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Minimization of instabilities in growing interfaces: A variational approach
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The Mullins-Sekerka and the electric breakdown instabilities are well known to lead to the spontaneous
formation of a variety of complex spatial structures, among them dendritic crystal shapes, and treelike
electric discharge patterns. Controlling such systems by suppressing predominantly excited solutions offers
the opportunity to manipulate and stabilize these patterns in a defined way for a wide range of technological
applications. In this work, we employ a variational approach which enables one to systematically search for the
ideal conditions under which the patterns grow, but where interfacial deformations are efficiently minimized.
The effectiveness of our variational control method is illustrated via linear stability calculations on both
two-dimensional and three-dimensional contour-dynamics models for crystal growth and electric discharge
phenomena.

DOI: 10.1103/PhysRevE.88.062404 PACS number(s): 81.10.Aj, 51.50.+v, 47.54.−r, 47.15.gp

I. INTRODUCTION

The formation of patterns and shapes in the natural world
has long been a source of fascination for both scientists and
laymen [1,2]. Nature provides an endless array of patterns
formed by diverse physical, chemical, and biological systems
[3]. The scales of such patterns range from the growth
of bacterial colonies [4] to the large-scale structure of the
universe [5]. This enormous range of scales over which
pattern formation occurs and the intriguing fact that they
emerge spontaneously from an orderless and homogeneous
environment captivate our imagination.

Interface dynamics plays a major role in spontaneous
pattern formation in nature. It determines the shapes of objects,
and therefore it has important applications in a wide range
of interdisciplinary fields: hydrodynamics [6] (convection
patterns and shapes of boundaries between fluids), metallurgy
[7] (dendritic shapes of crystals), and biology [4,8] (shapes of
plants, cells, etc.). Despite the great variety and richness of
this immense set of pattern formation systems, in this work we
concentrate on a few illustrative, but important examples of
interfacial patterns. Actually, instead of focusing on studying
the development of patterns, our main goal is to offer ways to
control their growth.

One paradigmatic system in the area of interfacial pattern
formation is the Saffman-Taylor (viscous fingering) problem
[9], in which fingering structures arise at the boundary
separating two fluids of differing viscosities, when they move
in the narrow gap between parallel glass plates (a device
named the Hele-Shaw cell [10]). From the dynamic interaction
between capillary and viscous forces ones has the formation of
interface shapes which can vary from a steady single-fingered
pattern to convoluted fronts in which fingerlike structures split
at their tips, tending towards a dense-branching morphology.
This fluid dynamic problem has been actively studied over half
a century [11], and is an archetype for a wide range of fields,
including research in oil recovery processes [12], fluid mixing
[13], flow in granular media [14], microdischarges in plasmas
[15], and biodynamics of cell fragmentation [16,17].
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Distinct, but related types of interfacial patterns are formed
in other physical systems. Two particular examples have
received considerable attention over the past several years:
(i) dendritic growth of a solid from a melt [18,19], linked to the
celebrated Mullins-Sekerka instability [20–29]; (ii) the electric
breakdown problem that studies the uprise and propagation of
ionization waves through electric discharges [30–36]. These
two systems and the viscous fingering problem have the
common feature that there exists a moving boundary between
two phases, on which competing stabilizing and destabilizing
forces act. It is the interplay between these forces that controls
the dynamic evolution of the complex patterns.

The main physical mechanisms involved in the interfacial
pattern formation problem of Mullins-Sekerka, and in electric
discharges can be briefly described as follows. Regarding
the Mullins-Sekerka instability, we focus on the simplest
example of the solidification of a pure substance from its
melt [18–21]. In the conventional thermodynamic model, the
fundamental rate-controlling mechanism is the diffusion of
latent heat away from the interface between the liquid and
the solid phases. If the solid develops an outward bump on
the solid-melt interface, the temperature gradient is larger
there. This happens because the supercooling temperature
difference is applied across a shorter length. As a result,
the diffusion of latent heat away into the melt is larger
at the bump, and it grows faster. If a bump becomes too
sharp, however, it tends to melt back because of surface
tension (the equilibrium melting temperature of a solid is
reduced proportionally to the interface curvature [18–21]).
The competition between these two opposing effects leads to
a morphologically unstable process which characteristically
produces dendrites or snowflake-like structures. In addition to
these competing factors, an important third player in this game
is anisotropy. The average bonding energy between atoms
at the interface depends on the orientation of the interface
relative to internal crystal axes. So, anisotropy is required in
the interfacial dynamics to produce typical dendritic growth.
Similarly, in the simplest hydrodynamic-like approximation
[34], the ionization fronts in the electric discharge problem are
subjected to stabilizing forces due to diffusion which tend to
dampen out any disturbances, and to destabilizing forces due
to electric field. The competition between these two factors
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result in the typical treelike patterns formed during electric
discharges.

Despite their visual appeal and considerable interest from
both academic and applied points of view, the emergence of
intricate pattern-forming shapes is not always desirable. For
instance, it is well known that viscous fingering is a major
factor in reducing oil recovery from underground petroleum
reservoirs [12]. Something similar occurs in crystal growth
problems, more precisely in crystal casting applications [27],
where it is advantageous to suppress the Mullins-Sekerka
instability and prevent the formation of dendrites. Finally, it
is also known that many industrial techniques (e.g., water
purification, chemical processing of gases, etc.) could be
improved if the emergence of treelike patterns due to electric
discharges could be controlled or avoided [36]. Therefore, it is
of scientific and technological importance to investigate how
to control, minimize, and possibly suppress the growth of all
these interfacial instabilities.

Recently, we have tackled the problem of restraining the
viscous fingering instability in radial, quasi-two-dimensional
Hele-Shaw cells [37]. We have devised an analytical varia-
tional scheme which allowed us to find the ideal injection
rate that would lead to a pattern evolution in which interfacial
disturbances could be properly minimized. The effectiveness
of our variational controlling protocol for the radial Saffman-
Taylor problem has been substantiated by both experiments
and numerical simulations. Motivated by these facts, in this
work, we use our variational scheme to try to minimize
the development of interfacial disturbances in the Mullins-
Sekerka instability and in the electric breakdown problem.
More specifically, the variational method is employed to
systematically search for the particular functional forms for
the far-field heat flux or far-field temperature (in the Mullins-
Sekerka case), and for the electric charge or current (in the
electric discharge situation) that result in the minimization of
interfacial perturbations. This provides simple and practical
ways, derived from first principles, to improve the efficiency
and control of the pattern formation events in these two
physically important systems.

Our present study extends the previous variational results
originally obtained for the control of the effectively two-
dimensional viscous fingering problem [37] in a few different
directions. First, we apply the minimization process to two
new systems of great scientific and technological appeal
(crystal growth and electric discharges). Notice that, despite
the phenomenological proximity in the description of the
physical competition mechanisms leading to these distinct
interfacial instability problems, a priori, from the results of
Ref. [37] one just cannot tell for sure what would be the
precise controlling flux (of heat, or charge) that would lead
to minimization of interfacial irregularities in these two new
systems. Moreover, in contrast to what was done in [37], in this
work our calculations are performed for both two-dimensional
and fully three-dimensional versions of the problems. The
change in the problems’ dimensionality add new components
into the calculations, and poses difficulties in any presumptive
accurate prediction about the ideal controlling protocols for
these cases. Moreover, the inclusion of three-dimensional
contributions may provide a closer connection between our
theoretical results with associated real life growth processes.

II. VARIATIONAL METHOD AND
PHYSICAL APPLICATIONS

A. Variational method

Consider the two-dimensional growth of a perturbed inter-
face separating two phases, described as

R(θ,t) = R(t) + ζ (θ,t), (1)

where

ζ (θ,t) =
∑
n�=0

ζn(t) exp (inθ ) (2)

represents the net interfacial perturbation in polar coordinates
(r,θ ) with Fourier amplitudes ζn(t), and discrete azimuthal
wave numbers n. R = R(t) is the time-dependent unperturbed
radius of the interface and R0 is its radius at initial time t = t0.
The linear perturbation amplitude evolves in time according
to [20,35,38]

ζn(t) = ζn(0) exp{I (n,R,Ṙ)} (3)

with

I (n,R,Ṙ) =
∫ t

t0

λ(n,R,Ṙ)dt, (4)

ζn(0) being the interfacial amplitude at t = t0, and λ(n,R,Ṙ)
the linear growth rate. The overdot denotes total time deriva-
tive. An important information from the linear analysis is the
mode of maximum growth rate nmax which can be calculated
by setting dλ(n,R,Ṙ)/dn = 0.

As commented in Sec. I, an efficient method to control
interface instabilities has been recently proposed in Ref. [37],
and successfully tested for the injection-induced radial viscous
fingering case. The main task of this approach is minimizing
the perturbations amplitudes (3). This can be accomplished by
extremizing the integral (4). Since nmax is the fastest growing
mode, the method focus on minimizing the integral

I (nmax,R,Ṙ) =
∫ t

0
λ(R,Ṙ)dt ′, (5)

where t0 = 0. Notice that λ(nmax,R,Ṙ) = λ(R,Ṙ) only de-
pends on R and Ṙ. So, if the interface evolves from a fixed
initial and final radii, during a time interval [0,tf ] we have
a variational problem, in which I in Eq. (5) represents the
action, while λ defines the Lagrangian of the system. This can
be solved by using the Euler-Lagrange equation

d

dt

(
∂λ

∂Ṙ

)
= ∂λ

∂R
, (6)

with fixed endpoints R(t = 0) = R0 and R(t = tf ) = Rf .
Substituting the growth rate into Eq. (6) we obtain the
differential equation that describes how the radius R(t) must
vary in time in order to minimize the interface instabilities
described by Eq. (2).

Before we proceed an important clarification must be given:
despite its simplicity, the minimization procedure described
above does not provide a rigorous mathematical proof that it
really provides the true optimum minimum of the problem.
Note that our main approximation is that we minimize the
integral I (nmax,R,Ṙ) [see Eq. (5), where n = nmax], and not
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the maximum of I (n,R,Ṙ) with respect to R({n},t), which
is a much more difficult task. On the other hand, the validity
of our simplified theoretical minimization procedure has been
substantiated by laboratory experiments and fully nonlinear
numerical simulations in Ref. [37] for the viscous fingering
problem. These facts support the idea that despite of the fact
that our minimization procedure may not lead to the exact true
optimum of the problem, it does offer a useful and simple
approximation to it. So, in this work whenever we mention the
optimal (or, ideal) flux rate we refer to it in the context of our
simplified minimization method.

In the next two sections we will apply this variational
approach to two fundamental interface instability problems:
(i) crystal growth and (ii) electric discharge. In both systems
we obtain fairly simple solutions for Eq. (6) allowing us to
verify analytically the efficacy of our variational controlling
strategy.

B. Minimization of instabilities in the crystal growth process

Consider a quasistatic growth of a solid (phase 1) in
a supercooled liquid (phase 2), of temperatures T1 and T2

[20–27], respectively. By admitting that the thermal diffusivi-
ties of the phases are identical, and that the local equilibrium
holds at the interface, the dimensionless equations of the
problem are [24–27]

∇2Ti = 0, i = 1,2,

v = [∇T1 − ∇T2]|r=R, Ti |r=R = −τ (n)κ, (7)

J = 1

2π

∫
r=R

n · v ds,

(
dr
dt

)
r=R

= v.

where Ti is the temperature field (i = 1 or 2 for solid and liquid
phases, respectively), v is the velocity of the interface, n is the
unit normal vector to the interface, τ is the anisotropic surface
tension, J is the far-field heat flux, and κ is the interface
curvature. Here we neglected kinetic effects in the third
expression of Eqs. (7). Note that J specifies the time derivative
of the solid phase area (or volume). In the three-dimensional
case the factor of 1/2π is replaced by 1/4π . For more details
see Refs. [24–27].

1. Two-dimensional crystal growth

In this section, first we wish to obtain the linear evolution
of the two-dimensional perturbation amplitudes ζn of a crystal
growing interface. For a general m-fold anisotropy we have
τ (θ ) = 1 − (m2 − 1)νm cos(mθ ), where νm is the strength of
the anisotropy [26,28,29]. In addition, we consider that νm is of
the same order of ζn such that the product νζ can be neglected
[26,28]. Keeping terms up to the first order in ζ in the system
of Eqs. (7), and Fourier transforming, we obtain the equation
of motion for the perturbation amplitude [26,28]

ζ̇n = λ(n,R,Ṙ)ζn + δnm

2νm

R2
m(m2 − 1), (8)

where

λ(n,R,Ṙ) = Ṙ

R
(n − 1) − 2

R3
n(n2 − 1) (9)

with δnm being the Kronecker delta function. In addition, the
rate of area growth and the far-field temperature are described
as

J (t) = RṘ and, T∞(t) = −J (t) log

(
R∞
R

)
− 1

R
, (10)

respectively. In Eq. (10) R∞ is the radius of a large domain
containing the crystal.

To apply the variational method described in Sec. II A,
first we obtain the mode of maximum growth-rate nmax ≈
RṘ1/2/

√
6 by setting dλ(n,R,Ṙ)/dn = 0. In this calculation,

we assume that the crystal has an isotropic surface tension, so
that we neglect the term involving the Dirac delta function in
the Eq. (8). This point will be addressed in the discussion of
Fig. 2. In this framework, note that the solution for Eq. (8) is
given by Eq. (3). Substituting nmax in λ(n,R,Ṙ) we have

λ(R,Ṙ) ≈ 2

3
√

6
Ṙ3/2 − Ṙ

R
. (11)

Here we assume that R2Ṙ/2 � 1, consistently with
Refs. [26,27]. Substituting the expression for λ(R,Ṙ) =
λ(nmax,R,Ṙ) into Eq. (6) we get a very simple differential
equation R̈ = 0. The solution of such an equation is

R(t) = R0 + (Rf − R0)

tf
t, (12)

where R0 and Rf are the initial and final unperturbed radii of
the crystal, respectively, and tf is the time required to grow
the crystal. From Eqs. (10) and (12) we finally have

J (t) = (Rf − R0)

tf

[
R0 + (Rf − R0)

tf
t

]
(13)

and

T∞(t) = −V (R0 + V t) log

(
R∞

R0 + V t

)
− 1

R0 + V t
,

(14)

which describe how the heat flux and the far-field temperature
must vary in time in order to minimize the deformations at
the crystal interface. In Eq. (14), V = (Rf − R0)/tf is the
unperturbed interface velocity.

It is worth commenting that our interface stabilization
procedure, which uses variational calculus, is distinct from the
so-called “feedback control” method utilized by Savina et al.
[39]. Reference [39] focuses on the possibility of suppressing
the morphological instability in directional solidification of a
binary liquid. The feedback control stabilization is achieved
via external heating of the melt localized near the mel t-crystal
interface, where the heating parameters depend on the shape of
the interface. On the other hand, our variational scheme focuses
on searching for the precise functional form that describes
how the far-field temperature must vary in time in order
to minimize the perturbation amplitudes at the melt-crystal
interface. Another important difference is that our protocol
only works for radial growing interfaces (where the growth
rate is time dependent), while the feedback control performed
in [39] was successfully applied to a rectangular solidification
geometry. Mathematically, a fundamental difference between
these two approaches is the fact that in feedback control
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there exists a contribution of the external heating of the melt
in the first expression in the system of Eqs. (7). Besides,
we would have to utilize a more sophisticated theory if we
wanted to consider the solidification of a binary liquid as
examined in Ref. [39]. Therefore, the feedback control is much
more involved than our protocol, and has a different physical
mechanism.

We proceed by examining the suitability of the interface
stabilization process based on the optimal heat flux (13). For
a given Rf and tf , the usual crystal growth problem considers
a constant heat flux

J0 =
(
R2

f − R2
0

)
2tf

. (15)

We wish to compare the dynamic behavior and the resulting
interface morphologies obtained by using the constant heat
flux (15) and the ideal flux (13) at t = tf . Notice from Eq. (15)
that the relevant set of parameters to be fixed in the controlling
mechanism could be either Rf and tf , or J0 and tf .

The linear stability results of this section are obtained by
utilizing dimensionless parameter values consistent with those
used in [26,27]. In Fig. 1, we set R0 = 1, Rf = 200, and
tf = 2000. This figure plots the amplitudes given by Eq. (3)
divided by Rf at t = tf , for the optimal heat flux ζn/R

(solid curve) [which uses Eq. (13)], and for the equivalent
constant flux situation ζ 0

n /R (dashed curve) [which utilizes
Eq. (15)] as functions of the wave number n. By inspecting
Fig. 1 we observe a very significant reduction of the final
perturbation amplitudes for the ideal heat flux case. The
physical explanation for the success of the ideal stabilization
protocol [Eq. (13)] rests on the fact that initially the heat
flux is sufficiently small, so that propagation of a sizable
unperturbed front is possible. As time progresses the heat flux
increases considerably, but since it occurs at a large interfacial
radius, the flux is no longer able to promote a significant
destabilization of the propagating boundary. This means that
the onset of instability is delayed, and when it eventually takes
place disturbances arise with a reduced growth rate.

The efficacy of the minimization mechanism can be more
clearly visualized in Fig. 2, where we plot the linear evolution
of the interfaces for constant heat flux (15) [Figs. 2(a) and

0 5 10 15 20
n

0

0.01

0.02

0.03

0.04

0.05

0.06

ζ n
t f
R
t f

ζn R

ζn
0 R

FIG. 1. Perturbation amplitudes given by Eq. (3) divided by Rf

at t = tf , for the optimal heat flux ζn/R (solid curve), and for the
equivalent constant flux situation ζ 0

n /R (dashed curve) as functions
of the wave number n.

FIG. 2. (Color online) Linear time evolution of the interfacial
patterns formed during constant heat flux [(a) and (c)], and optimal
flux [(b) and (d)]. Anisotropy effects are neglected in (a) and (b), and
taken into account in (c) and (d) for m = 5.

2(c)], and ideal heat flux (13) [Figs. 2(b) and 2(d)]. These
linear patterns have the same initial conditions (including the
random phases attributed to each mode), and 40 Fourier modes
have been considered. The interfaces are plotted in intervals of
tf /5. In Figs. 2(a) and 2(b) anisotropy effects are neglected,
and we set R0 = 1, Rf = 200, and tf = 2000. On the other
hand, the effects of anisotropy are included in Figs. 2(c) and
2(d) for m = 5 and νm considered as having the same order
of magnitude as the initial perturbation amplitude [Eq. (8)].
In addition, we take R0 = 1, Rf = 170, and tf = 2000. It is
evident that finger formation is markedly suppressed on the
interfaces shown in the panels on the right. Recall that in the
calculation of the optimal heat flux, we neglected anisotropy
effects. However, as we can see in Figs. 2(c) and 2(d), our
controlling protocol works very well even in the presence of
anisotropy. Contrary to what is shown in Figs. 2(a) and 2(c),
the interfaces in Figs. 2(b) and 2(d) are evenly spaced due to
the constancy of the unperturbed interfacial velocity.

It is important to examine the adequacy of our variational
protocol when one considers a longer time evolution of the
crystal-melt interface. To address this point, in Fig. 3 we plot
the maximum amplitude for the constant heat flux situation
divided by the maximum amplitude calculated by using the
optimal heat flux [ζ 0(tf )/ζ (tf )], as a function of the final
time tf , for two values of J0. From Fig. 3 we verify that
the ratio ζ 0(tf )/ζ (tf ) grows when tf is increased, and when
larger values of J0 are considered. We conclude that when we
use the ideal heat flux the interface perturbations still remain
significantly smaller than the ones obtained by the equivalent
constant flux situation, even when higher constant heat fluxes
and longer times are considered. These findings are reassuring,
and point to the effectiveness of our controlling protocol at
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FIG. 3. Amplitude ratio ζ 0(tf )/ζ (tf ) as a function of tf for J0 =
7,10. Here ζ 0(tf ) (ζ (tf )) denotes the maximum amplitude for constant
(optimal) heat flux at t = tf .

longer times. We stress that the type of behavior illustrated
in Fig. 3 for the ratio ζ 0(tf )/ζ (tf ) over time has been also
verified to all other systems studied in this work.

2. Three-dimensional crystal growth

Now, we focus on controlling fingering instabilities in a
quasistatic growth of a three-dimensional solid in a super-
cooled liquid [24,25]. Similar to what we did in the two-
dimensional situation, the three-dimensional interface evolves
according to

R(θ,φ,t) = R(t) + ζ (θ,φ,t), (16)

where now θ is the polar angle, φ the azimuthal angle, ζ (θ,φ,t)
represents the surface perturbation in spherical coordinates,
and R = R(t) is the time-dependent unperturbed radius of
the interface. We write ζ (θ,φ,t) in terms of the spherical
harmonics

ζ (θ,φ,t) =
∞∑
l=1

l∑
m=−l

ζlm(t)Ylm(θ,φ), (17)

with ζlm(t) the spherical harmonic amplitudes. In addition, the
heat flux is related with the unperturbed radius by [24,25]

J (t) = R2Ṙ + O(ζ/R)2. (18)

By using the system of equations (7) and following similar
procedures as those of the two-dimensional case, the linear
evolution of the interface is describe as [24,25] ζ̇lm(t) =
λ(l)ζlm(t), where

λ(l,R,Ṙ) = Ṙ

R
(l − 1) − 1

R3
(l + 2)(l − 1)(1 + 2l) (19)

is the three-dimensional linear growth rate. Here the anisotropy
effects are neglected. Since the growth rate does not depend
on mode m we can apply the variational protocol described
in Sec. II A. Despite the three-dimensional extension of the
problem, and the clear difference between Eqs. (9) and (19),
the variational method yields the linearly time-dependent
Eq. (12). However, from Eq. (18) one can see that now we
have a quadratically time-dependent profile for the optimal

FIG. 4. (Color online) Resulting interfacial patterns at t = tf
by utilizing the constant heat flux (left panel), and optimal heat
flux (right panel).

heat flux,

J (t) = (Rf − R0)

tf

[
R0 + (Rf − R0)

tf
t

]2

. (20)

The far-field temperature can be obtained by the relation
T∞(t) = −R(t)Ṙ(t) − 2/R(t) [24,25], plus Eq. (18).

As we did in Sec. II B 1, we compare the resulting interface
morphologies obtained by using the constant heat flux with R0

and Rf fixed

J0 =
(
R3

f − R3
0

)
3tf

, (21)

and the optimal flux (20) at t = tf . The stabilization of
the interface obtained by the employment of the variational
protocol is illustrated in Fig. 4, where we plot the resulting
interface for constant heat flux (21) [left panel of Fig. 4]
and ideal heat flux (20) [right panel of Fig. 4]. These linear,
three-dimensional patterns have the same initial conditions
(including the random phases attributed to each mode), and
18 modes have been considered. We set R0 = 1, Rf = 11.6,
and tf = 1.5. From Fig. 4 it is clear that the minimization
method is also successfully achieved for three-dimensional
crystal growth: the bumpy interface depicted on the left is
replaced by the smooth spherical surface on the right, when
the optimal procedure is put into action.

C. Minimization of instabilities in the electric discharge process

In this section we focus on the minimization of the interface
instability in the electric discharge problem. This system
is well described by a hydrodynamic approximation [33],
where stabilizing forces act in the front due to electron
diffusion, and destabilizing forces due to electric field tend
to increase any disturbances at the interface. In the limit of
small electron diffusion D � 1, a contour-dynamics model
have been utilized in Refs. [34–36]. The model describes an
interface, with a negative charge density σ , separating a plasma
region from a neutral gas. The interface motion is governed by
the following dimensionless equations:

vN = −E+
ν + 2

√
Dα(|E+

ν |) − Dκ,
(22)

∂σ

∂t
+ κvNσ = −E−

ν

ρ
− j−

ν .

062404-5
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In Eqs. (22), vN is the normal velocity of the interface, κ is
twice the mean interface curvature, E+

ν (E−
ν ) is the normal

component of the electric field calculated inside (outside) the
plasma, j−

ν is the current density coming from the ionized
region to its boundary, ρ is related to the resistivity of the
plasma, and α(x) = x exp(−1/x). For further details we refer
the reader to Refs. [34–36].

1. Two-dimensional electric discharge

We can describe the two-dimensional electric discharge
interface by Eqs. (1) and (2), and as in Refs. [34–36] we can
consider the limit of very high conductivity 1/ρ � 1. To obtain
the linear evolution of ζn we keep terms up to the first order in
ζ in the system of Eqs. (22), and Fourier transform. From this
calculation, we get Eq. (3) for the perturbation amplitude with
the growth rate given by [34,35]

λ(n,R,Ṙ) = Ṙ

R
(n − 1) − ε

R2
(n2 − 1)

−
√

εα0

R

(
1 + 2πR

|Q(t)|
)

(n − 1). (23)

In Eq. (23), Q(t) = ∫ t

0 I (t)dt , where I (t) is a electric cur-
rent carried by an insulated wire inside the plasma, α0 =
α(|Q(t)|/2πR), and ε ≡ D. The term including α0 in Eq. (23)
represents the effects of Townsend expression for impact
ionization [34,40,41]. Moreover, we assume the limit used
in Ref. [35] [their Eq. (34)]

R � |Q(t)|
4π

√
εα(|Q(t)/2πR|) and ε � 1 (24)

such that the charge Q(t) is related to unperturbed radius of
the front by

Q(t) ≈ −2πRṘ. (25)

Proceeding similarly as we did in Sec. II B, the mode of
maximum growth rate can be written as nmax = RṘ/(2ε).
For simplicity, we assume α0 very small so that we can
neglect the term containing

√
εα0 in the growth rate (23) (see

Refs. [34,35]). Substituting nmax into the Eq. (23) we have the
linear growth rate

λ(R,Ṙ) = Ṙ2

4ε
− Ṙ

R
+ ε

R2
. (26)

Finally, utilizing the Euler-Lagrange equation (6) with
Eq. (26) we obtain

R̈R3 = −4ε2. (27)

The solution of this nonlinear differential equation is

R(t) =
√

(C1t + C2)2 − 4

(
ε

C1

)2

, (28)

where C1 and C2 are constants to be determined by the initial
and final conditions of R: R(0) = R0 and R(tf ) = Rf .

However, in the limit of low electric diffusion ε2 � 1, as
we assumed at the beginning of this section, Eq. (27) becomes
the same simple differential equation as we have seen in the
crystal growing problem: R̈ = 0. Therefore, the solution that
minimizes the perturbation amplitude at the interface in the

electric discharge process is also given by Eq. (12). Finally,
from Eq. (25) we get the controlling charge and electric current

Q(t) = −2π
(Rf − R0)

tf

[
R0 + (Rf − R0)

tf
t

]
, (29)

I = −2π

[
(Rf − R0)

tf

]2

. (30)

From Eq. (29) we see that the electric charge carried by an
insulated wire inside the plasma must vary linearly with time
in order to minimize the deformations at the plasma interface.

Similar to what we did in Sec. II B we go on and test the
efficiency of the variational protocol based on the optimal
electric charge (29). For a given Rf and tf , the usual electric
discharge problem considers the constant charge

Q0 = −π
(
R2

f − R2
0

)
tf

. (31)

Our goal is to contrast the interface behavior which results
from the use of the constant charge (31) and the optimal charge
(29) at t = tf . Here we utilize dimensionless parameter values
consistent with those used in Refs. [34,35]. In addition, we set
ε = 0.03, R0 = 0.14, Rf = 0.44, and tf = 0.08. As we did
in the preceding section, first we plot in Fig. 5 the amplitudes
given by Eq. (3) divided by Rf at t = tf , for the optimal charge
ζn/R (solid curve) [Eq. (29)], and for the equivalent constant
charge situation ζ 0

n /R (dashed curve) [Eq. (31)] as functions
of the wave number n. By examining this figure it is evident
that our variational method results in significantly diminished
perturbation of the ionization fronts in the electric discharge
problem.

These predictions are reinforced by the linear interfacial
evolution illustrated in Fig. 6: Figs. 6(a) and 6(c) are plotted
for constant charge (31), while Figs. 6(b) and 6(d) relate to
the ideal charge situation (29). The plots show in the first row
[Figs. 6(a) and 6(b)] does not include the α0 term in the growth
rate [35], and the patterns shown in the second row [Figs. 6(c)
and 6(d)] adds its influence [34]. By observing Fig. 6 it is

0 5 10 15 20 25 30
n

0

0.01

0.02

0.03

ζ n
t f
R
t f

ζn R

ζn
0 R

FIG. 5. Perturbation amplitudes given by Eq. (3) divided by Rf at
t = tf , for the optimal electric charge ζn/R (solid curve), and for the
equivalent constant charge situation ζ 0

n /R (dashed curve) as functions
of the wave number n.
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FIG. 6. (Color online) Linear time evolution of the interfacial
patterns formed during constant charge [(a) and (c)], and optimal
charge [(b) and (d)]. The effects of the α0 term in the linear dispersion
(23) are neglected in (a) and (b) [where R0 = 0.14, Rf = 0.44,
and tf = 0.08], and considered in (c) and (d) [where R0 = 0.14,
Rf = 0.47, and tf = 0.08]. These linear patterns have the same initial
conditions (including the random phases attributed to each mode), and
40 Fourier modes have been considered. The interfaces are plotted in
intervals of tf /5. We take ε = 0.03.

clear that our variational method works nicely regardless of
the consideration or not of the α0 term.

2. Three-dimensional electric discharge

In order to minimize a three-dimensional electric discharge
we follow similar steps as those described in Sec. II B 2. The
interface position is described by Eq. (16), and the perturbation
amplitudes are written in terms of the spherical harmonics (17).
Now, by assuming the limit used in Ref. [36] [their Eq. (A6)]
the unperturbed radius and the electric charge are related by

Q(t) ≈ −4πR2Ṙ. (32)

By using the system of Eqs. (22) in the limit of very high
conductivity, and keeping terms up to the first order in ζ , we
obtain a three-dimensional linear growth rate given by [36]

λ(l,R,Ṙ) = Ṙ

R
(l − 1) − ε

R2
(l + 2)(l − 1). (33)

For simplicity, as we did previously, we assume α0 very
small so that we can neglect the terms of the Townsend
expression for impact ionization [34,36,40,41] in the growth
rate (33). By applying the variational protocol for this system,
the optimal evolution for the unperturbed radius is

R(t) =
√

(C1t + C2)2 − 6

(
ε

C1

)2

, (34)

FIG. 7. (Color online) Resulting interfacial patterns at t = tf by
utilizing the constant electric charge (left panel), and the optimal
charge (right panel).

where C1 and C2 are constants to be determined by the initial
and final conditions of R: R(0) = R0 and R(tf ) = Rf . From
Eq. (32) the optimal electric charge in the limit of small ε is

Q(t) = −4π
(Rf − R0)

tf

[
R0 + (Rf − R0)

tf
t

]2

. (35)

Note that while the two-dimensional optimal charge [Eq. (29)]
varies linearly in time, in three dimensions the optimal charge
evolves as Q(t) ∼ t2.

Figure 7 illustrates the suitability of the protocol stabi-
lization by comparing the resulting interface morphologies
obtained by using the constant charge

Q0 = −4π
(
R3

f − R3
0

)
3tf

(36)

(left panel of Fig. 7) and the optimal charge (35) (right panel
of Fig. 7) at t = tf . The resulting interface have the same
initial conditions (including the random phases attributed to
each mode), and 18 modes have been considered. We set
ε = 0.03, R0 = 0.13, Rf = 0.43, and tf = 0.16. The spiky
three-dimensional structure obtained under constant charge, is
replaced by an almost perfect sphere when the optimal charge
is used.

III. CONCLUDING REMARKS

The ability to control interfacial instabilities in crystal
growth and electric discharge phenomena is a subject of con-
siderable relevance to science and technology. In the conven-
tional version of these problems, interface destabilization leads
to the formation of complex pattern morphologies resulting in
the emergence of dendritic and branched treelike structures.

One challenging question in the study of the Mullins-
Sekerka and electric breakdown instabilities pertains to what
would be the optimal way to provide growth in these systems,
in such a way that the interfacial deformations would be
minimized. In this work, we used an analytical variational
scheme to systematically search for ideal conditions that would
promote growth with minimum interface disturbances. This
has been done by tackling both the two-dimensional and
three-dimensional versions of the problems. By employing
this variational technique we have been able to find the ideal
functional form for heat flux in the Mullins-Sekerka case,
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and for the optimal electric charge in the electric discharge
problem in which interfaces evolve, but are constrained to
present minimal perturbation amplitudes.

A possible extension of this work could be the investi-
gation of fully nonlinear stages of the dynamics (for both
two-dimensional and three-dimensional situations) through
computer simulations and experiments. This could offer ways
to test our theoretical predictions, and to examine how our
variational controlling method would alter the morphology of

the emerging patterns in crystal growth and electric discharge
processes.
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