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Onset of irreversibility and chaos in amorphous solids under periodic shear
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A fundamental problem in the physics of amorphous materials is understanding the transition from reversible
to irreversible plastic behavior and its connection to yield. Currently, continuum material modeling relies on
phenomenological yield thresholds, however in many cases the transition from elastic to plastic behavior is
gradual, which makes it difficult to identify an exact yield criterion. Here we show that under periodic shear,
amorphous solids undergo a transition from repetitive, predictable behavior to chaotic, irregular behavior as a
function of the strain amplitude. In both the periodic and chaotic regimes, localized particle rearrangements are
observed. We associate the point of transition from repetitive to chaotic behavior with the yield strain and suggest
that at least for oscillatory shear, yield in amorphous solids is a result of a “transition to chaos.”
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I. INTRODUCTION

Amorphous solids such as plastics, window glass, and
amorphous metals are an important and ubiquitous form of
matter. Industrial processing of such materials commonly
involves plastic deformation. Although a microscopic mecha-
nism of plastic deformation in these materials was identified
[1–3], the collective behavior on the mesoscale is still being
debated. Our current theoretical understanding of amorphous
solids includes mainly mean-field statistical mechanics the-
ories that are based on the assumption that the microscopic
dynamics of plasticity is stochastic. Therefore, it is described
in terms of probability distributions which model the evolution
of localized particle rearrangements exhibiting a transition
from jammed to flowing behavior [4–7]. Recent experiments
and simulations on superconductor vortices, dilute colloidal
dispersions, and loosely packed granular materials showed
that these materials undergo a transition from reversible to
irreversible diffusive behavior by varying the strength of an
oscillatory external field [8–17]. In this work, we study highly
condensed amorphous solids (well above the jamming tran-
sition) under oscillatory shear and show that for small strain
amplitudes, these systems evolve into periodic limit cycles
during which particles change their positions but follow the
same trajectories for consecutive cycles. These rearrangements
are dissipative and thus result in energy fluctuations, but for
small strains they are completely repetitive. Therefore, the
work being done on the material is transformed wholly into
heat, and structural rearrangements are reversible. Above a
critical strain amplitude, the system does not settle into a
limit cycle and the motion is chaotic with a positive maximal
Lyapunov exponent. This allows us to define a yield point with
a physical meaning. A yield point can be difficult to determine
from a standard stress-strain curve since the behavior can be
monotonic and there need not be a stress peak, as this depends
on the way that the system is prepared. For example, the solid
green curve in Fig. 1 was prepared by a fast quench compared
to the dashed blue curve in the inset, which was prepared via
a slow quench. Identifying and understanding the underlying
dynamical behavior opens the possibility for a quantitative
description of the structural changes occurring in these systems
after yield and their relation to the dynamics.

The paper is organized as follows. In Sec. II we describe the
system and simulations methodology. In Sec. III we describe

the main finding of this paper, i.e., the characterization of
a dynamical transition and its identification as a “transition
to chaos.” Section IV describes the dynamics in the periodic
regime, and finally we summarize the results in Sec. V.

II. SIMULATIONS

We perform molecular-dynamics simulations of a system
of N -point particles in two and three dimensions interacting
via a pairwise potential where the effective radius of half the
particles is 1.4 times larger than the other half. We use the
mass m of the particles, the typical interaction distance σ ,
and the typical interaction energy ε (see Appendix A for
details on the potential and on the simulations performed
in three dimensions) to define reduced units for the energy
(E → E/ε), the stress σxy → σxy/(ε/σ 3), the number density
ρ → ρ/(1/σ 3), and the time t → t/(ε/mσ 2)1/2. Positions
of particles are given in terms of q → q/L, where L is
the system size. The sample is kept at a constant number
density ρ = 0.75 in the reduced units, which is significantly
higher than the jamming transition. Amorphous solids are
prepared by equilibrating systems of particles at a high
temperature and than quenching them to zero temperature
using a minimization algorithm [18]. The material is subject
to small steps of shear (�γ = 10−4) using the Lees-Edwards
boundary conditions. The dynamics under shear is quasistatic
(after each shearing step the energy was minimized using the
FIRE minimization algorithm [18]) or, in one case, overdamped
Brownian motion with zero or small temperature (at zero
temperature, the quasistatic and overdamped dynamics give
the same qualitative behavior). The strain is applied in a
periodic manner: First, positive strain steps are applied. When
a maximal predecided strain εmax is reached, the strain is
reversed by applying strain steps in the opposite direction.
This proceeds until the strain reaches the negative value of
the maximal strain −εmax. At this point the strain steps are
reversed until the system returns to zero strain, completing the
cycle. The cycle is then repeated.

III. TRANSITION TO CHAOS

For small strain amplitudes, we observe that after a number
of cycles the response of the material becomes completely
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FIG. 1. (Color online) Stress-strain curve from molecular-
dynamics simulations for 16 384 particles under quasistatic shear.
Red dots represent the number of cycles, n, required to reach periodic
behavior under oscillatory shear (the scale is on the right side of the
figure in red). The vertical red line is the strain amplitude for which
the time to reach reversible behavior diverges. Inset: stress-strain
behavior for the same parameters as the solid green curve but with
different initial particle configurations—the vertical red line is the
same as in the main figure.

repetitive (see Fig. 2). However, the response is not immedi-
ately reversible and there is a transient nonperiodic behavior
before the system reaches a stable limit cycle. The transient
times increases with the strain amplitude until it is so large that
the system does not reach a limit cycle. This behavior is similar
to that observed in the shearing of colloidal dispersions [10].
To measure the time it takes for the system to reach a periodic
limit cycle, we define a cycle decorrelation function for the
potential energy U (t):

R(n) =
∫

dt |U (t,n) − U (t,n − p)|. (1)

When p = 1, this function compares the difference between
potential energy fluctuations in two consecutive cycles (n is the
number of cycles that the system underwent). For small strain
amplitudes, this function will reach a value close to zero after n

cycles. However, in some cases the system reaches a limit cycle

FIG. 2. (Color online) Transient behavior of the potential energy
before reaching a limit cycle for three different strain amplitudes
(strain amplitude growing from top to bottom). Vertical red lines are
the points at which periodic behavior begins.

FIG. 3. (Color online) Cycle decorrelation function as a function
of the number of cycles, for system size N = 16 384 particles for
strain amplitudes γ = 0.06, 0.07, 0.75, 0.85, 0.88, 0.09, 0.093,
and 0.095 (from left to right). Inset: The same function for strain
amplitudes γ = 0.12 (blue circles) and γ = 0.15 (green rectangles).

of periodicity p larger than 1. Therefore, if periodic behavior is
not observed, we increase p by 1 and recalculate the function.
We repeat this process until we find a value of p for which the
function reaches R(n) = 0 for some n. If periodicity smaller
than p = 11 is not observed, we set p to its default value p = 1.
In all cases, periodicity larger than p = 5 was not observed.
In Fig. 3 we show this function averaged over 30 different
samples of size N = 16 384, each prepared from a different
initial condition in the liquid state and then quenched using the
same protocol that was used to create the solid green curve in
Fig. 1. One can observe that for the strain amplitudes γ = 0.06,
0.07, 0.75, 0.85, 0.88, 0.09, 0.093, and 0.095, the function
relaxes, after a transient time, to zero, while for larger strain
amplitudes (γ = 0.12,0.15) the function R(n) does not decay
to zero but relaxes to some asymptotic finite value (we verified
separately that for single systems sheared at strain amplitudes
γ = 0.12,0.15, the system does not become periodic even for
n > 1000 cycles). In Fig. 4 we show that the relaxation time,
the time it takes the cycle-decorrelation function to reach below
1% of its initial value, follows a power law with a critical point
at γc = 0.11. This critical strain amplitude is close to the yield
strain as estimated from the dashed blue linear stress-strain
curve in the inset of Fig. 1, even though for the oscillatory shear
we have used the faster quench protocol that corresponds to
the solid green curve in Fig. 1. From this power-law behavior
it is clear that the system undergoes a dynamical transition.
However, a question that arises is what kind of transition
are we observing and is there a fundamental difference in
the dynamics of the system before and after the transition.
The fact that we observe a transition from a repetitive to
random behavior in a deterministic, dissipative system (no
external noise is added) suggests a “transition to chaos.” This
is a well-known phenomenon observed in various dynamical
systems, from the low-dimensional Lorenz system [19] to
high-dimensional coupled chaotic maps [20], and it involves a
divergence (usually power-law) in the time it takes the system
to reach periodic behavior as a parameter is varied. For certain
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FIG. 4. (Color online) Slowing down: Log-log plot of the typical
number of cycles n before reaching periodic behavior (including error
bars) as a function of the strain amplitude γ .

control parameters, the dynamics is chaotic and never repeats
itself.

The main indication that a system exhibits chaotic behavior
is sensitivity to initial conditions: trajectories starting from
close-by initial conditions diverge exponentially [21,22]. The
sensitivity to initial conditions is estimated by measuring the
maximal Lyapunov exponent λ which describes the rate of
growth of the distance between two phase-space trajectories
(solutions of the equations of motion with different initial
conditions) x(t) and xε(t), which are initially separated by a
diminishing distance |x(0) − xε(0)| = ε:

λmax = lim
t→∞ lim

ε→0

1

t
ln

|x(t) − xε(t)|
ε

. (2)

For a periodic system λmax = 0, whereas a chaotic system will
have λmax > 0. We calculate the maximal Lyapunov exponent
by analyzing the discrete time series of the potential energy
ui = {u0,u1,u2, . . .} using the method described in Kantz et al.
[22,23]. The algorithm produces a function S� of the time delay
�:

S� = 1

|W|
∑

i

ln

(
1

|Ui |
∑

k

|ui+� − uk+�|
ε

)
, (3)

where |Ui | is the total number of points which are initially ε

close to point ui and |W| is the total number of initial point
ui chosen by the algorithm. The function S� measures the
logarithm of the average rate of separation of near-by phase-
space trajectories (see Appendix B for an extended discussion).
This function shows a distinct behavior when calculated for
chaotic time series: for an intermediate range of �, it will have
a linear, positive slope where the value of the slope is the value
of the Lyapunov exponent. In Fig. 5, we plot the function S�

for a time series of potential energy values for a system of size
N = 4096 sheared at maximal strain amplitudes γ = 0.12,
0.15, and 0.2 all above the critical amplitude. In all three
cases, the function exhibits linear behavior for intermediate
values of � indicating a positive Lyapunov exponent and hence

FIG. 5. (Color online) Estimation of maximal Lyapunov expo-
nents: The function S� of the time delay � for a system of size
N = 4096 under oscillatory shear in different strain amplitudes larger
than the critical amplitude. The dashed straight lines are shown as a
guide to the eye.

chaotic behavior. These results are consistent with previous
results for the maximal Lyapunov exponent for amorphous
solids under linear shearing obtained in experiments [24] and
simulations [25]. For the technical details on the derivation of
the function S�, its relation to the maximal Lyapunov exponent
λmax, and the parameters used, see Appendix B. These results
suggest that amorphous solids undergo a transition to chaos at a
strain amplitude coincident with yield at least under oscillatory
shear. One should note that a transition to chaos is quite
distinct from a nonequilibrium phase transition, and although
it shows behavior similar to critical slowing down, it is not
necessarily accompanied by critical fluctuations and a growing
correlation length, which are expected in a nonequilibrium
phase transition such as directed percolation. The critical
slowing down exponent for this system was found to be
ν ≈ 2.6, as compared to the value ν ≈ 1.33 observed by Corte
et al. [10] in experiments and simulations of dispersed colloidal
suspensions under oscillatory shear. This may not be too
surprising as their experiments and accompanying simulations
were performed in a dilute limit where particles interact
mostly by direct collisions, whereas in our system long-range
interactions mediated by the stress field are important. Even
though both systems show a transition to irreversible behavior,
the nature of the transition may be quite different. Our exponent
is also different from ν ≈ 3.33 obtained for the well-studied
transition to chaos in the Lorenz system [19]. However, since
it is not clear if the transition to chaos forms universality
classes, the values of ν are not necessarily a faithful indicator
of different mechanisms for the transition.

IV. ANALYSIS OF PERIODIC BEHAVIOR

As we explained above, for strain amplitudes smaller
than the critical value, after a transient regime, the system
shows fluctuating but periodic behavior. This resembles the
reversible regime of dilute colloidal systems, of the types
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FIG. 6. Displacement field after a local particle rearrangement.

studied in [10,11]. However, in these systems, the dynamics
is quite trivial since particles are no longer in contact. On the
contrary, in the highly condensed state studied here, particles
change positions and rearrange in a nontrivial manner, causing
nonaffine deformation, even during a reversible limit cycle.
Typically, this involves a large number of rearrangements of
the T1 type (two next-nearest neighbors becoming nearest
neighbors) which generate elastic-inclusion-like displacement
fields (see Fig. 6) and appear as energy drops in the potential
energy time series. In Fig. 7 we see three different limit
cycles all simulated with the same system size and strain
amplitude but with different initial conditions. We observe that
whereas the period is the same, the details of the cycles (energy
fluctuations) depend on the initial configuration. The repetitive
behavior can also be observed by following the trajectory of
any single particle over consecutive cycles (blue and yellow
lines in Fig. 8). The nonaffine nature of the displacement of
the particle is clear in the figure. One should note that contrary
to the usual notion, the rearrangement events that we observe

FIG. 7. (Color online) Several different limit cycles that were
obtained using the same control parameters (number of particles,
shearing steps, amplitude of shear) but different initial conditions.

FIG. 8. (Color online) Two consecutive trajectories of one parti-
cle taken when the system is in a limit-cycle. The trajectories are very
similar.

in the limit cycles are completely repetitive so that one can
think of them as an extension of the notion of elasticity.

In Fig. 9, energy drops (rearrangement events) are identified
and marked as black lines. The points in the limit cycle where
these drops occur are marked as black dots in the columns
of Fig. 10, where time advances from bottom to top. The x

axis in Fig. 10 is the strain amplitude. This is repeated for
different strain amplitudes with the same initial conditions.
We observe that for small strain amplitudes, limit cycles that
start from the same initial conditions are similar to each other,
and an increase of the strain amplitude changes the limit cycle
in a gradual manner. However, for large strain amplitudes,
small increments in the strain amplitude result in a completely
different limit cycle. We believe that this is a manifestation of
the coexistence of many different limit cycles which occupy
different parts of the state space and of the existence of “riddled
basins of attraction” where infinitesimally close initial points
in state space lead to completely different attractors [21,26].
In Fig. 11 we show the effect of applying Langevin noise to a
system that is already in a limit cycle (these simulations were
performed using overdamped dynamics). After a few cycles,
the system escapes from the initial limit cycle and settles in
a different limit cycle. This is another indication that there
are a large number of nearby limit cycles, and it also shows
that a limit cycle can exist with thermal fluctuations.

FIG. 9. (Color online) Analysis of one limit cycle with a certain
strain amplitude: Energy drops (rearrangement events) are identified
and marked as vertical black lines on this curve.
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FIG. 10. (Color online) A plot of the position of energy drops
(marked as black dots) on the limit cycle as a function of the strain
amplitude (x axis) for one system of size N = 1024. The y axis is
the time inside a limit cycle.

While the limit cycles that are shown in Fig. 7 repeat
themselves after one cycle, for large strain amplitudes we
observed cycles that repeat themselves after two, three, four,
and five cycles (see Fig. 12), which is a phenomenon observed
in many dynamical systems and in some cases can lead to a
transition from periodic to chaotic behavior. This can happen
in systems that show “frequency locking” or “period-doubling
bifurcations.” In a system showing a transition to chaos due
to period doubling, the period of the limit cycle doubles for
certain values of the control parameters. A succession of period
doubling bifurcations (a period doubling cascade) leads to an
infinite period and chaos. It is still too early to judge whether
this behavior is the cause of the transition to chaos in this
system.

The emergence of chaotic behavior can explain an impor-
tant aspect of amorphous solids. In previous studies [27–29]

FIG. 11. (Color online) Effect of thermal noise: The system
relaxes into a limit cycle after initial overdamped dynamics (green
thick line). It is then subject to the same dynamics accompanied by
a small Langevin noise. After some time it “hops” to another limit
cycle.

FIG. 12. (Color online) Periodic limit cycles with period 5 at
strain amplitude γ = 0.09. The dashed green line is the applied strain
(not to scale). Vertical red lines represent the start and the end of a
cycle.

it was shown that the effective or “fictive” temperature that
describes the structure of an amorphous solid depends on
the initial quench of the system. However, when the material
is deformed, the effective temperature of systems that were
quenched using different cooling protocols converges to the
same steady-state value which depends on the work performed
on the system (and on the thermal bath temperature, when it
is larger than zero). This has been described as overaging
or rejuvenation of the amorphous solid [27], depending on
whether the effective temperature increases or decreases. We
can understand this behavior in terms of the onset of chaos.
The existence of a positive maximal Lyapunov exponent is
an indication that the system is not only chaotic, but that the
dynamics is ergodic on a chaotic attractor which occupies
part of the state space (this is different from ergodicity in
Hamiltonian systems in which the entire state space for a given
energy is explored). Since every initial condition ends up on
the attractor, and the dynamics on the attractor is ergodic,
averaged observables will eventually show the same values
independent of the initial configuration.

V. CONCLUSIONS

In summary, we have examined the physics of yield in an
amorphous solid under an oscillatory shear, and we showed
that it is related to a transition to chaos. The behavior is
similar to that observed in dilute colloidal suspensions and
granular matter [10–13], even though our system is highly
condensed. Further work is required to clarify the basis for the
onset of chaos in this system. Our results may be corroborated
by experiments on bulk metallic glasses as well as colloidal
amorphous solids subject to slow oscillatory shear. Mean-field
theories, such as the shear transformation zone theory [4],
show a dynamical transition between jammed and flowing
behavior, however we observe that the nature of fluctuations
in the two regimes is fundamentally different, which cannot be
captured in mean-field theories. The yield transition that we
observe is currently attracting growing interest and is being
studied in experiments on colloidal systems [17,30] and in
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simulations of amorphous solids [31]. Here we propose a
theoretical framework for the origin of this transition.
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APPENDIX A: PAIRWISE POTENTIALS IN TWO AND
THREE DIMENSIONS

For the two-dimensional system, we use the potential

U (r) =

⎧⎪⎨
⎪⎩

ε
[ (

σ
r

)12 − (
σ
r

)6 + 1
4 − h0

]
, r � σx0,

εh0P
( r

σ
−x0

xc

)
, σx0 < r � σ (x0 + xc),

0, r > σ (x0 + xc),

(A1)

which was developed in [32] and consists of the repulsive part
of the standard Lennard-Jones potential, connected via a hump
to a region that is smoothed continuously to zero. The point x0

is the position at which the LJ potential is minimal, x0 ≡ 21/6,
and the position where the potential vanishes is σ (x0 + xc).
The parameter h0 determines the depth of the minimum. The
polynomial P (x) is chosen as

P (x) =
6∑

i=0

Aix
i . (A2)

with the coefficients given in Table I.
To supplement the simulations in two dimensions, we also

run simulations of a binary mixture (1:1.4) of repulsive soft
spheres using the potential U (r) ∝ 1

r12 in three dimensions. We
apply periodic quasistatic shear in the same manner as before.
For small strains we see that the dynamics settles into a limit
cycle (Figs. 13 and 14) similarly to what is observed in two
dimensions.

APPENDIX B: CALCULATION OF THE MAXIMAL
LYAPUNOV EXPONENT

To establish that a system is chaotic, we have to check
whether the system shows sensitivity to initial conditions,
which is the main attribute of a chaotic system. Sensitivity
to initial conditions means that the distance between different
solutions of the equations of motion starting from close-by
initial conditions diverges exponentially (see [21] and Fig. 15).

TABLE I. The coefficients in Eq. (A2).

A0 −1.0
A1 0.0
A2 1.785 826 183 464 224
A3 28.757 894 970 278 530
A4 −81.988 642 011 620 980
A5 76.560 294 378 549 440
A6 −24.115 373 520 671 220

FIG. 13. (Color online) Potential-energy time series for simu-
lations of three-dimensional soft spheres. The maximal strain is
γ = 0.05.

The sensitivity to initial conditions is estimated by measuring
the maximal Lyapunov exponent λmax which describes the rate
of growth of the distance between two phase-space trajectories
(solutions of the equations of motion with different initial
conditions), x(t) and xε(t), which are initially separated by a
diminishing distance |x(0) − xε(0)| = ε [21,22]:

λmax = lim
t→∞ lim

ε→0

1

t
ln

|x(t) − xε(t)|
ε

. (B1)

For a periodic system, λmax = 0, whereas a chaotic system
will have λmax > 0 [21]. There are different methods for
calculating the maximal Lyapunov exponent. In this work,
we used the method suggested by Kantz [22,23], which
extracts the largest Lyapunov exponent from a time series
of one of the observables (in our case the potential energy:
ui = {u0,u1,u2, . . .}). Some of the advantages of this method
are that it has been widely tested, a highly tested code is
available on the Book web site, and the results provide a
relatively clear distinction between chaotic and nonchaotic
time series, as we shall see below. Since we are analyzing a
time series, instead of looking at the distance between two
different solutions of the equations of motion, we look for

FIG. 14. (Color online) Magnification of the last two cycles in
Fig. 13.
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d(0)

d(t)

FIG. 15. (Color online) In a chaotic system, the distance between
phase-space trajectories diverges exponentially fast.

points in the time series which are at some point close to
each other, i.e., |ui − uk| < ε, and we check how the distance
grows over time, d� = |ui+� − uk+�|. However, since ui is
a one-dimensional function of the multidimensional phase
space, a simple measure of the distance between them does
not reflect the actual distance of the phase-space coordinates
that generated them. To overcome this, we use Taken’s delay
embedding theorem [33], which asserts that for an embedding
dimension m > 2DA, where DA is the dimension of the chaotic
attractor (the part in phase space at which the chaotic behavior
occurs), a set of m variables generated by sampling the time
series at regular intervals τ m,

(un−(m−1)τ ,un−(m−2)τ , . . . ,un−τ ,un), (B2)

will have an attractor with the same topological properties
as the underlying attractor. As an example, we show the
reconstruction for the Lorenz system:

dx

dt
= σ (y − x),

dy

dt
= x(ρ − z) − y,

(B3)
dz

dt
= xy − βz.

In Fig. 16, we show the dynamics as a function of all three
coordinates, which shows the famed Lorenz attractor which
is chaotic for the parameters that we chose. To demonstrate
reconstruction, we take the time series of one of the coordinates

FIG. 16. (Color online) The Lorenz attractor.

FIG. 17. (Color online) The x coordinate of the Lorenz system.

(Fig. 17) and construct three new coordinates using time delay:

(xn−2τ ,xn−τ ,xn), (B4)

where we chose m = 3 and an appropriate τ . We now plot the
new coordinates in Fig. 18. One can see the resemblance in
the structure of the reconstructed attractor and the original one
(Fig. 16).

Typically, in a dissipative system, a chaotic attractor will
have a smaller dimensionality than the phase-space dimension
(in our case the phase-space dimension is 4N ). Defining

sn = (un−(m−1)τ ,un−(m−2)τ , . . . ,un−τ ,un) (B5)

as the delay-coordinates vector, for large enough τ and m,
the distance d = |si − sk| will represent the actual phase-
space distance, and if the underlying dynamics is chaotic,
d� = |si+� − sk+�| will grow exponentially fast. The value
of τ is usually taken to be the de-correlation time of the
time series (τ ≈ 600 in this case), but m is unknown since
we do not know a priori the dimension of the attractor. To

FIG. 18. (Color online) Attractor reconstructed from the x coor-
dinate, which shares the same topological structure as the original
attractor.
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find a numerical estimate of the largest Lyapunov exponent,
the algorithm calculates the finite-time maximal Lyapunov
exponent for a trajectory starting at a point i:

λi
� = 1

�
ln

||si+� − sk+�||
ε

, (B6)

where ||si − sk|| < ε with respect to some norm || · · · || (the
actual norm used in the algorithm is ||si − sk|| = |ui − uk|
for reasons explained in [22]). For each point si and a small
distance ε, a set of points sk such that ||si − sk|| < ε is
gathered, which allows us to calculate the average distance
from the point si as a function of �:

λi
� = 1

�
ln

1

Ui

∑
k

||si+� − sk+�||
ε

, (B7)

where Ui is the total number of points sk that are ε close
to si . The process is repeated for different initial points si ,
which leads to further averaging. The actual function that we
calculate is

S� = 1

W
∑

i

ln

(
1

Ui

∑
k

||si+� − sk+�||
ε

)
, (B8)

whereW is the number of starting points i collected. Since this
function describes the ln of the averaged growth of distances as
a function of time, we expect that in a chaotic system (λmax >

0) S� will exhibit linear behavior with a positive slope for large
enough �. However, there are two caveats for this: the maximal
Lyapunov exponent becomes dominant only after several time
steps �0:

||si+� − sk+�|| =
∑

i

aie
λi� ≈

�>�0
amaxe

λmax �. (B9)

The second caveat is that for large �, the distance ||si+� − sk+�||
can reach the size of the attractor and thus the trajectories
start to fold back. When that happens, S� saturates. In Fig. 5
we plotted the function S� for a potential energy time series

FIG. 19. (Color online) The function S� applied for a periodic
limit cycle. The behavior is strikingly different from that shown in
Fig. 5 and includes negative values.

of a system of size N = 4096 sheared at maximal strain
amplitudes γ = 0.12, 0.15, and 0.2, which are all above the
critical amplitude. Since the dimension of the attractor is
not known a priori, we tried all the values of m starting
from m = 1 until the shape of S� does not change under
further increase (remember that according to Taken’s theorem
the delay coordinates should give the right result for any
m > 2DA, where DA is the dimension of the attractor). For
m values 5, 6, and 6, respectively, the function S� shows a
linear regime with a positive slope, which indicates a positive
maximal Lyapunov exponent.

In the main text, we mentioned that the algorithm for
calculating the maximal Lyapunov exponent can distinguish
between periodic and chaotic behavior. In Fig. 19, we show
the result of applying the algorithm for one of the periodic
limit cycles with different values of m. One can see that the
behavior is significantly different from that observed for the
chaotic time series: there is no linear regime and the values of
S� are negative for large enough values of m.
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