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Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection,
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Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under
large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-
correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses
as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude
saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to
competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we
show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium
regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog
of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle

interactions are sufficient for generating both experimentally observed saturations.
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I. INTRODUCTION

While ubiquitous across many time and length scales,
far-from-equilibrium behavior is still largely uncharted ter-
ritory [1]. To understand such systems, the crossover from
near-equilibrium to far-from-equilibrium regimes provides
crucial insights that bridge distinct concepts developed in
either limit. Furthermore, this poorly explored crossover
is important for understanding natural phenomena such as
nonlinear elasticity [2], flow-induced rejuvenation [3,4], and
shear thinning [5—-7], which all occur in industrial settings. A
particularly fascinating and relevant example is the nonlinear
stress response of fluids under large-amplitude oscillatory
shear (LAOS) [8,9]. By varying the amplitude and frequency
separately, LAOS disentangles the underlying dynamics that
are usually convolved in such far-from-equilibrium systems.
Despite great efforts, conventional flow measurement tech-
niques [10-14] have had difficulties elucidating the origins of
these nonlinear behaviors without information about the fluid
microstructure.

Because of their experimentally accessible time and length
scales, hard-sphere colloids are an ideal model system to study
nonlinear behaviors in far-from-equilibrium systems [15-17].
Here, by mounting a custom shear cell on a confocal micro-
scope, we directly image colloidal liquids and quantify the
suspension structure using the pair-correlation function g(7).
As the suspension is sheared, distortions of g(r) increase and
lead to the Brownian stresses that arise from the thermal motion
of particles [18,19]. We quantify this g(¥) change to capture
the suspension structure response in the crossover regime
bounded by lightly perturbed states (near equilibrium) and
strongly driven states (far from equilibrium). This approach
circumvents many difficulties encountered by conventional
flow characterization techniques because it identifies the
microscopic origin of the stress response. In contrast to the
previously explored linear response regime [20], in this paper
we focus on the nonlinear response by performing LAOS
measurements. Our data show two distinct structure responses
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that collapse onto a master curve revealing the interplay
between thermal relaxation, advection, and shear-induced
diffusion in the crossover regime.

II. EXPERIMENT

In our experiments we use silica particles with radius
a = 490 nm and 2% polydispersity, suspended in an index
matching water-glycerine mixture whose viscosity 1y =
0.06 Pas. We add 1.25 mg/ml of fluorescein sodium salt to
dye the solvent for imaging [20]. The electrostatic screening
length is ~10 nm, hence particle interactions are nearly hard
sphere (see Appendix A). Experiments are conducted on six
samples with volume fractions 0.17 < ¢ < 0.44.

To image the suspension structure during shear, we mount
a piezoelectrically driven parallel plate shear cell on a fast
scanning confocal microscope. The cell consists of a movable
cover slip as the bottom plate and a silicon wafer as the top
plate [Fig. 1(a)]. We fix the separation along the gradient or ¥
direction to be 6.5 £ 0.2 wm with both plates aligned to within
0.0075° of one another by adjusting set screws. A solvent trap
is used to prevent evaporation of the solvent. We sinusoidally
shear the suspension over a range of amplitudes 0.06 < yp <
3.34 and angular frequencies 0.006 sl <w<0.628 571,
where yy is the shear strain amplitude that characterizes the
ratio of the shear plate displacement to gap size. Capturing
216 frames per second, we acquire stacks of 40 images in
less than 0.2 s. This scan rate is 100 times faster than the
highest shear frequency used and hence avoids distortion or
mismatch between images. Prior to measurement, the sample is
sheared at yy = 3.34 withw = 12.56 s~ to generate consistent
initial conditions and then sheared with the target yy and w
for 5 min, or 10 times the system relaxation time 30 s. No
hysteresis is observed throughout the measurements. Since
the relaxation time for the suspension to diffuse back from
the reservoir surrounding the shear zone is on the order of
hours, the conducted experiments do not last long enough for
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FIG. 1. (Color online) (a) Shear configuration and coordinates and (b)—(e) X-y projection of Ag(¥). The sheared suspension has volume
fraction ¢ = 0.28. The values of w and y, are 0.13 s~ and 3.34. (b)—(e) show Ag(F) for a quarter cycle of shear. (b) and (c) The anisotropy of
Ag(7) increases. (d) and (€) With increased displacement we find very little additional change in structure.

shear-induced migration effects to be substantial. We also find
that the shear velocity profile is linear. Finally, we do not
observe any driven assembly and structure organization under
shear.

III. RESULTS

To measure the three-dimensional structure, we image
the suspension, determine the particle positions [21], and
construct the three-dimensional pair-correlation function g(r).
This function is proportional to the probability of finding a
particle at position 7 with respect to each particle center.

We exclude the particles that are aligned by the shearing
surfaces by reducing the measurement window in the g(¥)
calculation. This exclusion allows for accurately calculating
the suspension structure from the bulk of the sample. The
three-dimensional g(7) is used to quantify the anisotropy in
the shear-induced structure. Under shear, particles accumulate
along the maximal compression axis (MCA), oriented at 45° to
the flow direction X, resulting in a distorted g(¥) [7,18,19,22—
25]. We illustrate this effect by plotting Ag = g,,(t) — g, (t =
0) over a quarter of an oscillation cycle, characterized by a large
strain amplitude y, = 3.34 and high frequency w = 0.126 s,
Here g, is a two-dimensional cross section of g(7) centered at
z = 0 with a width of 1.4 um and the response cycle starts at
time r = 0 where gy, isisotropic [Figs. 1(b)-1(e)]. At this large
strain amplitude and frequency, Ag strongly saturates after the
first eighth of the period 7, as indicated by the negligible
difference between Figs. 1(d) and 1(e). In addition, we find
that at large strains, particle accumulation tends to be broad
and extends to angles below 45°. The unsubtracted g.,(?) is
shown in Appendix B.

To quantify these observations, the structure signature

W(r) = <?§ g(7,t))21?dsz> (1)

is defined, where X and ¥ are the unit vectors defined in
Fig. 1(a), d2 is the solid angle, and the angular brackets denote
averaging over the interval 1.84a < r < 2.35a. Here VW is zero
when the particle configuration is isotropic and increases in
value as particles line up along the MCA. Imaging artifacts
associated with particle featuring errors broaden the first peak
of g(¥). To account for this effect, the lower bound of the
averaging interval is chosen to be 80 nm smaller than 2a,
while the upper bound is chosen to be at the first peak of g(7)
where r = 2.35a (see Appendix C).

We explore the structural saturation [Figs. 1(d) and 1(e)]
by comparing W(z) at four strain amplitudes [Figs. 2(a)
and 2(b)]. The dimensionless frequency, or Deborah number, is
De = 6ma’wny/ kg T and fixed at De = 3.78. Physically, De is
the ratio of oscillation frequency to suspension relaxation rate,
while ypDe defines the Péclet number Pe, the ratio of advective
forcing to entropic restoring force. We explore the saturation at
high frequencies by measuring W(¢) at fixed strain amplitude
o = 0.67 and at four values of De [Figs. 2(c) and 2(d)].
Remarkably, the observed saturation of W(#) is qualitatively
different depending on whether we increase yy or De.

For the constant-De data, at low strain amplitudes the
structure response of the suspension is linear and well
described by a sinusoid [black dashed line Fig. 2(a)]. At a
strain of yy > 1.33 we find that W(¢) begins to saturate at
its maximal values. This saturation is more pronounced at
even higher strain amplitudes as illustrated by the yy = 2.00
and 3.34 data. Thus we find that W(¢) deviates from a linear
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FIG. 2. (Color online) Structure response versus normalized time
and Lissajous-Bowditch (LB) curves. (a) Four W(z) curves averaged
over five measurements for De = 3.78 and 0.34 < yy < 3.34. Dashed
lines are the sinusoidal fit to the data in the linear regime where
[W(t)| < 0.03. (b) The LB curves for the data set in (a). (c) Four
different curves for yp = 0.67 and 0.39 < De < 18.8 versus the
normalized time. The black dashed line is the best fit to the combined
data for De = 9.42 and 18.8. (d) The LB curves for the data set in
(c). Error bars correspond to the standard error of W(z).
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sinusoidal response at large yy. To demonstrate the phase
relationship between W(¢) and the instantaneous strain, we
plot the corresponding Lissajous-Bowditch (LB) curves in
Fig. 2(b). In this representation, a linear viscoelastic response
is depicted by an ellipse whose orientation and enclosed area
correspond to the material elasticity and viscous dissipation,
respectively. For large yy at fixed De, the elliptical linear
response saturates at a yp-independent plateau. We plot the
Pipkin diagram in Appendix D.

The structure signature W(¢) shows strikingly different
behavior when we hold y, at 0.67 and sweep over De. At small
De we find that the response is sinusoidal and purely viscous,
as illustrated by the horizontal orientation of the De = 0.39
LB curve [Fig. 2(d)]. As De increases to 1.89, the LB curve
remains elliptical but acquires a significant tilt, indicating a
harmonic response with increased elasticity. As De increases
further, the LB curves overlap, indicating a De-independent
harmonic response [Figs. 2(c) and 2(d)].

To understand the saturation of W(¢) with increasing yy
and De, we track its maximum value per cycle Wy(yp,De).
We plot Wy (yp,De) versus De for four representative values
of yp in Fig. 3(a). For yp = 0.06 we find that Wy(yy,De)
increases linearly below De & 3 and saturates to a plateau
value Wy(yp,00) at large De. Similar trends are observed
in all data sets but with different plateau values depending
only on yy. To quantify changes in these plateau values,
we plot Wy(yp,00) versus yp in Fig. 3(b). We find that the
data are well fit by an exponential saturation Wy(yp,00) =
Wo(00,00)(1 — e~ 7/7%) (red curve), indicating a linear growth
at low yy and saturation to Wy(0o,00) beyond a cutoff strain
amplitude y..

These saturation behaviors can be understood by consid-
ering the microscopic particle dynamics. In the experiments,
Wo(yo,De) reflects the maximum degree to which particles
accumulate along the MCA due to shear. The data trends
for small strain amplitudes can be understood as resulting
from competition between Brownian relaxation of particles to
their equilibrium configuration and advection resulting from
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FIG. 3. (Color online) Structure response saturations. (a) Peak
value of structure response in each cycle Wy(yp,De) versus De
with four representative amplitudes. Error bars depict the standard
error of Wy(yp,De) over five cycles. (b) Saturation value Wy(yp,00),
measured at De = 18.8, plotted versus y;. The red curve is a fit of
Wy (00,00)(1 — e™70/%) to the data. The inset illustrates the volume
fraction dependence of y,. and Wy(00,00). The solid line in the inset
has the form y, o (W%)'”. Data points are averaged over ten
measurements and error bars depict standard errors.
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the suspending fluid as described by the advection-diffusion
equation [26]. Hydrodynamic interactions can also affect
details of the suspension microstructure. However, in the
low-De regime these effects are weaker than those played by
Brownian motion [27] and in the high-De regime their effect
on the shape of the distorted microstructure still results in
only a weak quantitative difference in the g(#) at contact [28].
Thus we focus on the interplay between Brownian motion and
advection.

In the low-De regime, Brownian diffusion dominates
but becomes less effective at homogenizing particles with
increasing De. Consequently, Wy(yp,De) increases linearly
with De as particles accumulate along the MCA. In the high-De
regime, oscillatory flow dominates and thermal relaxations
are negligibly weak: Particles are simply advected by the
flow. Thus the plateau value Wy(yp,00) is set by the extent
to which particles can accumulate along the MCA for a given
strain amplitude. Finally, the crossover between these limiting
behaviors occurs at De ~ 1.

The initial linear increase in Wy(yp,00) [Fig. 3(b)] reflects
the fact that for small yy, where there are very few collisions
with neighboring particles, particle accumulation along the
MCA increases with yy. As yp approaches y,, particles collide
more frequently, thereby randomizing particles accumulated
along the MCA. The saturation of Wy(yp,00) for yy > ¥,
indicates that there exists a limit to which particles can be
driven to accumulate along the MCA. This limit results from a
competition between collision-induced randomization [29-33]
and advection. Thus y, corresponds to the average strain
needed to induce collisions between neighboring particles.

This argument suggests that for higher volume fractions
where interparticle distances are smaller, y, should be smaller.
Specifically, we expect that at yy = y., the relative distance
traveled by particles separated by a diameter along the
gradient direction 2ayy will equal the mean distance between
neighboring particles. From geometrical considerations this
distance scales as a(‘ﬁ"(T_‘l’)w, where ¢. = 0.64 is the random

0.64—¢

5 )3 up to a

close-packed volume fraction. Thus y, o (
constant.

To test this prediction we measure Wy(yp,00) for six
different volume fractions ranging between 0.15 and 0.44. For
each curve we extract both y, and ¥y(co,00) and plot these
values as a function of ¢ [Fig. 3(b), inset] along with the fit
from our model (solid curve). We find excellent agreement
between the y. data and the model fit. We also find that
for the range of ¢ values measured, Wy(co,00) increases
monotonically with ¢. Finally, we find the data from eight
different runs where 0.06 < yy < 3.34and 0.09 < De < 18.8
collapses onto a curve of the form

Wo(yo,De)

— _ o~ 1DeB/f ()
To(0.00) foll —e I, 2)

where f(yg) =1—e /% and B is a fitting parameter
[Fig. 4(a), red curve]. This functional form recovers the
linear regime, where the normalized structure response ¥ =
Wo(yo,De)/ Wy(00,00) is equal to ypDe when either De or
Yo — 0, the high-frequency regime ¥ = f(yy) when De —
00, and the high-strain amplitude limit & = 1 when y) — 00.
More broadly, these results are summarized by the phase
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FIG. 4. (Color online) (a) The Wy (y0,De) collapse
and (b) phase diagram of LAOS crossover. (a) Plot of

[Wo(yo,De)/ Wo(00,00)]/f(ye) versus the dimensionless scaling
parameter Deyy/f(yy), where f(yy) =1 — e /%, Bach symbol
denotes one strain amplitude for seven different De in the range
0.39 < De < 18.8. All 56 data points collapse on a master
curve and can be fit by an exponential saturation (upper red line)
1 — e PrDe/f(0) \where B = 0.72 is a fitting parameter. Error bars
correspond to standard errors of the data averaged over five runs.
(b) Three entangled dynamics (bold purple font) result in two
types of response saturations. In the crossover regime bounded
by near-equilibrium (NE) and far-from-equilibrium (FFE) states,
nonlinear response emerges when Pe >1 and y > y..

diagram in Fig. 4(b), which shows the crossover between
near-equilibrium linear response and far-from-equilibrium
nonlinear response.

IV. SIMULATION

The interactions between hard-sphere colloids leading to
the observed saturations can be mediated by either collisions or
hydrodynamics. To determine whether particle collisions are
sufficient to generate such saturations, we conduct dynamic
simulations using the LAMMPS package (Sandia National
Laboratory). We implement a Brownian dynamics simulation
by applying a Langevin thermostat to the streaming velocity of
simulated particles to maintain a constant temperature of 7* =
1. The interparticle potential is taken to be U/kpT = r~¢.
We found that the stress response for ¢ = 50 agrees well with
reported results for hard spheres. The simulation setup contains
10000 particles with ¢ = 0.28. We apply oscillatory shear
to the system with the Lees-Edwards boundary condition.
Since the interparticle potential is very steep, the time step
is carefully chosen to avoid unphysical particle overlaps. This
model provides insights into the limiting physical behavior that
ensues when pair- and higher-level hydrodynamic interactions
are neglected. We run 100 oscillatory cycles for each De and yy
and discard data obtained from the first 10 cycles as transient.
In direct analogy with the experiments, we calculate W (¢) using
Eq. (C1) with a radial integral that extends up to the first peak
of g(7) (see Appendix G).

We perform an amplitude sweep at De = 15.7 for six dif-
ferent amplitudes and plot W(¢)/ Wy(oco,00) for four different
o in Fig. 5(a). As with the experiments [Fig. 2(a)], this model
system also demonstrates an amplitude saturation at large yy,
where W(t)/ Wo(00,00) deviates from the linear response. We
also perform a frequency sweep for 0.20 < yp < 4.00 and
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FIG. 5. (Color online) Plot of W((yy,De) in Brownian dynamics
simulations. (a) Amplitude saturation. Plot of Wy(yy,De) for four
different y, at De = 15.7. (b) Frequency saturation. Plot of W (yy,De)
for four different De at y, = 0.20.

plot the results for four of the six amplitudes in Fig. 5(b). We
find that the model system exhibits a similar saturation to that
found in experiments [Fig. 2(b)]. To determine whether similar
data scaling can be applied to the numerical results, we plot
the normalized value ¥ /f (vo) versus yoDe/f(yp) in Fig. 4(a).
We find that the simulation data also collapse, but the curve’s
form deviates from the experimental curve at intermediate
shear rates. Nevertheless, the collapse is qualitatively similar
to the experimental results showing a linear response at low
shear rates and saturation at high shear rates. These results
demonstrate that the interplay between Brownian relaxation,
advection and shear-induced diffusion is sufficient to produce
the observed saturations.

V. CONCLUSION

Measuring suspension structure is a noninvasive and ex-
plicit method to quantify each contribution of the macroscopic
stress response [20]. Specifically, direct imaging allows one
to measure the contribution due to Brownian motion of
the microscopic constituents, which is a vital component
to the response of any thermal system. Previous theoretical
work showed that the surface integral of #7g(¥) at r = 2a
is proportional to the pairwise Brownian stress [18,19]. In
experiments, optical resolution limits require that a radially
averaged quantity is used instead [Eq. (C1)]. This modified
calculation has been shown to agree with macroscopic force
measurements in the near-equilibrium regime [20]. While it
remains to be shown that this modified expression is a valid
measure of the Brownian stress in the far-from-equilibrium
regime, our results on the saturations of W, are consistent with
bulk rheological measurements reported previously [10,13],
suggesting a very strong link between W, and the Brownian
stress.

Since the shear separation in the experiment is approxi-
mately seven particle diameters, the confinement effect may
be significant in the reported system. Even though the particles
that are near boundaries are excluded in analysis, the long-
range hydrodynamic interactions between wall and particles
may still play an important role in determining the dynamics
and configuration of particles. Furthermore, the interparticle
hydrodynamic interactions are left out in the Brownian
dynamics simulation for identifying the origin of the structure

062309-4



FAR-FROM-EQUILIBRIUM SHEARED COLLOIDAL ...

response saturation. The fact that the Brownian dynamics
simulations do not perfectly reproduce the experimental data
indicate that hydrodynamic interactions do have some effect
on the particle distributions. However, this effect is not
large enough to qualitatively alter the trends. Namely, we
still observe linear scaling at low Pe and a saturation with
higher frequency or strain amplitude [see Fig. 4(a) and the
Appendixes]. Nevertheless, conducting full hydrodynamic
simulations that accurately take into account the boundary
conditions at the surface is necessary for having a more
rigorous and quantitative comparison with our experimental
results.

Many different complex systems such as emulsions [34],
plasmas [35], and polymers [8] exhibit saturation behaviors
when driven away from equilibrium. For example, polymer
blends have the same measured viscosity whether driven by
continuous shear (De « 1,y — 00) or perturbed with small
amplitudes at high frequency (De — oo, y <« 1). Understand-
ing the underpinnings of this well known but poorly understood
empirical observation, known as the Cox-Merz rule [36,37],
has remained a long-standing theoretical challenge [38,39]. By
combining direct imaging with LAOS, we find an analogous
behavior in the double saturation of the suspension structure
response. Here we show that this double saturation can be
collapsed on a master curve [Eq. (2)], which identifies the
roles of Brownian relaxation, affine motion, and shear-induced
diffusion. In part, this finding is made possible by combining
direct imaging with LAOS, a shear protocol that disentangles
these dynamics [Fig. 4(b)]. Brownian dynamics simulations
show that the interplay between these three elements is
sufficient to generate the Cox-Merz rule, analogous to other
driven far-from-equilibrium systems. Further experiments
with these techniques should elucidate additional mechanisms
in the crossover regimes between near-equilibrium and far-
from-equilibrium states and shed light on the highly nonlinear
dynamics found in many other far-from-equilibrium systems.
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APPENDIX A: SAMPLE CHARACTERIZATION
AND IMAGING RESOLUTION

To measure the size distribution of our silica particles, we
acquired a series of scanning electron microscopy (SEM)
images (Leica 440 SEM) of the particles [Fig. 6(a)]. We
measured the sphere size from the SEM images. Figure 6(b)
shows the size distribution of the sample in Fig. 6(a) based
on the statistics of 200 particles. Because the particles are
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FIG. 6. (Color online) (a) The SEM image of the silica particles.
(b) Probability distribution function of the particle size. The orange
solid line is a fit of the Gaussian distribution and the red vertical
dashed line at 0.98 pm delineates the mean of the distribution.

spherical and the screening length ~10 nm is short, the
hydrodynamic radius and the hard-sphere radius are nearly
the same in this experiment. In Fig. 6(b) we find that the
distribution of the particle size is well fitted by a Gaussian
distribution with a mean value 2a = 980 nm and a standard
deviation 2a x 2.05%.

Our resolution for locating particles is about 50 nm. Since
the circumference of a particle is 27 (2a) ~ 6280 nm, our
angular resolution ends up being about 3°. If all particles were
to have neighbors along the maximal compression axis, the
exact result would give a W of 0.5. We estimate that a 50-nm
error would lead us to calculate a ¥ of 0.499. Therefore,
the measurement error due to our imaging resolution is not
significant.

APPENDIX B: RAW DATA OF g,,

We plot the actual g, in Fig. 7 to illustrate the evolution
of the sheared suspension structure. Figures 7 and 1 share the
same data set. The squared first peak of g, indicates that
the system has layering due to the confinement effect. It is
important to point out that the layer structure does not have
any contribution to the value of W due to the mirror symmetry
of g,y att =0.

APPENDIX C: RADIAL INTEGRAL RANGE

Many methods have been used to quantify the structure
response of systems under shear. For instance, the ellipticity
has been used to illustrate the distortion of g(r) in dusty
plasmas [35], the bond order parameter Wq has been employed
in colloidal crystal under shear [40,41], and the alignment
factor A A has been employed to determine the orientation of
the assembly of particle strings [42,43]. Here we specifically
calculate the angular probability distribution of neighboring
particles to characterize the anisotropy of g(7). This anisotropy
of g(¥), which is closely related to the stress response,
quantifies the response of the microstructure to the external
shear flow [18]. To quantify the structural response, we
integrate g(7) up to its first peak to account for particle contacts.
We find that in our experiments the first peak of g(¥) is at
r = 2.35a. Thus we define the shear or XY component of our

062309-5



LIN, GOYAL, CHENG, ZIA, ESCOBEDO, AND COHEN

PHYSICAL REVIEW E 88, 062309 (2013)

t=1/16T t=2/16T t=3/16T t=4/16T
1 ;t - “'\Z o {;__l‘.ﬁ‘ {‘v"___ ‘ ,"___:‘h -}
- .Ir! Z »} m! J n.»"’ "
> 10 1 2 %2'(-'1)6'1'2 > 1012 =2 1012
um
(R oy 0TI Max

FIG. 7. (Color online) Plot of g, without subtraction. The corresponding experimental parameters are the same as in Fig. 1.

structural signature as

1 2.35a
Yy = d Fre(r)dS2 .
g <0.51a 1.84a r%rrg(r) )XY

Imaging artifacts associated with particle tracking errors are
removed by introducing a lower bound to the radial integral
at 1.84a. We find that narrowing this integral width in order
to have a stricter criterion for the contacting particles does not
alter the qualitative trend of W but only introduces more noise
due to poorer statistics.

Furthermore, we have studied the dependence of the
structural signature Wy on the radial integral center r.. We
show angular averaged g(r) for eight strain amplitudes y
with a fixed shear frequency w = 0.126 s~! in Fig. 8(a). All
radial distribution functions overlap on a single curve within
the error bars. This overlap indicates that using a single fixed
integral bound for all the experiments presented in this paper
produces consistent calculational results. The short tail at
r < 2a = 0.98 um is mainly due to the finite resolution and
the point spread functions along the vertical axis (the Y axis) of
the confocal microscope, as well as the particle polydispersity.
This relatively poorer resolution results in an uncertainty in
the particle featuring process and introduces a small portion
of unphysical particle overlaps. We set the lower bound of
the integral at 0.92 um to exclude those overlapping particles.
With this lower bound, which is about four standard deviations
from the mean, at least 94% of the particle population is
included.

We calculate Wy with five different integral centers for the
two data sets that have (yy = 0.34,0 = 0.126 s!) [Fig. 8(b)]
and (yp = 3.34,0 =0.126s7") [Fig. 8(c)]. These data sets
correspond to the linear high-frequency response and the
high-amplitude nonlinear response of Wp. The corresponding
positions of r, are labeled as vertical lines in Fig. 8(a) and cover
the range 1.025 um < r, < 1.225 pm, which encompasses
the first peak of g(r). We find that the qualitative trends in
Wy are not sensitive to the choice of r. [Figs. 8(b) and 8(c)].
We have also verified that increasing the integral range to
0.90 um < r < 1.50 um does not alter the qualitative trends
in Wy (entire first peak data).

The particular choice of r. and the integral range do,
however, have a quantitative effect. For example, the deviation
from the sinusoidal fit in Fig. 8(b) increases with increasing
r.. For the nonlinear response, we find that as r. increases,
the magnitude of Wy decreases. These smaller magnitudes
result from the angular inhomogeneity in Ag(7). As shown in
the inset of Fig. 8(c), positive and negative regions are paired

(ChH

so that a larger integral range in r leads to cancellations that
result in smaller values of Wg. This collision-induced wake
structure has also been reported in previous simulations [44].
In conclusion, we find that the value of Wy is qualitatively
insensitive to the radial integral bound and captures the
anisotropy of the angular distribution of contacting particles in

2 [€) —>=1.225 ym
—>=1.175 pm
A —r=1125 pm
1.5F —— y,=0.66 =1.075 um
. —— 1, =1.33 —>1=1.025 pm
= b % =2.00 ; gesee
o 1 —~— y,=2.66
—— Y,=3.34
05F Quiescent
l 7] 1

o o5 1 15 2
Distance r (um)

<+ =1.225 p
-0.02} - £=1'175 um
_ b= r=1.125 pum

0.04 r§=1.075 um
-0.06F = c=1.025 pm
= Elnt]'re ﬁlrst pealk

02 04 06
t/T

SRR

04 06 08 1
t/T

08 1 02

FIG. 8. (Color online) (a) Radial distribution functions g(r) and
Wy for different integral bounds at (b) (yp = 0.34,0 = 0.126s7!)
and (¢) (o = 3.34,w = 0.126 s7'). (a) The one-dimensional radial
distribution functions of the suspension for seven different y, at
@ = 0.126 57! and the quiescent sample are plotted versus distance.
The five arrows indicate the centers of the integral bounds that are
tested for the calculation of Wp. The red shaded area illustrates the
integral bound of r. = 1.025 pum. The vertical arrows from left to
right correspond to the integral centers at r. = 1.025, 1.075, 1.125,
1.175, and 1.225 pm, respectively. (b) The raw oscillatory data of Wy
at (yp = 0.34,0 = 0.126 s7!) is plotted versus ¢/ T for five different
r. and the integral bound 0.90 um < r < 1.50 um. (c) The W at
(yo = 3.34,0 = 0.126 s7') is plotted versus ¢/ T for five different r.
and the integral bound 0.90 um < r < 1.50 um. The dashed lines in
both (b) and (c) are the linear fit from Fig. 2(a). In the inset to (c), the
solid circles highlight the wake structure of the Ag(7) measurement
taken from Fig. 2(d).
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both the high-frequency linear and high-amplitude nonlinear
regimes.

APPENDIX D: PIPKIN DIAGRAM

For suspensions that are driven into their nonlinear response
regime, the resulting stress response can depend on multiple
experimental parameters. Pipkin diagrams in which a matrix
of LB curves are organized into one figure have been
widely used to aid in elucidating the dependence on multiple
parameters [45—-48]. For the problem of colloids under shear
the two relevant dimensionless parameters are )y and De. As
such we plot 16 Wy versus strain LB curves in a Pipkin diagram
in Fig. 9.

At low shear rates (small De and small yy), the suspension
structure demonstrates a viscous response, where Wp peaks as
y passes through zero. As De increases with a fixed small strain

o , ¥,=2.00

=0.39

De

/2

20 - :

FIG. 9. (Color online) (a)-(p) The LB curves of Wy versus y
for 4 x 4 different y, and De on a Pipkin diagram. Each curve is
averaged over five cycles of shear and the error bars denote the
standard deviations. (m)—(p) The data are averaged over 20 cycles of
shear and five curves are displayed for clarity. (q) Phase angle between
strain and stress plotted versus De and y,. The color scale represents
the value of the phase angle. The dashed lines depict the equal phase
angle contours. The centers of the squares are the positions of the
data points.
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amplitude yp = 0.33 (the first column of Fig. 9), the LB curves
become increasingly oblique, indicating that the suspension
structure response is more elastic. This viscous to elastic
transition is reminiscent of the linear viscoelasticity observed
in macroscopic rheological measurements [20,49,50] and the
elastic plateau observed in simulations [18]. With increasing y
the LB curves become more hysteric, indicating a larger degree
of viscous dissipation. These trends are summarized by a plot
of the phase difference between the applied strain and Vg
[Fig. 9(q)]. For the highest De measured we find that the LB
curves exhibit an overshooting behavior that is illustrated by
the figure-eight curves in Figs. 9(1), 9(0), and 9(p). Similar
overshoots have been found in the rheological measurements
with much denser suspensions. In colloidal glasses, the
overshoot is associated with the cage breaking [23,51,52],
while in colloidal crystals the overshoot is suggested to be
related to the zigzag relative motion between two layers of
lattices [9,53-55]. Whether similar mechanisms can explain
the overshoots in our data for low volume fraction ¢ = 0.28
suspensions under LAOS remains unknown. Overall, these
trends are very different from those exhibited by Maxwell
materials where an increase in strain produces a more elastic
response and highlight the unique properties of suspensions
under LAOS.

APPENDIX E: QUIESCENT g(r) IN EXPERIMENTS
AND SIMULATION

We compare the pair-correlation functions g(r) of static
samples from the Brownian dynamics simulation, analytical
calculation, and the experiment in Fig. 10. We find that all
the curves are qualitatively similar and that the simulation
and analytical results agree quantitatively. The analytical
result is calculated from the Percus-Yevick integral equation
[56-58]. The good agreement between the simulation curve
and the theoretical prediction indicates that the steep potential
used in the simulations is a good approximation to the
hard-sphere potential. The experimental g(r) has a longer
extension into the overlapping region (r < 1 um), while the
g(r) from the simulation has a sharp drop at r = 1 um. To
understand this discrepancy, we also simulate the g(r) with

2 -
1.5¢
E
1 -
==== Simulation
0.5F — Analytical solution
0 ) - Expen'lment .

0 0.5 1 1.5 2 2.5 3
Distance (um)

FIG. 10. (Color online) Comparison between the experimental
(joined points), simulation (dashed line), and theoretical (solid line)
g(r) curves for quiescent samples of hard-sphere suspensions for a
volume fraction of 0.28.
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the polydispersity of our sample (2%). We find that the g(r)
with 2% polydispersity is indistinguishable from the curve for
perfectly monodisperse spheres (not shown). This comparison
implies that the tail extended in the overlapping region is due
to the particle featuring errors. The magnitude of the particle
featuring errors is set by limitations in imaging resolution,
mismatched index of refraction, and shape of the point spread
function.

APPENDIX F: QUANTIFICATION OF THE
NONLINEARITY

In addition to reporting on the peak value of W, we further
analyze the data to quantify the saturation at large y, and De.
There are a number of generic methods currently being used to
quantify nonlinearities in the stress response of materials under
LAOS [8,59]. However, these methods require a large amount
of data to perform an accurate measurement of the higher-order
harmonics. In direct imaging experiments, however, each
experimental run only acquires data for five oscillation cycles
since each data point entails scanning the sample in three
dimensions, tracking the particles positions, and calculating
the variations in the pair-correlation function. As such the
data yield is not sufficient for running a harmonic analysis.
Nevertheless, since the majority of the nonlinear response
is associated with saturation plateaus, we can calculate the
deviation of W from the linear response [60] by defining the
degree of nonlinearity A as

1 to+T/2
A=7</ (W (1) — Wp(0)dt

to+T
+/ wun—%mwo, (F1)
to+T/2
where T is the period of one shear cycle, 7y corresponds to the
time where Wz = 0 and W}, > 0, and ¥;(¢) is the recovered
linear response. Here W, is determined by fitting a sine wave to
the linear portion of the data where W5 < 0.025. Equation (F1)
measures the deviation of the actual response Wg(¢) from
the ideal linear response W,(¢). Integrating |\W;(¢) — Wp(?)|
would produce integration artifacts due to noise. Instead, we
divide the integral into two terms, each of which integrates
over a half cycle of the oscillation. This modified analysis
significantly reduces the unbiased error by canceling random
fluctuations. To illustrate the difference between the recovered
linear response and the original fit, we plot ¥; (red dashed line)
and the best fit to the raw data (blue dashed line) in Fig. 11(a).

We calculate A and plot it as a function of strain amplitude y;
for seven different De in Fig. 11(b). We find that for y, < 0.75,
the structure response W is linear at all De. This strain value
is close to y. = 0.24, the cutoff strain obtained by fitting Wp,_,
to an exponential saturation W)X (1 — e~%/%), While we do
not expect these two values to be identical, we do expect that
the saturation behavior is closely tied to the nonlinearity and
as such expect that y, should be on the same order as y,.

At large yp and De, A increases linearly with yy. To study
the De dependence, A is plotted versus De for seven different
yp values in the inset of Fig. 11(b). We find that A < 0.001 and
independent of De at small yy. At large 3 and De, we find that
A is consistent with the form De’>. Whether this functional
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FIG. 11. (Color online) (a) Definition of the degree of nonlinear-
ity A and (b) A as a function of y, for different De. (a) The raw Wy
data are plotted along with the best sinusoid fit to the raw data (blue
dotted line) and the recovered linear response fit (red dashed line). The
selected data (W < 0.25, gray shaded area) for the linear response
fitting are highlighted by red circles. (b) Plot of A as a function of y,
for seven different De. The solid lines are the linear fits to the data
for ¥ > 0.75. The inset shows A versus De for different y, and the
dashed line that illustrates the power law A ~ De%.

dependence extends to larger ) and De and what implications
this functional form suggests are not known.

APPENDIX G: EFFECT OF THE INTERPARTICLE
POTENTIAL ON SIMULATIONS

To examine whether the interparticle potential in Brownian
dynamics simulations effectively mimics the hard-sphere
potential, we calculate the shear stress X xy for three different
potentials: the Lennard-Jones potential, U o< 73, and U
r~3%_ The results of all three different potentials are plotted
along with the data reproduced from previous simulation
results [19] in Fig. 12. For the reproduced data, we determine
the corresponding stresses by multiplying the n value plotted
in Ref. [19] by Pe/67r3.

To examine whether the interparticle potential in Brownian
dynamics simulations effectively mimics the hard-sphere
potential, we calculate the shear stress X xy for three different
potentials, namely, the Weeks-Chandler-Andersen (WCA)
Lennard-Jones-based (LJ) potential, U o r =3¢, and U o< r—°.
Figure 12 shows the results of all three different potentials

—o— Foss & Brady (2000) SD
| —&— Foss & Brady (2000) BD
—— L) potential
—o— r'% potential

10

Stress

0.1

0.01*

0.1 1 10 100
DeYo

FIG. 12. (Color online) Stress responses in different simulations
plotted versus Deyy. The data points of SD and BD are the Stokesian
dynamics simulation (¢ = 0.45) and Brownian dynamics simulation
(¢ = 0.30) from [19], respectively.
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plotted along with data from previously reported simulation
results for hard spheres [19] (for the latter we determine the
corresponding stresses by multiplying the reported 1 value by
Pe/6mr3).

We find that when the steepness of the repulsive branch
of the potential is increased from the WCA Lennard-Jones
potential (U o< r~'%) to U o< r=3, the stress response is
quantitatively similar at small Dey, and deviates very slightly
at Deyy > 10. As the potential steepness is increased from
Uoxr™ to Uocr™° the stress remains quantitatively
similar at all Deyy. This shows thatthe U o r ¢ and U o< r=>°
potentials can both be considered very good approximations
to the hard-sphere potential. The stress outputs from both
potentials also nearly match the resulting stress from previous
Brownian dynamics simulations, which use a different algo-
rithm to generate the hard-sphere potential [19]. Results from
Stokesian dynamics simulations for hard-sphere suspensions
are also available, but for a packing fraction of 0.45 [19],
which is larger than the 0.30 used in the Brownian dynamics
simulations. Under such conditions, the calculated stress from
Stokesian dynamics is approximately one order of magnitude
larger than that found for the Brownian dynamics simulations
at small Deyy. At large Deyy, the stress from Stokesian
dynamics simulations appears to saturate, while the stress in
Brownian dynamics simulation keeps increasing with nearly
constant rate [19].

APPENDIX H: ¥; VS Xyy IN BROWNIAN
DYNAMICS SIMULATION

In previous experimental and theoretical works, it has
been shown that as the suspension is sheared, distortions of
g(7) increase and lead to the Brownian stresses that arise
from the thermal motion of particles [18-20]. Although the
relative contribution from Brownian stress does decrease with
increasing shear rate, it is important to note that this relative
decrease arises because the hydrodynamic contribution grows
linearly with strain rate while the Brownian contribution grows
at a slower rate in this regime.

To examine whether W, reproduces the stress response
in Brownian dynamigs simulations, we directly calculate the
stress tensor X = (X F ), where X is the center to center
position vector and F' is the interparticle force. We plot W
(solid lines) and the XY component of the stress tensor Xyy
(dashed lines) as a function of De for three different yy in
Fig. 13. Here we find good agreement for Wy and X xy at low
shear rates Deyy < 5, which is consistent with the previous
experimental finding [20]. The values of the two calculations
deviate from one another as Dey, > 5. This deviation between
the #7#g(r) integral and the stress response may be caused
by the extra radial integral in Eq. (1). For example, in
the high-shear-rate regime, the separation between particles
becomes really small due to the strong shear flow. This narrow
gap along with the divergent nature of the interparticle force
may lead to large deviations between Wy and Xxy.

We also find that the trend of Xy is strikingly distinct
from that of the existing rheological measurements [10,13]
and our structure measurements. While X yy keeps increasing
as Deyy increases, the latter two types of experiments show
clear saturations at high Deyy. This difference may indicate the
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FIG. 13. (Color online) Plot of W, and shear stress Xyy versus
Dey, for three different y. The black dashed (straight) line illustrates
the power law (Dey;)®>.

increasingly important role of hydrodynamic interactions for
colloidal suspensions driven away from equilibrium by LAOS.

In contrast to the interparticle interactions in the Brownian
dynamics simulations, the Brownian stress in colloidal sus-
pensions is transmitted through the solvent between particles.
To calculate these hydrodynamically mediated forces, it is
necessary to consider the mobility tensors, which require
knowledge of the particle positions and velocities. It has been
shown that as the separation between particles & — 0, the
mobility tensors are singular diverging as 1/£. In addition, it
was shown that because the singular force between particles
is localized to the point of contact, the final force calculation
can be simplified to nkgTa 9§r=2a ##g(r)dS, which has no &
dependence or particle relative position dependence.

In our experiments, we find that the angular part of the pair-
correlation function g(6,¢) has a negligible dependence on
the distance over the integral range. This observation suggests
that one is able to perform a separation of variables on g(¥) =
g(r)g(0,¢). Thus Eq. (1) can be rewritten as

1 2.35a
Vp = (/ g(r)dr)(?{ ffg(@,q’))dQ). (H1)
0.51a 1.84a r=2a

The value of the first radial integral [ g(r)dr is nearly
constant at all shear rates as shown in Fig. 6(a). The
second integral, which only accounts for the contacting
particles, is mathematically proportional to the Brownian
stress nkgTa 9% Y #7g(¥)dS. Taken together, these results
suggest that Wp is proportional to the Brownian stress response
of colloidal suspensions under LAOS.

To further examine whether Wz reports on the stresses it will
be necessary to elucidate the role played by hydrodynamically
mediated particle interactions. As such full hydrodynamic
simulations will be necessary to more rigorously investigate
the effect from the extra radial integral in Eq. (1) and the
accuracy of estimating the total Brownian stress by only
considering the pairwise term. Experimental confirmation of
the ability to use W to report on the stress will require precise
force measurements that will allow for such comparisons.
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