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Faraday waves on nematic liquid crystals: Effect of Marangoni flow and thermal phase transition
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The parametric instability in nematic liquid crystal layers has been studied using linear stability theory. Using
material parameters of typical nematics, the neutral stability curve and dispersion relation of a system that presents
critical subharmonic waves is obtained. The critical acceleration and wave number of the unstable stationary
waves are discontinuous at the nematic-isotropic transition temperature and conform to similar sharp changes
experienced by the viscosities and surface tension as a function of temperature. Due to Marangoni flow the curve
of the critical acceleration as a function of excitation frequency exhibits a minimum. If the Marangoni flow is
neglected and the dynamical viscosity is increased, a monotonously increasing dependence of the acceleration
in terms of oscillation frequency is observed. A bicritical instability is reached for a layer thickness of a few
millimeters. A well-defined subharmonic wave is attained when the thickness of the layer is further increased. The
dispersion relation of these waves displays a discontinuous shift at high frequencies due to alternating secondary
thresholds of Faraday waves. At negligible external forcing we determined the dispersion relationship of thermal
surface waves.
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I. INTRODUCTION

The Faraday instability due to the vertical motion of a
vessel containing a liquid is used in experimental systems for
studying nonequilibrium dynamics in complex fluids [1–8].
At the onset of the instability, the formation of patterns
on the liquid surface can be made functional with potential
technological application in electro-optical devices once the
underlying dynamical mechanism of these structural forma-
tions is clearly understood and controlled. To date, most studies
have been performed on Newtonian liquids [9–12], ferroflu-
ids [13–15], polymeric [16–19], and wormlike micellar [20,21]
solutions. Typically the polymeric and micellar solutions are
formed by several chemical species. Consequently, current
research efforts have allowed us to understand how their
multicomponent nature affects their viscoelastic behavior
and development of hysteretic high amplitude waves as was
demonstrated in wormlike micelles [21]. In contrast, much less
is known about this parametric instability in complex fluids
that are anisotropic, such as liquid crystals. In a recent paper,
Ballesta et al. [22] presented birefringence measurements
in suspensions of rodlike fd viruses. In this paper [22], the
authors experimentally studied the parametric instability on
lyotropic liquid crystals and demonstrated a phase change from
isotropic to local nematic ordering of the nematogens at the
surface wave’s crest as was detected with cross-polarizers.
This phase change induced by a hydrodynamic instability
originates due to variations of the viscosity of the liquid in
a sublayer near the surface where viscosity changes were
produced by the associated shear flow of the Faraday wave.
In this study, we investigate the effect of the hydrodynamic
coupling between the fluid velocity and collective orientational
director, as well as the temperature-induced phase change and
the effect of Marangoni flow, on the Faraday wave in liquid
crystals. The observed onset of Faraday waves has being suc-
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cessfully described by linear stability theory [9]. This approach
reproduces the experimental dispersion relation of Newtonian
liquids [11], and its validity has also been confirmed through
experiments [3,18] and computer simulations on viscous
fluids [23]. In the present paper we used this linear stability
approach to study the parametric instability onset in nematic
liquids for pure nematogens (thermotropic liquid crystals). We
analyzed two model systems that were subjected to a vertical
temperature gradient under the action of an externally applied
static magnetic field that was parallel to the equilibrium planar
interface. The field fixes the orientation of the nematic director
either parallel or perpendicular to the velocity wave vector.
In the first case, hydrodynamic coupling occurs between the
director and the velocity field. In the second case, there can be
no such coupling. We determined the dynamical properties
such as the stability curves and dispersion relationships
of the Faraday waves of the systems. We present results
for realizable nematic liquid with a depth of millimeters
and within the typical frequency of oscillations of present
experimental techniques. Furthermore, linear stability analysis
for the critical acceleration and wave number at instability
onset indicates that both parameters exhibit discontinuous
behavior at the nematic-isotropic transition temperature in
accordance with similar sharp jumps displayed by viscosities
and surface tension due to Marangoni flow as a function
of this thermodynamic variable. In Sec. II the boundary
conditions of a nematic liquid under a magnetic field that
is collinear with the wave vector and their use in deriving
the surface mode is presented. We present here our main
result for the prediction of the critical acceleration and wave
number as a function of temperature of the nematic liquid
that undergo a nematic-isotropic transition and of the effect
of Marangoni flow. The dispersion relation driven by thermal
fluctuations, and a numerical analysis of the surface mode
of a model nematic liquid layer with high viscosities are
presented. In Sec. III we consider a model system in which the
external magnetic field is perpendicular to the wave vector,
and, therefore, the nematic director is decoupled from the
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flux. Consequently, a recursive relation results yielding the
parametric surface modes corresponding to an isotropic fluid;
these results were used in Sec. II to determine the isotropic side
of the critical dispersion relation as a function of temperature.
Section IV presents a summary of our main results.

II. HORIZONTAL MAGNETIC FIELD PARALLEL TO THE
WAVE VECTOR ORIENTED ALONG THE X AXIS

We consider a nematic liquid layer of average depth L

and infinite lateral extension subjected to vertical acceleration
g(t) =g−a cos (ωt), where g is the gravitational acceleration
in a reference frame moving with the container, a is the
external driving acceleration, and the frequency of oscillation
is denoted by ω. A static external magnetic field H = Bμ0

−1

orients the director n of the nematogens in the x axis direction
and parallel to the liquid-air interface. μ0 = 4π × 10−7 N/A2

is the permeability of free space, and B is the magnetic
induction. We assume the equilibrium interface is located
at z = 0 and that the bulk of the system occupies the
space −L � z � 0. The system is symmetric in the spatial
coordinates x and y. Thus, we may assume the generated
surface wave propagates in the x direction with wave vector
k. Langevin [24] calculated that for a quiescent fluid thermal
fluctuations produce bulk undulations of the nematic layers
due to elastic variations of the director n. The frequencies
of the elastic distortion of the director field are on the
order of ωundulation = (Kk2 + χaH · H)/η = 9.9 Hz (where
K = 10−11 N is the splay module, k = 3 × 104 m−1 is the
wave number of the thermal wave, the anisotropic magnetic
susceptibility in SI units is χa = 4π × 10−7, which is defined
as the difference between the parallel and perpendicular
components of the magnetic susceptibility tensor with respect
to the director [25,26], the magnetic induction of strength
|B| = 0.3 T, and the mean viscosity η = 0.01 Pa s), which
are much less than both the frequencies of external exci-
tation w and the frequency associated with inertial effects
ωinertia/ωundulation = 106 (where ωinertia = η/ρL2, for MBBA
density ρ = 1000 kg/m3 and layer thickness L = 4.5 mm).
Therefore we neglect its variation dynamics in the governing
hydrodynamic equations of the surface wave [24,27]. We will
not consider the damping effect due to viscous boundary layers
produced by the walls of the vessel and beneath the surface.
Thus, the equation of motion for the velocity field, referenced
to the moving frame, describes a liquid with surface tension
γ (the surface tension is taken to be a scalar quantity because
experiments indicate that this parameter is isotropic in nematic
liquids [28], as demonstrated in Fig. 2 below), shear viscosities
η2, η3 and η′ [25,29], and viscous stress tensor [24,27]

σ ′
ij = η′ninj Vlonlno + 2η2Vij

+ 2(η3 − η2)(ninlVlj + nj nlVli). (1)

The viscosities are defined in terms of the Leslie viscos-
ity coefficients αi , i = 1, . . . ,5 through η3 = (α4 + α5)/2 −
α2γ2/(2γ1), η2 = α4/2, η′ = α1 + γ 2

2 /γ1, where γ1 = α3 −
α2, and γ2 = α3 + α2 [24]. In Eq. (1) the unit vector director
of the nematic molecules is represented by n = (1,0,0).
Vij = (∂ivj + ∂jvi)/2 is the second rank velocity tensor
with components i,j,l,o = x,y,z. The velocity satisfies the

linearized Navier-Stokes equation [24]:

ρ
∂v
∂t

= ∇ · σ , (2)

where σ = −pI + σ ′ + σ r − ρg(t)êzêz, with êz being a unit
vector along the z axis and (I)β,δ = 1 if β = δ and 0 otherwise.
p is the hydrostatic fluid pressure, and ρ is the density. The
elastic deformation of the interface is governed by the surface
tension through the stress tensor σ r , which components in the
boundary conditions are provided below.

Because the liquid is maintained under a constant vertical
temperature gradient that produces a Marangoni instabil-
ity [30], the temperature variations in the liquid are described
by the linearized heat diffusion equation:

∂tT = Avz + α
(
∂2
z T + ∂2

xT
)
, (3)

where T is the local temperature whose vertical gradient per
unit length A is fixed in the experimental setup and taken to
be A = −3 ◦C/mm [28]. This value is taken to be negative for
heating from the air side [30]. α is the thermal diffusivity. For
frequencies much less than the first sound frequency of the
liquid, the incompressibility condition holds:

∇ · v = 0. (4)

At the interface z = 0, the boundary conditions are given by the
normal and shear stresses which satisfy the balance equations:

σzz = 0, σxz = 0, σyz = 0. (5)

However, the normal restoring force is given by the Laplace
expression due to the mean surface tension at the equilibrium
temperature [30] and has the following form:

σ r
zz = fz = γ

(
∂2
x + ∂2

y

)
ζ (x). (6)

ζ is the normal displacement of the interface from its
equilibrium position, and the tangential forces are the
following [30]:

σ r
xz = fx = dγ

dT
[∂xT − A∂xζ (x)], σ r

yz = 0. (7)

σ r
xz takes into account Marangoni flow due only to the variation

of the surface tension with temperature. Notice that we have
neglected the contributions arising from tangential shear and
dilational surface viscosities [31], which are important for
surface-active interfaces [32] or for surfaces with adsorbed
molecules as occurs in foams or emulsions [33], because
these surface dilational properties have not been measured
for MMBA nematics. Because the displacement ζ is small
compared with the wavelength, the kinematic condition can
be written as follows:

∂t ζ = vz, at z = 0, κ∂zT = 0, (8)

where the last equality considers a thermally insulated surface
with fixed flux [30,31], and κ is the thermal conductivity. At
the bottom of the container (z = −L), the no-slip

v = 0 (9)

and no-penetration

∂zvz = 0 (10)
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boundary condition applies, together with T = 0 ◦C at the
bottom solid wall [31].

The first two conditions of Eq. (5) can be written in terms of
a single expression containing the normal velocity component

η3
[∇2

⊥ − ∂2
z

]
vz = dγ

dT
∂2
x [T − Aζ (x)] (11)

using Eq. (7).
We demonstrated in Ref. [34] that by taking the divergence

∇⊥ := (∂x,∂y) of (2), an equation for the pressure is attained
which when combined with the expression that results from
applying the Fourier transform ũ = ∫

d2reik·ru, with i =√−1, to the double curl of the z component of Eq. (2) it
yields the following boundary conditions at z = 0:[

∂t + (ν3 + 2ν2)k2 − ν2∂
2
z

]
∂zṽz

= −(ν3 − ν2)
[ − 2ik3 + ik∂2

z

]̃
vx + ν ′ik3ṽx

− g(t)k2ζ̃ − γ

ρ
k4ζ̃ , (12)

and from Eq. (11),

ν3
[
k2 + ∂2

z

]̃
vz = k2

ρ

dγ

dT
[T̃ − Aζ̃ (x)]; (13)

and from the second identity of Eqs. (7) and (8)–(9) we obtain[
∂t − ν2

(
∂2
z − k2

)](
∂2
z − k2

)̃
vz

= (ν3 − ν2)
( − ∂2

z + k2)[ik∂zṽx + k2ṽz] + ν ′ik3∂zṽx,

(14)

where νj = ηj/ρ, j = 2,3, ν ′ = η′/ρ.
Additionally for all z the heat diffusion equation is valid:

∂t T̃ = Aṽz + α
(
∂2
z T̃ − k2T̃

)
, (15)

which was not considered in our previous work [34] and led
to a different dispersion relation below. Because g(t) is a
periodic function with period 2π/w, the Floquet theory renders
solutions to Eqs. (4) and (12)–(15) as superpositions of the
time-periodic functions [9,11]:

ζ̃ (t) =
∞∑

n=−∞
ζ̃ne

μnt , (16)

with μn(w) = s + i(n + αr )w. s and αr are real valued [9].
The harmonic surface wave (Har) is characterized by αr =
0,and the subharmonic wave’s (Sub) response is characterized

by αr = 1/2. Due to the reality condition on the above
mentioned displacement field, ζ̃n = ζ̃ ∗

n , with αr = 0 and ζ̃n =
ζ̃ ∗
n−1 for αr = 1/2. A similar expansion holds for the velocity

ṽz := w̃(z,t):

w̃(z,t) =
∞∑

n=−∞
w̃n(z)eμnt , (17)

which, when substituted in Eqs. (4) and (14), yields[
∂4
z + bn∂

2
z + cn

]
w̃n(z) = 0, (18)

where ∂k
z , is the kth derivative with respect to z, and the

coefficients are as follows:

bn = −
[
μn

ν3
+ k2

(
2 + ν ′

ν3

)]
, cn = k2

[
μn

ν3
+ k2

]
. (19)

The solutions of Eq. (18) are of the form w̃n(z) ∼ em(k)z.
Therefore, making the change of variable V = m2 yields the
following quadratic equation:

V 2 + bnV + cn = 0. (20)

We numerically calculated the two main modes Vj = m2
j ,

j = 1,2.
Thus, the total solution of Eq. (18) can be written as follows:

w̃n(z) = Pncosh(zm1) + Qnsinh(zm1)

+Rncosh(zm2) + Snsinh(zm2), (21)

where the constants Pn,Qn,Rn,Sn are determined from the
boundary conditions, Eqs. (8)–(10) and (13), and their values
are given below.

By the substitution of Eq. (21) in Eq. (12), it can be deduced
that ζ̃n satisfies

Mnζ̃n = a(̃ζn−1 + ζ̃n+1) (22)

with

Mn = 2

k

{
w2

0 + m1

k

[
μn + k2(3ν3 + ν ′) − ν3m

2
1

]Qn

ζ̃n

+ m2

k

[
μn + k2(3ν3 + ν ′) − ν3m

2
2

]Sn

ζ̃n

}

≡ 2

k
Dn, (23)

and

w2
0 := gk + γ k3

ρ
, (24)

Qn = ζ̃nμnA1(
m2

1 − m2
2

)(
1 + k2α

μn

) × de
,

A1 = −m2
(
k2 + m2

1

) − m2

[
k4

(
A

μnη3

dγ

dT
+ 1

)
+ k2m2

1

]
α

μn

+
{
k2 + m2

2 +
[
k4

(
A

μnη3

dγ

dT
+ 1

)
+ k2m2

2

]
α

μn

}
× [m2cosh(Lm1)cosh(Lm2) − m1sinh(Lm1)sinh(Lm2)],

Sn = ζ̃nμnB1(
m2

1 − m2
2

)(
1 + k2α

μn

) × de
,
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de = −m2cosh(Lm2)sinh(Lm1) + m1cosh(Lm1)sinh(Lm2),

B1 = −m1
(
k2 + m2

2

) − m1

[
k4

(
A

μnη3

dγ

dT
+ 1

)
+ k2m2

2

]
α

μn

+
{
k2 + m2

1 +
[
k4

(
A

μnη3

dγ

dT
+ 1

)
+ k2m2

1

]
α

μn

}
× [m1cosh(Lm1)cosh(Lm2) − m2sinh(Lm1)sinh(Lm2)],

Pn = − ζ̃nμn

m2
1 − m2

2

[
k2 + m2

2 + k4 A

μnη3

dγ

dT

(α/μn)(
1 + k2 α

μn

)]
, Rn = ζ̃nμn

m2
1 − m2

2

[
k2 + m2

1 + k4 A

μnη3

dγ

dT

(α/μn)(
1 + k2 α

μn

)]
. (25)

Equation (22) provides the surface modes ζ̃n and depends on the Marangoni number Ma = (A/μnη3)dγ /dT , thermal
diffusivity α, layer thickness L, the viscosities η′, η3 and the known parameters g, γ , ρ as well as on the given excitation
frequency ω and shaker acceleration a. All of the material parameters of the fluid have been determined experimentally in
Refs. [24,35]. In contrast for a system of semi-infinite thickness the following results are obtained:

M∞
n = 2

k

(
w2

0 − μn

k(m1 + m2)
(
1 + k2 α

μn

){
[μn + k2(3ν3 + ν ′)](k2 − m1m2) − ν3k

2
(
m2

1 + m2
2 + m1m2

) − ν3m
2
1m

2
2

+ α

(m1 − m2)2

[
A2

(
m1m2 + ν3m1m

3
2 + B3m

2
2 − ν3m

4
2

) + B2
(
m1m2 + ν3m

3
1m2 + B3m

2
1 − ν3m

4
1

)]})

≡ 2

k
D∞

n (k,μn = s + i(αr + n)w), A2 = k4

(
A

μnη3

dγ

dT
+ 1

)
+ k2m2

1, B2 = k4

(
A

μnη3

dγ

dT
+ 1

)
+ k2m2

2, (26)

where B3 = μn + (3ν3 + ν ′)k2.

A. Critical parameters ac, kc across the MBBA
nematic-isotropic transition temperature

In this section we study the dispersion relation and
acceleration of the surface modes across the nematic-isotropic
transition. For the nematic phase of the liquid, we solved
Eq. (22) with s = 0 to obtain the threshold of Faraday
waves using standard numerical techniques of linear stability
analysis [9,11]. The critical wave number kc and acceleration
ac(k,ω) versus temperature were obtained with n = 22. The
light-scattering experiments of Langevin et al. [24] demon-
strated that at the critical temperature tc ≈ 45 ◦C of MBBA, the
anisotropy of the viscosities disappears and η := η3 = η2, η′ =
0. Therefore, for the isotropic phase, we used hydrodynamic
equations that are similar to those of a simple liquid and
also coincide with the hydrodynamic equations of our second
system obtained with an external magnetic field orthogonal to
the wave vector direction, which is analyzed in Sec. III. Thus,
the values of ac and kc where determined from Eq. (30) of
Sec. III. Figure 1 depicts our main results for the transition
experienced by dominant subharmonic waves of a MBBA
(methoxy-benzilidine butyl aniline) liquid crystal from low
temperatures in the nematic liquid phase T − TNI < 0 ◦C up
to the high temperature range of the isotropic state T − TNI >

0 ◦C at two driving frequencies, the ω = 20π Hz open circles
of Figs. 1(a) and 1(c) and the ω = 40 Hz black circles and
stars in Figs. 1(b) and 1(c), for layer thickness L = 4.5 mm.
The circle symbols include the heat diffusivity α that produces
Marangoni flow and was considered in the Marangoni number
(A/μnη3)dγ /dT in Eqs. (23)–(26). The star symbols neglect
heat diffusivity and, thus, Marangoni flow. We observed that
when Marangoni flow Ma = (Aμnη3)dγ /dT is included, ac

and kc roughly coincide with the values obtained when Ma = 0
with as high as a 1% difference from each other. The same

result is attained if the anisotropy of thermal diffusivity is
taken either as α‖ or α⊥. Thus, in all our calculations we used
only α‖ for the nematic side and αiso for the isotropic case.

Although a temperature gradient of A = −3 ◦C/mm acting
vertically on MBBA produces noticeable changes in the

FIG. 1. Calculated critical parameters: kc (a, b) and ac (c) as
a function of the nematic-isotropic transition temperature. External
frequency ω = 20π Hz open circles (a, c), ω = 40 Hz black dots and
stars (b, c), and layer height L = 4.5 mm. Open and black circles
include Marangoni flow, whereas it is neglected in the plot with star
symbols. Viscosities and surface tension used were determined from
Fig. 2.
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FIG. 2. Interpolated values of the gradient of surface tension
with temperature dγ /dT , γ , viscosity η3, thermal diffusivity α,
and viscosity η′/η3 versus transition temperature. These values were
obtained from the experimental data of Refs. [24,35] for MBBA.

viscosities and surface tension and thermal diffusivity (see
Fig. 2), the gradient does not affect the Faraday waves. We
can observe this phenomenon for w = 40 Hz in Fig. 1, where
the Marangoni effect on ac and kc, Figs. 1(b) and 1(c) (black
circles) yields the same numerical values for these properties as
in the case when Ma = 0 where Marangoni flow is neglected,
results that can be seen in these same figures plotted with star
symbols.

For these calculations, we used the experimentally mea-
sured temperature-dependent viscosities η′(T − TNI) and
η3(T − TNI) and the surface tension γ (T − TNI) reported
in Refs. [24,27,35], and we assumed that the density ρ =
1.03881 × 103 kg/m3 was constant throughout the tempera-
ture interval, as required by the incompressibility condition
Eq. (4); see Fig. 2. For the nematic side of this picture, we
used Eq. (22). For the isotropic side, the analogous equation
used was Eq. (30), which was derived as indicated in Sec. III.
We also used the experimental values corresponding to η3(T −
TNI) := η(T − TNI) with γ (T − TNI) from Fig. 2 [24,35]. In
the isotropic phase of the liquid, ac is increasing for the
cooling process T − TNI < 7 ◦C [see Fig. 1(c)] with a drop
of ∼0.25 g at the transition Tc = 45 ◦C, and the value keeps
increasing in the nematic phase for T − TNI < 0 ◦C. In general,
the observed drop in ac is only a fraction of g. For instance,
the open circle symbols refer to this same property calculated
at the high frequency w = 40π Hz and displays the same
magnitude for the variation of the acceleration at the transition

temperature as for the lower frequency case. In contrast, kc

similarly exhibits an increasing trend with a small drop of
0.0013 mm−1 or 1.0 mm in wavelength through the transition
temperature [Fig. 1(b)] and still exhibits a much smaller
decrease for the smaller frequency w = 20π Hz case, where it
is only half of a millimeter in wavelength; see Fig. 1(a). These
discontinuous changes of both properties are in accordance
with similar discontinuous behaviors displayed by the large
temperature variations experienced by the viscosities η′, η3

and surface tension in the experimental data. The discontinuity
in ac and kc versus temperature observed here is due to
viscosities and surface tension changes due to Marangoni flow
affecting those material parameters. A different mechanism for
discontinuities in these critical parameters appeared during
the surface freezing of a tetracosanol melt, as documented
in the experiments of Huber et al. [36,37]. In their system,
decreasing the temperature led to the formation of a surfactant
interfacial monolayer that changes the surface tension, with a
negligible change of bulk viscosity, resulting in a high flow
velocity gradient close to the surface at a given temperature
during the cooling down process from the high-temperature
regime of the melt. Unlike the MBBA liquid where the director
n is kept oriented by the field H , the exact match of the
experimentally measured power spectrums of scattered light
by thermal fluctuations of the nematic-air interface with those
of a theoretical calculation ignoring Marangoni flow at a fixed
temperature suggest that a monolayer of nematogens does not
form at the interface [38]. However, the critical parameters
of the Faraday instability for the liquid-vapor interface of
CO2 [9,39] do not present such discontinuities as we observed
here for the MBBA liquid.

The neutral stability curve a(k,ω) versus wave number
k, was obtained (see Fig. 3) using a model nematic system
with parameters η′ = 4.26η3, a higher viscosity by a factor
of 10 η3 = 0.163 Pa s with respect to the experimental data
of [38] for MBBA, γ = 0.03853 N/m and ρ = 1.03881 × 103

kg/m3. The magnetic induction was |B| = 0.3 T and the
constant temperature was TNI − T = 3 ◦C from the nematic-
isotropic transition. Figures 3(a)–3(c) demonstrate the effect
on the instability “tongues” due to an increase of frequency ω

for the fixed layer thickness L = 2 mm in all the cases. The
main mode is subharmonic (filled circle). When the frequency
increases, the number of tongues diminishes and become
enhanced, thus covering wider wave numbers intervals. In
addition, a secondary harmonic mode becomes the critical
instability at ω ≈ 120π Hz (open circle), dominating the
other mode type from them on. Such a change of wave
mode occurs at the bicritical instability ac ≈ 33 g, which
corresponds to wave numbers kc ≈ 0.856, and 1.674 mm−1;
see Table I. From this table we note that the model nematic has
a bicritical acceleration and wave number on the same order of
magnitude as for a concentrated polymer solution of a single
relaxation time [19]. A second bicritical instability is reached
at ω = 1265 Hz.

The first bicritical instability can be avoided by making the
sample of nematic liquid thicker in the container, for instance,
to L = 2.5 mm. This increase in the depth of liquid produces
again dominant subharmonic critical behavior [Fig. 3(d)].
Figure 4 presents the dispersion relation of the real MBBA
[inset of Fig. 4(a)] and of the model nematic referred to
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FIG. 3. Neutral stability curves of a model nematic liquid
crystal with Ma = 0. A static magnetic field is applied parallel to
the wave vector k and to the equilibrium liquid interface, with
magnetic induction |B| = 0.3 T, and temperature TNI − T = 3 ◦C
from the nematic-isotropic transition. Layer thickness L = 2 mm
and external frequencies in panels (a) ω = 20π Hz, (b) ω = 120π Hz,
(c) ω = 160π Hz, (d) ω = 160π Hz for L = 2.5 mm. Other system’s
parameters are given in Sec. II A. • subharmonic mode, ◦ harmonic.

above [Figs. 4(b) and 4(c)]. The real MBBA liquid [Fig. 4(a)]
has a minimum at ac ≈ 0.4554 g for ω = 55 Hz and L =
4.5 mm with the Marangoni number Ma = (A/μnη3)dγ /dT

considered, whereas the model nematic with the higher bulk
viscosity η3 = 0.163 Pa s and L = 2.5 mm, with Ma =
0, presents a monotonously increasing ac [Figs. 4(b) and
4(c)]. Müller et al. also observed a minimum in ac in
silicon oil and water systems, where they incorporated the
dissipation of boundary layers along the container walls
and beneath the surface into their analytical description of

TABLE I. A nematic system with L = 2 mm.

ω/π (Hz) Mode ac/g k (mm−1)

Har 9.12 0.292820 Sup 6.13 0.5184

Har 13.04 0.405640 Sub 10.52 0.8286

Har 21.95 0.659480 Sub 20.35 1.2798

Har 27.22 0.7440100 Sub 26.31 1.4772

Har 33.08 0.8568120 bicritical Sub 33.17 1.6746

Har 47.12 1.0822160 Sub 50.14 2.0694

FIG. 4. Subharmonic’s dispersion relation of nematic liquid with
depth L = 4.5 mm (a) and 2.5 mm (b, c). Inset of panel (a) depicts
the critical acceleration with Marangoni number calculated with
real material properties interpolated from Fig. 2. Panels (b) and
(c) correspond to a model nematic with 10 times viscosity in (a)
and neglects Marangoni flow. Its critical acceleration is given in (c).
Left (with down arrow ↓) and right (with up arrow ↑) insets depict
critical accelerations ac/g = 38.15, 51.13 occurring at kc = 1.9284
and 0.6312 mm−1 and ω = 135π and 215π Hz, respectively.

FIG. 5. Faraday thresholds of model semi-infinite limit system
without Marangoni flow (symbol • subharmonic mode and ◦ is
harmonic one). Same fluid parameters as in Fig. 3.
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their experiments [10]. However, our second model system so
defined has a discontinuous dispersion relationship, as can be
observed in Fig. 4(b). In this figure the critical wavelength λc

of the subharmonic wave versus ω decreases continuously. At
the frequency ω/2π ≈ 165π Hz, this wavelength has changed
sharply to the same starting value λc = 12.1203 mm it had
at the beginning of the stimulus excitation ω ≈ 20π Hz.
The insets of Fig. 4(b) show the transition from the main
subharmonic wave (down arrow for kc = 1.9284 mm−1) to
a secondary one (up arrow for kc = 0.6312 mm−1 in this
example); it becomes the main subharmonic instability at
ω ≈ 215π Hz. Figure 4(c) depicts the critical acceleration ac

as a continuously increasing function of ω. A change of slope
is observed at kc = 0.5184 mm−1, corresponding to the change
in wavelength as described in Fig. 4(b). A similar transition
from a subharmonic to harmonic response with wavelength
discontinuity has been described in Refs. [16,19,40] for the
interface of viscoelastic fluids, Ref. [11] for Newtonian fluid,
and Ref. [10] for silicon oil and water systems.

For half-infinite systems, Eq. (22) is now solved numer-
ically using Eq. (26) when Ma = 0 and α = 0 m2/s. We
see in Fig. 5 that surface Faraday waves are also sustained
in the semi-infinite medium of nematic liquids. The critical
acceleration to obtain these modes is on the order of tenths of
g and always corresponds to the subharmonic type. When the
frequency is increased the instability boundaries experiences
a shift to amplify its interval of a/g as a function of wave
numbers values, as demonstrated in Figs. 5(a)–5(b).

B. Thermal waves

We note that for a = 0, s = 0, αr = 0, and n = 0,
Dn(k,μn = iw) = 0 is the dispersion relation of a finite
thickness layer experiencing thermal surface waves with
Marangoni flow. Such a dispersion relationship has not been
reported before in the literature. However, its semi-infinite
medium version L → ∞ given by D∞

n=0(k,μn = iw) = 0
[Eq. (26)] coincides with the one reported in Refs. [24,27] af-
ter using for m1m2 := εk2√(1 + 2SL), m2

1 + m2
2 := μn/ν3 +

k2(2 + ν ′/ν3) with SL := iw/2ν3k
2 and ε = +1 if ν ′/ν3 >

−2, and for Ma = 0, with no thermal diffusion α = 0 m2/ s.
It was demonstrated by Ballesta et al. [20] that in their

lyotropic liquid crystal, the external parametric excitation
generated an oscillatory shear of strain on the order of 260 s−1

beneath the surface pattern. Such a high amplitude of shear
rate formed transient patches of local nematic ordering in the
wave’s crest. If there is no magnetic field fixing the orientation
of the nematic director as in our systems here, then the director
may experience spatial variations due to the generated stress.A
calculation performed by Burghardt [41] demonstrated that

a nematic liquid subjected to oscillatory shear flow exhibits
viscoelastic character. Therefore, an experiment such as the
one performed by Ballesta et al. might be useful to study the
interfacial rheology of the director rotation with the induced
stress for a given set of driving acceleration and frequency.
However, in this case, our expression for the fluid inertial effect
accounted for through Eq. (2) would need to be modified to
include the coupling of the balance of torque of the director
due to the elastic distortion of the nematic layers that produce
a viscous response of the liquid crystal.

III. MAGNETIC FIELD PARALLEL TO THE Y AXIS, AND
WAVE VECTOR DIRECTED ALONG THE X AXIS

In this case the director is defined by n = (0,1,0) and is
perpendicular to the velocity field v, n⊥k. Therefore, there is
no hydrodynamic coupling between the director and flux, and
the hydrodynamic equations are of an isotropic fluid with one
viscosity η :≡ η3 = η2. Thus, from Eq. (1) the stress tensor
components are [24,27]

σ ′
xx = 2η∂xvx, σ ′

zz = 2η∂zvz, σ ′
zx = η(∂xvz + ∂zvx).

(27)

The capillary force at the interface becomes

σ r
zz = fz = γ

(
∂2
x + ∂2

y

)
ζ (x), (28)

with the presence of tangential forces given by [30]

σ r
xz = fx = dγ

dT
[∂xT − A∂xζ (x)],

(29)
σ r

yz = fy = 0.

The boundary conditions are as reported in Sec. II, and
the diffusion equation (3) is satisfied. The procedure to obtain
the instability modes ζ̃n follows the methods used to derive
Eq. (22) as described in the previous section. Here, however,
the resulting equation is identical to that of an isotropic
Newtonian fluid characterized by one viscosity, and surface
tension [9,11] and Marangoni number Ma = (A/μnη)dγ /dT .
The result is

Mi
nζ̃n = a(̃ζn−1 + ζ̃n+1), (30)

with

Mi
n = 2

k

{
w2

0 + ν
(
q2

n + k2
)Qi

n

ζ̃n

}
+ 4νqn

Si
n

ζ̃n

, (31)

where

Qi
n = ζ̃n

(
νqnk

2

{
− 2

(
1 + k2 α

μn

)
+ A

νη

dγ

dT

1

k2 − q2
n

[
1 − q2

n

ν

μn

+ (ν + α)
k2

μn

]}
+ ν

{
−(

k2 + q2
n

)(
1 + k2 α

μn

)

+ A

νη

dγ

dT

k2

k2 − q2
n

[
1 − q2

n

ν

μn

+ (ν + α)
k2

μn

])
[−qncosh(kL)cosh(qnL) + ksinh(kL)sinh(qnL)]

}
/{(

1 + k2 α

μn

)
[qncosh(qnL)sinh(kL) − kcosh(kL)sinh(qnL)]

}
,
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Si
n = ζ̃nνk

{
k2 + q2

n − 2k[kcosh(kL)cosh(qnL) − qnsinh(kL)sinh(qnL)] − k2 A

νη

dγ

dT

(
1

k2 − q2
n

+ ν

μn + k2α

)

+ k
A

νη

dγ

dT

(
1

k2 − q2
n

+ ν

μn + k2α

)
[kcosh(kL)cosh(qnL) − qnsinh(kL)sinh(qnL)]

}
× [−qncosh(qnL)sinh(kL) + kcosh(kL)sinh(qnL)]−1, (32)

with ν = η/ρ and q2
n := μn/ν + k2. We studied two systems:

the real MBBA with materials parameters for surface tension
γ = 0.03803 N/m, density ρ = 1.03854 × 103 kg/m3, and
viscosity η = 0.0252 Pa s, as given in Ref. [38]. The applied
magnetic induction is |B| = 0.3 T and temperature T − TNI =
3 ◦C from the nematic-isotropic transition Ref. [38], and a
model nematic liquid with the same parameters but with 10
times higher dynamical viscosity η = 0.252 Pa s.

The neutral stability curve as a function of wave number
for the second model system is given in Fig. 6. In this figure
we can observe both the effect of increasing the thickness of
the layer [Figs. 6(a) and 6(b)] and of increasing the frequency
[Figs. 6(c) and 6(d)]. In addition, one can observe that the
main critical instability is of subharmonic nature (the filled
circle symbol represents a subharmonic mode and the open
circle symbol represents a harmonic mode). Unlike for the
previous case, n‖v, there is no bicritical instability. These
plots demonstrate that the curves a(k,ω) versus k of a finite

FIG. 6. Instability threshold of model nematic liquid with order
parameter perpendicular to wave vector, with magnetic induction
|B| = 0.3 T, Ma = 0, α = 0 m2/s, and temperature T − TNI = 3 ◦C
from the nematic-isotropic transition. Modulation frequency and
depth of material for (a) ω = 20π Hz, L = 2 mm, (b) ω = 20π Hz,
L = 6 mm, (c) ω = 120π Hz, L = 2 mm, and (d) ω = 160π Hz,
L = 2 mm. Other parameters are given in Sec. III (• subharmonic
mode and ◦ harmonic wave).

depth layer system exhibit the same qualitative behavior as
the semi-infinite medium case of the previous section when
n‖k. For instance, from Fig. 6(b) and for increasing ω, we
find that the values of a/g are of approximately the same
order of magnitude as those in Fig. 5(a) for the case n‖k.
Figure 7 presents two useful properties, the dispersion relation
and critical acceleration curves, for two systems: one has
thickness L = 4.5 mm [Fig. 7(a) and includes Marangoni
flow, and the second one for L = 2.5 mm with Ma = 0 is
depicted in Fig. 7(b). These properties should be helpful in
estimating the values of γ and η from a comparison with
experimental data on nematics. Figures 8(a) and 8(b) present
the stability phase diagrams of a semi-infinite medium for the
second model system with Ma = 0, which we observe do not
differ quantitatively much from the finite depth cases of Figs. 6.

Finally, Figure 8(c) confirms our previous observation that
the limit L → ∞ systems, when the director is either parallel
or perpendicular to the flow, roughly coincides quantitatively
for k � 1.5 mm−1 and start to disagree only at higher wave
numbers and frequencies.

FIG. 7. Dispersion relation of critical subharmonic threshold for
depth L = 4.5 (a) and 2.5 mm (b). Panel (a) was calculated using the
real materials data and taking the corresponding Marangoni number,
whereas panel (b) is for a model nematic with 10 times the viscosity of
(a) and zero Marangoni number. Inset depicts the critical acceleration
versus excitation frequency. Other parameters are given in Sec. III.

062311-8



FARADAY WAVES ON NEMATIC LIQUID CRYSTALS: . . . PHYSICAL REVIEW E 88, 062311 (2013)

FIG. 8. Accessible surface modes given by the stability curves
a/g as a function of wave number k. Semi-infinite medium of
nematic liquid. The material properties are given in Sec. III. Panel
(c) is a superposition of panel (a) and Fig. 5(a), and they depict the
quantitative coincidence of the first boundaries for low wave vectors.

IV. CONCLUSIONS

In this paper, we presented a description of the instability
curve and dispersion relation for nematic liquid crystals under
a static magnetic field orienting the nematogens parallel to
the equilibrium liquid-air interface and under a temperature
gradient. We observed that the critical parameters ac, kc of
a standing instability pattern are discontinuous for MBBA at
the nematic-isotropic transition temperature for layers with
thicknesses of a few millimeters. High-velocity gradients set
in near the surface due to the underlying large temperature
variation that experience the bulk viscosities η′, η3 and surface
tension due to Marangoni flow.

For realistic and model nematics with higher viscosity
compared with real MBBA, we analyzed the dispersion
relations along the nematic-isotropic transition of a nematic

liquid crystal. We used parameters of a typical nematic.
In realistic MBBA, for layers of depth L = 4.5 mm, the
critical acceleration exhibits a minimum with Ma �= 0 whereas
the higher viscous model with L � 2 mm, Ma = 0, is
monotonously increasing. For hydrodynamic coupling of the
director n with the wave vector flow k, n‖k case, a linear
stability analysis reveals a bicritical instability for the second
model nematic about ac/g ≈ 33 with critical wave numbers
kc ≈ 0.8568 and 1.6746 mm−1. Here a crossover occurs from
the critical subharmonic mode into the harmonic type when
the frequency reaches the value ω ≈ 120π Hz (Table I). The
bicritical instability can be avoided when the layer thickness is
increased to as high as 2.5 mm, where the system is observed
to sustain only critical waves of the subharmonic type.
However, the dispersion relation of these waves [Fig. 4(b)]
develops a discontinuous shift of the critical wavelength as a
function of frequency near ω ≈ 165π Hz, where a secondary
instability of lower wave number becomes dominant. When
the layer thickness reaches its semi-infinite limit (L → ∞), the
critical instability zones are always subharmonic and become
enhanced when the frequency is increased. For values a/g = 0,
we obtained a new dispersion relationship of thermal surface
waves on a finite thickness of nematic liquids layers under
Marangoni flow. When there is no hydrodynamic coupling of
the director with the flow, n⊥k, the Navier-Stokes equation of
an isotropic liquid characterized by surface tension γ and a
single viscosity η as the only material parameters is satisfied.
Both for the finite layer and semi-infinite system, their stability
boundaries (a/g vs k curve) exhibit the same general trends
as for the n‖k case above. Furthermore, in both cases, they
coincide quantitatively for low wave numbers k � 1.5 mm−1

and begin to disagree at higher wave numbers and frequencies
[see Fig. 8(c)] when Marangoni flow is neglected.

ACKNOWLEDGMENTS

The author acknowledges the General Coordination of
Information and Communications Technologies (CGSTIC) at
CINVESTAV for providing HPC resources on the Hybrid
Supercomputer “Xiuhcoatl”, which has contributed to the
research results reported within this paper. We would like
to thank the referees for their very useful comments and
criticisms. This work was supported by CONACYT Grant No.
48794-F, Mexico.

[1] A. C. Skeldon and G. Guidoboni, SIAM J. Appl. Math. 67, 1064
(2007).

[2] W. S. Edwards and S. Fauve, J. Fluid Mech. 278, 123 (1994).
[3] J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson, J. Fluid

Mech. 288, 325 (1995).
[4] E. Cerda and E. Tirapegui, Phys. Rev. Lett. 78, 859 (1997).
[5] P. Chen and J. Vinals, Phys. Rev. Lett. 79, 2670 (1997).
[6] O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J.

Fineberg, Phys. Rev. Lett. 83, 3190 (1999).
[7] P. Engels, C. Atherton, and M. A. Hoefer, Phys. Rev. Lett. 98,

095301 (2007).
[8] P. Capuzzi and P. Vignolo, Phys. Rev. A 78, 043613 (2008).

[9] K. Kumar and L. S. Tuckerman, J. Fluid Mech. 279, 49
(1994).

[10] H. W. Müller, H. Wittmer, C. Wagner, J. Albers, and K. Knorr,
Phys. Rev. Lett. 78, 2357 (1997).

[11] K. Kumar, Proc. R. Soc. Lond. A 452, 1113 (1996).
[12] S. Douady, J. Fluid Mech. 221, 383 (1990).
[13] H. W. Müller, Phys. Rev. Lett. 71, 3287 (1993).
[14] V. V. Mekhonoshin and A. Lange, Phys. Rev. E 65, 061509

(2002).
[15] T. Mahr and I. Rehberg, Phys. Rev. Lett. 81, 89 (1998).
[16] H. W. Müller and W. Zimmermann, Europhys. Lett. 45, 169

(1999).

062311-9

http://dx.doi.org/10.1137/050639223
http://dx.doi.org/10.1137/050639223
http://dx.doi.org/10.1137/050639223
http://dx.doi.org/10.1137/050639223
http://dx.doi.org/10.1017/S0022112094003642
http://dx.doi.org/10.1017/S0022112094003642
http://dx.doi.org/10.1017/S0022112094003642
http://dx.doi.org/10.1017/S0022112094003642
http://dx.doi.org/10.1017/S0022112095001169
http://dx.doi.org/10.1017/S0022112095001169
http://dx.doi.org/10.1017/S0022112095001169
http://dx.doi.org/10.1017/S0022112095001169
http://dx.doi.org/10.1103/PhysRevLett.78.859
http://dx.doi.org/10.1103/PhysRevLett.78.859
http://dx.doi.org/10.1103/PhysRevLett.78.859
http://dx.doi.org/10.1103/PhysRevLett.78.859
http://dx.doi.org/10.1103/PhysRevLett.79.2670
http://dx.doi.org/10.1103/PhysRevLett.79.2670
http://dx.doi.org/10.1103/PhysRevLett.79.2670
http://dx.doi.org/10.1103/PhysRevLett.79.2670
http://dx.doi.org/10.1103/PhysRevLett.83.3190
http://dx.doi.org/10.1103/PhysRevLett.83.3190
http://dx.doi.org/10.1103/PhysRevLett.83.3190
http://dx.doi.org/10.1103/PhysRevLett.83.3190
http://dx.doi.org/10.1103/PhysRevLett.98.095301
http://dx.doi.org/10.1103/PhysRevLett.98.095301
http://dx.doi.org/10.1103/PhysRevLett.98.095301
http://dx.doi.org/10.1103/PhysRevLett.98.095301
http://dx.doi.org/10.1103/PhysRevA.78.043613
http://dx.doi.org/10.1103/PhysRevA.78.043613
http://dx.doi.org/10.1103/PhysRevA.78.043613
http://dx.doi.org/10.1103/PhysRevA.78.043613
http://dx.doi.org/10.1017/S0022112094003812
http://dx.doi.org/10.1017/S0022112094003812
http://dx.doi.org/10.1017/S0022112094003812
http://dx.doi.org/10.1017/S0022112094003812
http://dx.doi.org/10.1103/PhysRevLett.78.2357
http://dx.doi.org/10.1103/PhysRevLett.78.2357
http://dx.doi.org/10.1103/PhysRevLett.78.2357
http://dx.doi.org/10.1103/PhysRevLett.78.2357
http://dx.doi.org/10.1098/rspa.1996.0056
http://dx.doi.org/10.1098/rspa.1996.0056
http://dx.doi.org/10.1098/rspa.1996.0056
http://dx.doi.org/10.1098/rspa.1996.0056
http://dx.doi.org/10.1017/S0022112090003603
http://dx.doi.org/10.1017/S0022112090003603
http://dx.doi.org/10.1017/S0022112090003603
http://dx.doi.org/10.1017/S0022112090003603
http://dx.doi.org/10.1103/PhysRevLett.71.3287
http://dx.doi.org/10.1103/PhysRevLett.71.3287
http://dx.doi.org/10.1103/PhysRevLett.71.3287
http://dx.doi.org/10.1103/PhysRevLett.71.3287
http://dx.doi.org/10.1103/PhysRevE.65.061509
http://dx.doi.org/10.1103/PhysRevE.65.061509
http://dx.doi.org/10.1103/PhysRevE.65.061509
http://dx.doi.org/10.1103/PhysRevE.65.061509
http://dx.doi.org/10.1103/PhysRevLett.81.89
http://dx.doi.org/10.1103/PhysRevLett.81.89
http://dx.doi.org/10.1103/PhysRevLett.81.89
http://dx.doi.org/10.1103/PhysRevLett.81.89
http://dx.doi.org/10.1209/epl/i1999-00142-5
http://dx.doi.org/10.1209/epl/i1999-00142-5
http://dx.doi.org/10.1209/epl/i1999-00142-5
http://dx.doi.org/10.1209/epl/i1999-00142-5
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