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Three-dimensional dynamics of a particle with a finite energy of magnetic anisotropy
in a rotating magnetic field
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A model of a single ferromagnetic particle with a finite coupling energy of the magnetic moment with the body
of the particle is formulated, and regimes of its motion in a rotating magnetic field are investigated. Regimes
are possible that are synchronous and asynchronous with the field. In a synchronous regime the easy axis of the
particle is in the plane of the rotating magnetic field at low frequencies (a planar regime) and on the cone at
high frequencies (a precession regime). The stability of these regimes is investigated, and it is shown that the
precession regime is stable for field strengths below the critical value. In a particular range of field strength value,
irreversible jumps of the magnetic moment take place in the asynchronous planar regime. The stability of this
regime is investigated, and it is shown that it is stable for field strengths above the critical value, which depends
on the frequency. The implications of these results for the energy dissipation in a rotating field are analyzed, and
it is shown that the maximum of the heat production near the transition to the synchronous regime is flattened
out by the transition to the precession regime.
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I. INTRODUCTION

The dynamics of magnetic particles in AC magnetic
fields plays an important role in different phenomena and
applications. The technique of magnetic hyperthermia uses
energy dissipated by the motion of magnetic particles in an
AC field for cancer therapy [1–3]. The heat production due
the hysteresis loop of the magnetic moment of the particle
is considered in [4], and the role of thermal fluctuations of
the magnetic moment in generating heat under the action
of a rotating magnetic field is considered in [5]. Interesting
structures are formed by superparamagnetic platelets in pre-
cessing magnetic fields [6]. It was predicted that magnetotactic
bacteria in a rotating magnetic field should follow complex
trajectories [7], which were also found in experiments [8]. In
[8], when describing the experimentally observed behavior of
magnetotactic bacteria, it was suggested, based on earlier work
by Pincus and Caroli [9], that three-dimensional trajectories
of a bacterium are possible in a rotating magnetic field due
to the finite coupling energy of the magnetic moment of the
bacterium to its cytoskeleton. In [9] it was shown that the
ferromagnetic particle with an easy axis of magnetization in
a well defined range of frequencies of a rotating field has a
precession regime, in which its easy axis rotates on the cone
with its angle depending on the ratio of the effective anisotropy
field and the field strength. For some ranges of parameters
the coexistence of the precession and planar solutions was
predicted in [9]. Nevertheless, the phase diagram of the
regimes of motion of a particle with a finite coupling energy of
the magnetic moment to the particle remains unexplored. This
problem is quite complicated due to the so-called rotational
hysteresis phenomenon [10], taking place in a definite range
of external field strength and not considered in [9].

Here the transition between the planar and precession
regimes is considered by linear stability analysis, taking into
account irreversible jumps of the magnetic moment due to
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rotational hysteresis, and the phase diagram for the regimes of
particle motion is constructed, which was not known before.
Its implication for the phenomenon of magnetic hyperthermia
and experiments with suspensions of ferromagnetic particles
in rotating magnetic fields are considered.

II. MODEL

The energy of a single domain ferromagnetic particle with
an easy axis of magnetization is given by

E = −mH �e · �h − 1
2KV (�e · �n)2, (1)

where �e,�n are unit vectors along the magnetic moment and the
easy axis respectively, �h is the unit vector along the field, K is
the constant of magnetic anisotropy, and V is the volume of the
particle. Since the internal magnetic relaxation time is much
smaller than the characteristic time of the particle motion, the
magnetic moment is in an equilibrium state determined by
( �Ke = �e × ∂/∂�e) �KeE = 0. It gives

�e × �h = Ha

H
(�e · �n)�n × �e, (2)

where Ha = KV/m. The dynamics of the easy axis is
determined by the balance of viscous and mechanical torques
and reads ( �Kn = �n × ∂/∂ �n)

− ζ �� − �KnE = 0,
d �n
dt

= �� × �n, (3)

where ζ is the rotational drag coefficient of the particle.
Equation (3) for the angular velocity of the particle �� is the
particular case of the more general “egg-yolk” model proposed
in [11,12] and applied to the analysis of the nuclear magnetic
relaxation dispersion in the presence of magnetic nanoparticles
in [13], where it reads

ζ �� = − �KeE − �KnE. (4)

Equation (3) describes the case when internal magnetic
relaxation is neglected in Eq. (4).
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From (2) it follows that �e is in the plane defined by the
vectors �h and �n:

�e =
�h + Ha

H
(�e · �n)�n

�e · �h + Ha

H
(�e · �n)2

, (5)

where (�e · �h)2 = 1 − (Ha/H )2[1 − (�e · �n)2](�e · �n)2. For the
given orientation angle ϕ of the external field with respect to
the anisotropy axis, one or two stable states for the magnetic
moment are possible depending on the value of Ha/H .
Bifurcation occurs at dE/dϑ = 0 and d2E/dϑ2 = 0, where ϑ

is the angle of the magnetic moment with the easy axis, which
gives [14]

cos2/3 ϕ + sin2/3 ϕ =
(

Ha

H

)2/3

. (6)

From Eq. (6) it follows that transitions between situations with
one or two stable states of the magnetic moment in a rotating
magnetic field are possible if 1 < Ha/H < 2. In this range of
the magnetic field strength irreversible jumps of the magnetic
moment can take place and should be taken into the account
when the motion of the particle is considered. The orientation
of the magnetic moment of the particle is found from the
polynomial equation (u = �e · �n)

(�n · �h)2 + 2�n · �hHa

H
u(1 − u2) +

[(
Ha

H

)2

− 1

]
u2

−
(

Ha

H

)2

u4 = 0, (7)

which has two or four real solutions.
Introducing dimensionless time t̃ according to t̃ = ωH t ,

where ωH is a frequency of rotating field, the equation
of the particle motion reads (ωc = mH/ζ ), tilde is omitted
henceforth

d �n
dt

= ωc

ωH

C(�n · �h,Ha/H,ξ )[�h − �n(�n · �h)], (8)

where the function

C(�n · �h,Ha/H,ξ ) = Ha/H (�e · �n)2
ξ

�n · �h + Ha/H (�e · �n)ξ
(9)

in general depends on the history due to the rotational
hysteresis. The variable ξ , which has the values 1 or 2
depending on sign of �e · �n, takes into the account the rotational
hysteresis. The history-dependent �e · �n for the particular value
of Ha/H = 1.9 as a function of �n · �h as given by Eqs. (6)
and (7) is shown in Fig. 1. Irreversible jumps of the magnetic
moment occur for this particular value of field strength at
(�n · �h)1 = −0.48992 and (�n · �h)2 = 0.48992.

III. STATIONARY REGIMES

Looking for the stationary regime in a rotating field
�h = (cos t, sin t,0), when the particle rotates with the angular
velocity of the field �ω = (0,0,1), d �n/dt = �ω × �n from Eq.(8),
we have

(�e · �n)2(�ez · �n)(�n · �h)

�n · �h + Ha/H (�e · �n)
= 0. (10)
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FIG. 1. History-dependent cos ϑ = �e · �n for the particular value
of Ha/H = 1.9 as a function of cos ϕ = �n · �h.

This equation is satisfied for �ez · �n = 0, which corresponds
to the planar regime, or �n · �h = 0, which corresponds to
the precession regime. In the last case from Eq. (7) it
follows that (�e · �n)2 = 1 − (H/Ha)2, which implies that the
precession regime is possible at H < Ha . The condition of the
precessional motion

�ω × �n = ωc

ωH

(�e · �n)�h (11)

then gives

1 − cos2 γ =
(

ωc

ωH

)2[
1 −

(
H

Ha

)2]
, (12)

where γ is the angle of a cone with axis along the z axis,
on which moves the vector �n in the precession regime. That
gives the second condition for the existence of the precession
regime,

0 <

(
ωc

ωH

)2[
1 −

(
H

Ha

)2]
< 1. (13)

These two conditions were found in [9]. A sketch of the particle
easy axis and magnetic field orientations in the precession
regime is shown in Fig. 2. The boundary of the region defined
by (13) introducing field-independent critical frequency ωa =
mHa/2ζ is shown in Fig. 3 by a solid line.

In principle, a stationary state exists in the case Ha/H < 1,
where the easy axis is along �ω and magnetic moment is along

FIG. 2. Orientations of easy axis and magnetic field in the
precession regime.
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ω ω

FIG. 3. Phase diagram. The solid line indicates the boundary of
the region where the precession regime exists; the dashed line is the
boundary of the existence region of the stationary planar regime;
the dotted line is the neutral curve of stability of the precession
regime; the dash-dotted line is the neutral curve of stability of the
nonstationary planar regime. The precession regime is stable in the
region IV

⋃
V

⋃
VI and unstable in the region I

⋃
II. The stationary

planar regime is stable in the region II
⋃

III and unstable in the region
V. The nonstationary planar regime is stable in the region I

⋃
VI and

unstable in the region IV.

the instantaneous direction of the field. Equation (8) and (9)
and relation (�e · �n)(�e · �h) = �n · �h + Ha/H (�e · �n)[1 − (�e · �n)2]
give the equation for a small perturbation of this state �n′,

d �n′

dt
= ωc

ωH

Ha

H − Ha

(�n′ · �h)�h. (14)

Equation (14) shows that the state with the easy axis parallel
to the angular velocity vector of the field at Ha/H < 1 is
unstable.

In the limit H → 0 the model approaches the model of a
rigid dipole. In this case, for ωH > ωc three-dimensional pe-
riodic trajectories are possible, which correspond to the center
in the plane of dynamical variables of the system [15,16]. This
case is structurally unstable and a small perturbation of the sys-
tem destroys it. The role of the perturbation in the present case
is played by small deviations of the magnetic moment from the
easy axis, and as a result the precession regime is established
in the region Ha/H > 2 and ωH /ωc > 1. The memory of the
existence of three-dimensional trajectories is reflected by the
stage of the transition to the stationary precession regime. It
should be remarked that a similar phenomenon takes place if
we introduce a field component along the angular velocity of
field rotation as a small perturbation, which corresponds to the
precessing magnetic field [17].

Next we explore stability of the precession regime, which
to our knowledge has never been done. It is convenient to
introduce angles α and δ, which characterize the orientation
of the easy axis �n = (cos α cos δ, cos α sin δ, sin α). Equation
(8) gives

β̇ = 1 − ωc

ωH

C(�n · �h) sin β

cos α
, (15)

cos αα̇ = − ωc

ωH

C(�n · �h) sin α�n · �h, (16)

where β = t − δ is the phase lag with the external field. In
the precession regime �n · �h = 0, which gives β0 = π/2, and
C = C0 = ±

√
1 − (H/Ha)2, cos α0 = C0ωc/ωH . For small

perturbations (β ′,α′) of the state (β0,α0) we have (�n · �h)′ =
− cos α0β

′, which gives

α̇′ = ωc

ωH

C0 sin α0β
′. (17)

The derivation of the equation for β ′ is a bit more complicated.
From Eq. (14) we have

β̇ ′ = − ωc

ωH

C ′

cos α0
− ωc

ωH

C0α
′

cos2 α0
. (18)

Using relation (9) we obtain

C ′ = (�e · �n)′ − H

Ha

(�n · �h)′. (19)

Differentiation of Eq. (7) gives

(�e · �n)′ = − (�n · �h)′

Ha/H (1 − (Ha/H )2)
(20)

and

C ′ = 2 − (Ha/H )2

Ha/H (1 − (Ha/H )2)
cos α0β

′. (21)

As a result we obtain a set of linear differential
equations

β̇ ′ = −aβ ′ − 1

cos α0
α′, (22)

α̇′ = cos α0 sin α0β
′, (23)

where

a = ωc

ωH

2 − (Ha/H )2

Ha/H (1 − (Ha/H )2)
.

For the growth increments of small perturbations λ this result
gives

2λ = −a ±
√

a2 − 4 sin2 α0.

Since 4 sin2 α0 > 0 instability takes place at a < 0, which
corresponds to the range of magnetic field 1 < Ha/H <

√
2,

since Ha/H > 1 from the condition of the existence of the
precession regime. The neutral curve of the precession regime
H/Ha = 1/

√
2 is shown in Fig. 3 by a dotted line. It limits

the region of parameters in which the precession regime is
stable.

As a next step we consider the condition for the ex-
istence of the stationary planar solution. From Eqs. (2)
and (3) follows that in the case of a stationary planar
solution

�ez = ωc

ωH

Ha

H
(�e · �n)�n × �e. (24)

Since �e · �n = cos ϑ and �n × �e = sin ϑ �ez, a stationary planar
solution exists if

ωc

ωH

Ha

H
> 2. (25)
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FIG. 4. nx as a function of time in the nonstationary planar regime
at H

Ha
= 0.67 and ωH

ωa
= 1.33.

On the other hand Eqs. (2) and(24) give �ez = ωc/ωH �e × �h.
Since for the planar solution �e × �h = sin ϕ�ez we obtain the
second condition ωc/ωH > 1. The boundary of the region of
the existence of stationary planar solutions given by ωH/ωa =
1 and ωH /ωa = H/2Ha is shown in Fig. 3 by the dashed line.
It is tangent to the boundary of the region of existence of
the precession regime given by (13) at the point ωH /ωa = 1,
H/Ha = 1/

√
2. In the region between the solid and dashed

lines in Fig. 3 both planar and precession regimes exist, and
the precession regime is stable at H/Ha < 1/

√
2.

At ωH /ωa > 1 the nonstationary planar solution with
irreversible jumps of the magnetic moment exists when 0.5 <

H/Ha < 1, as illustrated by Figs. 4 and 5, where numerically
calculated nx(t) and �e · �n(t) are shown for H

Ha
= 0.67 and

ωH

ωa
= 1.33. Since in this region of the parameter space

also the precession regime exists, we further investigate the
stability of the nonstationary planar solution. Considering
small perturbations of the angle α of the planar regime with
α0 = 0, Eq.(15) gives

α̇′ = − ωc

ωH

C(�n0 · �h,ξ )�n0 · �hα′, (26)
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FIG. 5. cos ϑ = �e · �n as a function of time in the nonstationary
planar regime at H

Ha
= 0.67 and ωH

ωa
= 1.33.

FIG. 6. Trajectory of �n at ωH

ωa
= 1.16 and H

Ha
= 0.529 with start-

ing conditions �n · �h = 0.92 and �n × �h ⊥ �ez. The solution approaches
the nonstationary planar regime.

where �n0 · �h = cos β0 and β0 satisfies the equation

β̇0 = 1 − ωc

ωH

C(cos β0,ξ ) sin β0. (27)

As a result the Floquet multiplier λF of the Eq. (26) with the
periodic-in-time coefficient reads

λF = exp

(
−

∫ T

0

ωc

ωH

C(cos β0,ξ ) sin β0dt

)
, (28)

where α′(T ) = λF α′(0), and T is the period. Taking into
account the irreversible jumps of the magnetic moment and
Eq. (27), we see that the stability of the nonstationary planar
solution is determined by the sign of the integral

I0

(
ωc

ωH

,
Ha

H

)
=

∫ π/2+ϕ1

0
f1

(
ωc

ωH

,
Ha

H
,t

)
dβ

+
∫ π

π/2+ϕ1

f2

(
ωc

ωH

,
Ha

H
,t

)
dβ, (29)

where

f1,2 = ωc

ωH

C( cos β,(1,2)) cos β

1 − ωc

ωH
C( cos β,(1,2)) sin β

,

and ϕ1 < π/4 is the root of Eq. (6). Curve I0( ωc

ωH
,Ha

H
) = 0

is shown in coordinates ωH/ωa,H/Ha by the dash-dotted
line in Fig. 3. Below this line the nonstationary planar
solution is unstable and the precession regime is established.
The direct numerical solution of Eq. (8) confirms this as
illustrated in Figs. 6 and 7 by the three-dimensional phase
portraits of the unit vector �n on the sphere for values of
Ha/H slightly above and below the critical value given
by I0( ωc

ωH
,Ha

H
) = 0. Numerical calculations were carried out

using MATLAB solver ode15s with relative tolerance equal to
10−10. The history-dependent magnetic state of the particle
was taken into account by the value of variable ξ as
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FIG. 7. Trajectory of �n at ωH

ωa
= 1.16 and H

Ha
= 0.526 with start-

ing conditions �n · �h = 0.92 and �n × �h ⊥ �ez. The solution approaches
the precession regime.

described above. Stable precession and planar regimes coexist
in the region between the dash-dotted and dotted lines in
Fig. 3.

IV. ENERGY DISSIPATION AND TORQUE CURVES

The model allows us to consider in detail the heat produc-
tion and torque on the suspension of ferromagnetic particles
in a rotating field due to the viscous friction and irreversible
jumps of the magnetic moment of the particle. Equations (1)
and (3) give

dE

dt
= −mH

d�e
dt

(
�h + Ha

H
�n�e · �n

)
− mH �e · d �h

dt
− ζ ��2. (30)

The first term in Eq. (30) is zero for quasistatic changes of the
magnetic moment of the particle, and gives a finite contribution
for its irreversible jumps. As a result for the mean energy
dissipated per period T we have〈

−mH �e · d �h
dt

〉
= ζ 〈 ��2〉 + (E1 − E2)n

T
, (31)

where n = 2 is the number of irreversible jumps per period
and E1,E2(E1 > E2) are the energies of the particle before
and after the jump, respectively. The relation (31) in the case
of the precession regime when jumps of the magnetic moment
do not take place gives

ζ 〈 ��2〉 = ζω2
c (1 − 1/(Ha/H )2). (32)

Introducing as the characteristic scale of energy dissipation
ζω2

c , relation (32) for the dimensionless heat production in the
precession regime gives 1 − 1/(Ha/H )2. It does not depend
on the frequency and is valid in the frequency region where
the stable precession regime exists.

In the region below the neutral curve of the nonstationary
planar regime shown in Fig. 3 by the dash-dotted line and

 0
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 0  0.5  1  1.5  2

Q

ωH/ωc

FIG. 8. Average energy supplied by field as function of rotation
frequency at H

Ha
= 0.83.

H/Ha < 1/
√

2, both nonstationary and precession regimes
coexist. Energy dissipated in the nonstationary regime is
calculated numerically according to the relation〈

−mH �e · d �h
dt

〉
= ζω2

H �ez · 〈�n × �̇n〉. (33)

It is checked numerically that the energy balance is fulfilled,
which, written in dimensionless form, reads (Ẽ = E/mH )

Q = ω2
H

ω2
c

�ez · 〈�n × �̇n〉 = 〈 ��2〉
ω2

c

+ n
ωH

ωc

(Ẽ1 − Ẽ2)

T̃
. (34)

Thus, in the nonstationary planar regime the energy supplied
by the field is dissipated by the viscous friction and hysteresis
losses of the particle when irreversible jumps of the magnetic
moment take place. The numerically calculated dissipated
energies for two values of H/Ha are shown in Fig. 8
(H/Ha = 0.83) and Fig. 9 (H/Ha = 0.53). In the first case,
when H/Ha > 1/

√
2, the precession regime is not stable and

the heat is produced in the nonstationary planar regime. The
maximum is observed at the frequency at which the transition
to the stationary regime takes place. At high frequencies the

 0
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 0.6
 0.7
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 0  0.5  1  1.5  2

Q
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FIG. 9. Average energy supplied by field as function of rotation
frequency at H

Ha
= 0.526. Solid lines correspond to planar regimes.

The dashed line corresponds to the precession regime.
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FIG. 10. Torque in dependence on the field strength. ωH /ωa = 2.
The left curve shows the torque for the precession regime, the right
curve shows the torque for the planar asynchronous regime. Torques
in the precession and planar regimes where both regimes coexist are
shown by dashed lines.

energy dissipated in the particle prevails. In the second case
(H/Ha = 0.53) the planar and precession regimes coexist at
ωH > ω∗

H , where ω∗
H is given by the neutral curve of the

nonstationary planar regime in Fig. 3. In Fig. 9 the heat
produced in the precession regime is shown by the dashed
line and in the planar regime by the solid line. Since only
the precession regime is stable above the neutral curve of the
planar regime, the maximum shown in Fig. 8 is flattened out.
At low frequencies the energy is dissipated in the stationary
planar regime.

In experiments the rotational hysteresis usually is studied by
measurements of the torque on a suspension as a function of
the rotating field strength [18] (for a review see [16]). The
dimensionless torque τ = N/ζωH is related to the energy
dissipation according to the relation τ = ω2

cQ/ω2
H . Torques

acting on a suspension in precession and asynchronous planar
regimes at ωH/ωa = 2 are shown in Fig. 10. Since at this
particular frequency there is a range of field strength values
where both regimes coexist, the torque curves in the region
of coexistence are continued by dashed lines. An important

feature of the torque curve is the existence of a maximum at
a field strength H/Ha 
 0.5. This is in the agreement with
experimental data for the suspension of elongated particles
of γ -Fe2O3 reported in [19]. Taking into account that the
magnetic anisotropy of elongated particles is due to their shape,
the constant of magnetic anisotropy may be estimated by
K = 2πM2, which for the anisotropy field gives Ha = 2πM .
Taking the saturation magnetization of γ -Fe2O3 as 500 G for
Ha/2 we have 1.5 kOe, which is close to the field strength at
which the maximum of the torque curve is observed. Since
the maximum of the torque of liquid suspension is found at
approximately the same value of the magnetic field strength
as for the solidified suspension [19] then we have evidence
that the maximum is due to the rotational hysteresis. It is
interesting to remark that the part of the torque curve at
small field strength values given in [19] can be very well
matched by the expression for the torque corresponding to
the precession regime τ = 4ω2

a(H/Ha)2[1 − (H/Ha)2]/ω2
H ,

which has a maximum at H/Ha 
 0.7.

V. CONCLUSIONS

It is shown that synchronous and asynchronous regimes are
possible for a particle with a finite energy of the magnetic
anisotropy in a rotating magnetic field. In the synchronous
regime the easy axis of the particle is in the plane of a rotating
field at low frequencies (a planar regime) and on the cone (a
precession regime) at high frequencies. The stability of both
regimes is investigated and it is shown that the precession
regime is stable for the magnetic field strength below the
critical value. Taking into account irreversible jumps of the
magnetic moment it is shown that the planar asynchronous
regime is unstable for the field strength below the critical
value, which depends on the frequency. Analysis of the heat
production by the particle in a rotating field shows that the
maximum of the energy dissipation near the transition to the
synchronous regime is flattened out due to the transition to the
precession regime.
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