is simple:
The main hypothesis of the mean-field approximation says that
the configurational degeneracy and average nearest-neighbor
interaction energy are calculated considering that molecules
are distributed completely at random on the lattice. This
assumption prevents the formation of ordered structures on
the surface.

Finally, Fig. 4 shows the adsorption isotherms corre-
sponding to case III. The different curves were obtained
for n = 7 and different values of wAB/kBT = 0.0, −5.0,
−10.0, and −15.0 for wBB/kBT = −2.0. This situation is
typical of metal-metal interactions. Figures 2 and 3 describe
the symbology used. As observed from the GCMC data, a

FIG. 4. (Color online) Adsorption isotherms for case III as de-
scribed in the text, n = 7 and wAB/kBT = 0.0, −5.0, −10.0, and
−15.0. Symbols, continuous lines, and dashed lines represent GCMC
simulations, DMFA4, and DMFA3 data, respectively.

marked jump from θ = 0.0 to θ = 1.0 occurs in the adsorption
isotherms as wAB/kBT becomes zero. The system undergoes
a condensation, which is observed in the clear discontinuity in
the adsorption isotherms. It is worth noticing that although the
jump in the isotherm may be indicative of a first-order phase
transition, it is well known that no phase transition develops
in a finite system.

As wAB/kBT is increased (in absolute value), the sur-
face changes from a homogeneous to a heterogeneous sub-
strate and, consequently, the adsorption isotherms show a
more complex behavior. For wAB/kBT < −5 three plateaus
are observed, two of which were reported in case I. However,
two interesting new features are present: the formation of a
plateau at θ = 0.85 and a condensation from an empty NP to
the first plateau. The new plateau was reported in [28] where
the vertex sites and their NN sites were found to remain empty.

With respect to the theoretical data, the performance of
mean-field approximation is good, especially for θ > 0.6, even
for high values of wAB/kBT . DMFA3 predicts the existence
of the first and third plateau only. On the other hand, DMFA4
reproduces the three plateaus. In both cases, a typical van der
Waals loop is observed. In the case of wAB/kBT = 0.0, the
loop goes from an empty to a full NP, while in the other cases,
the loop takes place between zero density and the coverage
corresponding to the first plateau. The jumps obtained using
Maxwell’s rule have a bias of order 3/kBT .

Once the energetics of adsorption has been studied, it
is interesting to analyze the dependence of the adsorption
isotherms on the size of the seed NP. As it is well known,
the behavior of the thermodynamic variables is a function
of the quantity of particles at facets, vertices, and edges.
Figure 5 shows the adsorption isotherms of an extreme case
(wBB/kBT = −2.0 and wAB/kBT = −15.0) and different NP
sizes n = 7, 8, 9, 10, and 12 (as indicated in the figure). The
GCMC data show how coverage degrees corresponding to
the first and third plateaus change as NP size is varied; this
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(a)

(b)

FIG. 5. (Color online) Adsorption isotherms for different sizes
of the seed NP (n). The values of the interactions were set to
reproduce the two plateaus (wAB/kBT = −15.0 and wBB/kBT =
−2.0). Insets (a) and (b) show a zoom of the third and first plateau,
respectively. Symbols, continuous lines, and dashed lines represent
GCMC simulations, DMFA4, and DMFA6 data, respectively.

is a “nanoeffect”. In addition, an incipient second plateau is
observed at high densities.

Our interest is now to compare DMFA4 (continuous lines)
and DMFA6 (dashed lines) as a function of NP size (see
Fig. 5). Both theoretical approximations are in good agreement
with the formation of the third plateau. The second plateau is
predicted by DMFA4 and DMFA6 [see inset (a)], even though
GCMC data show an incipient inflexion. Note that DMFA3
does not predict the second plateau (see Fig. 4, blue curve).
The main differences between DMFA4 and DMFA6 appear
in the first plateau. As expected, DMFA6 follows the GCMC
data slightly better than DMFA4 [see inset (b)]. The jumps for
the first plateaus predicted by DMFA6 are shown at the same
values of μ/kBT for all n. This is because the frequencies f

are functions of n, while partial isotherms are not.
The behavior of adsorption isotherms for case II and

different seed-NP sizes was also studied (data not shown here).
The comparison between theory and simulation provided a
level of accuracy similar to that found in Fig. 5. DMFA6 was
found to be better than DMFA3, but performed in a similar
way to DMFA4.

The quantitative differences between simulation and theo-
retical results can be much easily rationalized with the help of
the integral error, IE, defined as

IE =
∫ 1

0
|μtheor − μsim|(θ )dθ, (21)

where μtheor and μsim are the chemical potentials obtained
by using the analytical approach and GCMC simulations,
respectively. Each pair of values μtheor, μsim was obtained
at fixed θ . We performed the analysis for the DMFA3 and
DMFA6 cases. Where necessary, the loops were rectified
by using Maxwell’s rule of equal areas. Figure 6 shows
integral errors for different wBB , wAB , and n. Figures 6(a)
and 6(b) correspond to cases II and III, respectively, for

(a) (b) (c)

FIG. 6. (Color online) Integral error (in kBT units) as defined in
Eq. (21) for cases II [(a)] and III [(b)]. Results in inset (c) correspond
to wAB/kBT = −15.0, wBB/kBT = −2.0, and different sizes of the
seed NP (n).

n = 7. Figure 6(c) shows the IE for different seed-NP sizes
using wBB/kBT = −2.0 and wAB/kBT = −15.0. The errors
in both approximations increase with seed-NP sizes. DMFA6
has proved to be a better approximation than DMFA3.

Other NP geometries have also been considered. In
Figs. 7(a) and 7(b) we present case I and case II for a
truncated octahedron (TO), comparing GCMC simulations
with the analytical approach for NA = 1289 and M = 636.
In the minimal version the analytic description of TO requires
five levels, thus we referred to it as DMFA5. Appendix displays
the derivation of the corresponding equations. For case I,
with wAB/kBT = −10.0, the results show three plateaus that
correspond to the filling of (100) facet, (111) facet, and the
edge sites, respectively.

(a)

(b)

FIG. 7. (Color online) Adsorption isotherms for a TO nanopar-
ticle with n = 4. (a) Case I, wAB/kBT = 0.0, −1.0, −2.0, −5.0,
and −10.0. (b) Case II, wBB/kBT = 1.0, 3.0, and 5.0. Symbols
and continuous lines represent GCMC simulations and DMFA5 data,
respectively.
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For case II, two plateaus may be observed. Their behavior is
similar to that obtained in the geometry previously described.
The first plateau for wBB/kBT = 5.0 corresponds to a surface
structure where the adparticles on the seed NP are surrounded
by vacant sites. The coverage degree is close to 1/3. The
structure is of the type (

√
3 × √

3) on the (111) facets and of
the type (2 × 1) on the (100) facets. These expanded structures
result from repulsive interactions between adsorbates, leading
to a minimization of the total free energy.

The second plateau around θ = 2/3 corresponds to a
situation where the structure on the (111) facet changes to
a (

√
3 × √

3)* one, as illustrated in Fig. 3(b). The (100)
facets acquire a (1 × 1) structure, i.e., a full coverage. This
behavior can be taken into account: adsorption sites on (111)
and (100) facets present 4 and 6 NN, respectively. Hence, the
full decoration of (100) facets involves lower energetic costs.

As in previous figures, (i) an excellent agreement is obtained
between MC and DMFA5 data for case I and (ii) the differences
between simulation and analytical results turn out to be
significantly large for case II and high values of wBB/kBT .

IV. CONCLUSIONS

In the present work, adsorbate formation on a nanoparticle
made of a foreign material with different geometries was
analyzed using comparatively Monte Carlo simulations and
a mean-field analytic approach. A lattice-gas model was used
with this purpose. Depending on the coordination with nearest
neighbors, different types of adsorption sites were defined.
In addition, repulsive and attractive interactions between
adsorbates were considered, mimicking different experimental
situations.

In the case of attractive adsorbate-substrate interactions
and null adsorbate-adsorbate interactions (we have called this
feature case I), the simulation isotherms show a transition from
a Langmuir-like behavior in the case of weak interactions
to stepwise profiles in the case of strong ones. In this
limit, isotherms show up to three plateaus corresponding
to adsorption on facets, edges, and vertices. This finding
gives an indication of the geometry of the nanoparticle.
For attractive adsorbate-substrate interactions and repulsive
adsorbate-adsorbate interactions (case II), the behavior of
the system is more complex. At low values of the coupling
parameter, adsorption isotherms show a Langmuir-type shape.
As the ad-ad interaction increases, two well-defined plateaus
appear in the isotherms. The plateaus are attributed to the
occurrence of two different ordered structures on the surface;
they do not obey adsorbate-substrate effects as discussed in
case I. Thus, in case II, the number of steps in the isotherms
does not yield straightforward information on nanoparticle
geometry.

When all interactions are attractive (case III), we have
a lattice where a condensation transition occurs. For low
values of the adsorbate-substrate interaction, the transition
is observed as a marked jump between θ = 0 and θ = 1.
On the other hand, as the magnitude of this interaction
increases, the surface changes from a homogeneous to a
heterogeneous substrate. Consequently, three plateaus appear
in the adsorption isotherms (two of which were reported in

case I), along with a condensation transition from an empty
NP to the first plateau.

The simulation results were compared with a detailed
mean-field approximation involving a different number of
energy levels. The agreement obtained is excellent in case I (the
theoretical results reproduce exactly the simulation data). In
case II, there is a wide range of the value of ad-ad interactions
(wBB/kBT � 2), where the theory provides an excellent fitting
of the simulation data. This is important since most of the
experiments in surface science are carried out in this range
of interaction energy. For strongly interacting adsorbates, the
mean field does not predict the existence of ordered phases
on the surface and, consequently, the differences between
analytical and simulation results are found to be significantly
large.

With respect to case III, the performance of mean-field
approximation is good, especially for θ > 0.6, even for
high values of the adsorbate-substrate interaction. The theory
reproduces the three plateaus observed in the isotherms and
shows the typical van der Waals loop in the presence of a
condensation transition. The jumps obtained using Maxwell’s
rule have a bias of order 3/kBT .

In summary, the proposed theoretical model (DMFA) is
useful and seems to be a promising starting point for further
investigations on nanoscale adsorption.
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APPENDIX: DETAILED MEAN-FIELD APPROXIMATION
FOR A TRUNCATED OCTAHEDRAL NANOPARTICLE

Here we describe the theoretical approximation for a
truncated octahedron (TO). A TO is formed by facets with
geometry (100) and (111). The (100) and (111) facets can be
described through square and triangular lattices, respectively.
A TO presents four-site types of adsorption sites, shown in
Fig. 8(a). Blue and red spheres denote adsorption sites at
(100) and (111) facets, respectively. Black and green spheres
denote edge sites between (111)-(111) and (111)-(100) facets,
respectively.

Taking into account coordination with NNs, we can identify
five different types of energy levels at the surface. Figure 8(b)
shows the energies assigned to the different sites, within the
DMFA5 approximation. Next we describe the assignation of
energies to each type of site (we use the same notation as
before):

(Type 1) Adsorption sites at the vertices, each of which is
connected with one site of the seed NP and with up to six
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FIG. 8. (Color online) Schematic representation of a truncated
octahedron. (a) Types of adsorption sites. Blue and red spheres denote
adsorption sites at (100) and (111) facets, respectively. Black and
green spheres denote edge sites between (111)-(111) and (111)-(100)
facets, respectively. (b) Energy assignation to each type of site
according to the DMFA5 approximation described in the text.

lateral NNs. The corresponding adsorbate-substrate energy is
εv = wAB .

(Type 2) Adsorption sites at (111)-(111) edges, each of
which is connected with one site of the seed NP and may coor-
dinate with up to six other adsorbate sites. The corresponding
adsorbate-substrate energy is εe(111−111) = wAB .

(Type 3) Adsorption sites at (111)-(100) edges, each of
which is linked with two sites of the seed NP and may coordi-
nate with up to five other adsorbate sites. The corresponding
adsorbate-substrate energy is εe(111−100) = 2wAB .

(Type 4) Adsorption sites at (100) facets, each of which
is linked with four sites of the seed NP, and up to four
lateral neighbors on the surface. The corresponding adsorbate-
substrate energy is εf 100 = 4wAB .

(Type 5) Adsorption sites at (111) facets, each of which
is linked with three sites of the seed NP, and up to six
lateral neighbors on the surface. The corresponding adsorbate-
substrate energy is εf 111 = 3wAB .

As in the previous case, we can define an index “n” to
identify the size of the TO. The number of atoms of the core
can be written as

NA = 16n3 + 15n2 + 6n + 1. (A1)

The number of adsorption sites on the TO is also a function of
nas

M = 30n2 + 36n + 12. (A2)

The different number of sites of each type in the TO are as
follows:

(1) Vertices: Nv = 24.
(2) Edges between (111)-(111) facets: Ne111−111 = 12n −

12.
(3) Edges between (100)-(111) facets: Ne100−111 = 24n.
(4) (111) facets: Nf 111 = 24n2.
(5) (100) facets: Nf 100 = 6n2.
The different energy levels are

E1 = wAB + wBBθ2 + 2wBBθ3 + wBBθ4 + 2wBBθ5,

(A3)

E2 = 2wAB + 2wBBθ2 + 4wBBθ5, (A4)

E3 = 2wAB + 2wBBθ3 + wBBθ4 + 2wBBθ5, (A5)

E4 = 4wAB + 4wBBθ4, (A6)

and

E5 = 3wAB + 6wBBθ5. (A7)

The corresponding frequencies of occurrence fγ ’s can be
written as

f1 = 4

5n2 + 6n + 2
, (A8)

f2 = 2n − 2

5n2 + 6n + 2
, (A9)

f3 = 4n

5n2 + 6n + 2
, (A10)

f4 = 4n2

5n2 + 6n + 2
, (A11)

and

f5 = n2

5n2 + 6n + 2
. (A12)
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