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Nonequilibrium interfaces in colloidal fluids
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The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid)
phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated
theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium
state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation
of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in
between, they can be expected to be suitable for analogous experimental studies, too. The major finding is
that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and
the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This
is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not
following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the
dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium
or a nonequilibrium system is considered. The degree of nonquilibrium between the bulk phases is found to
not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine
the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the
underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the
interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which
nonequilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of
systems.
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I. INTRODUCTION

Interfaces between two fluid phases are commonly char-
acterized by the interfacial tension, because this quantity is
sensitive to the interfacial structure [1,2] and, at the same
time, it is easy to measure by means of numerous experimental
methods developed during the last two centuries [3]. Whereas
the interfacial tension is thermodynamically defined only for
two-phase coexistence [2], it is frequently discussed also
for nonequilibrium conditions, e.g., in the context of the
adsorption dynamics of surfactants [4,5]. Since interfaces
typically extend over a spatial range of the order of the bulk
correlation length, whereas the bulk phases are typically of
macroscopic extension, one can intuitively expect the existence
of a time scale τ× such that at times t � τ× the interface
relaxes towards some local equilibrium state the properties
of which are governed by the adjacent nonequilibrium bulk
phases and at times t � τ× the bulk phases relax towards
the global equilibrium state. In the following the processes
taking place at times t < τ× or t > τ× are referred to as the
“early-stage” or the “late-stage” relaxation, respectively. The
late-stage relaxation processes have been extensively studied
in the past, probably because here one can expect the notion of
a nonequilibrium interfacial tension being applicable [6–10].
However, neither the early-stage relaxation process of the
interface nor the nature of the local equilibrium state of the
interface in between two slowly relaxing nonequilibrium bulk
phases are understood so far. Obviously, at late times, when
the ultimate global equilibrium state is reached, the interfacial
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structure is that in between two bulk phases at coexistence.
However, for nonequilibrium bulk phases it cannot even be
expected a priori that the interface which has been equilibrated
locally during the early-stage relaxation bears a resemblance
to any structure found at global equilibrium. Moreover, one
has to reckon with a nontrivial dependence of the local
equilibrium interfacial structure on the properties of the
adjacent nonequilibrium bulk phases. In the present work we
analyze these open questions on the early-stage relaxation
process.

From the experimental perspective it is difficult to study
the time dependence of the interfacial tension during the
early-stage relaxation process of an interface in a molecular
fluid, because it relaxes on time scales much shorter than the
time of measurements of the interfacial tension. One possible
solution is to consider molecular fluids close to a critical
point [9] or a wetting transition [7,8], which, however, is
technically demanding due to the requirement of a stable
temperature control. Here it is proposed to alternatively study
the time dependence of the interfacial tension by means of
colloidal fluids which can phase separate into a colloid-rich
(liquid) phase and a colloid-poor (vapor) phase [11]. The
interfacial tension in colloidal fluids is typically some orders of
magnitude smaller than in molecular fluids and the relaxation
times can be of the order of hours [11]. The clear separation of
time scales in long relaxation times of the colloidal structure,
intermediate times to measure the interfacial tension, and short
relaxation times of the solvent leads to a proper account of
a time-dependent interfacial tension for colloidal fluids. For
such systems the time-dependent sedimentation and interface
formation in the gravitational field [11] as well as the interface
fluctuation dynamics [12] have been recorded using direct
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microscopy imaging. However, these studies were devoted to
the interface formation driven by an external field.

In the present theoretical investigation we study the early-
stage formation of an interface between an oversaturated
colloidal liquid in contact with an undersaturated colloidal
vapor in the absence of external fields. The analogous situation
in a molecular fluid would lead to the evaporation of the
liquid; hence, the same term is used for colloidal fluids
here. It should be stressed that, although the colloids are
dispersed in a molecular solvent, the latter is assumed to
be uniformly distributed throughout the system, whereas the
interface is formed by the contact of the colloid-rich and
the colloid-poor phases. Here only times longer than the
relaxation time of the molecular solvent are considered, for
which the colloidal particles are in local equilibrium with
the solvent and exhibit diffusive Brownian dynamics. An
appropriate theoretical approach for this situation is dynamic
density functional theory (DDFT) [13–16], which describes
the conserved dynamics of time-dependent number density
profiles of colloidal particles [17,18]. Processes occurring on
time scales shorter than the relaxation time of the molecular
solvent, e.g., in the ballistic regime, are not considered in
the following. The model of colloidal fluids used here, the
formalism of DDFT, and the relevant observables, in particular
the interfacial tension, are introduced in Sec. II. The results on
the interfacial structure dynamics, the time dependence of the
interfacial tension, the energy dissipation during the interface
formation, as well as on the evaporation rates are discussed in
Sec. III. Conclusions and a summary are given in Sec. IV.

II. FORMALISM

A. Model

Consider a three-dimensional dispersion of colloidal hard
spheres of diameter d which in addition interact via the square-
well potential

U (r) =
{−ε, r � λ

0, r > λ,
(1)

with the cohesive energy ε > 0 and the extension λ of the
attractive well.

In the following the focus is on collective properties of
the colloidal fluid which can be expressed in terms of the
local number density �(r) at position r. However, instead of
describing the fluid structure by the number density �(r) it is
more convenient to use the dimensionless occupancy φ(r) :=
�(r)/�max ∈ [0,1], where �max is the maximal number density
of the fluid phase at the given temperature.

Local equilibrium is assumed in the following, since only
times longer that the relaxation time of the molecular solvent
are considered. Consequently the temporal evolution of the
system is described in terms of a Helmholtz free energy
density functional F [φ]. The present study does not aim for
a quantitative description of a real colloidal fluid but for a
qualitative and generic account of the early-stage interface
formation. Hence, in order to minimize the technical efforts, a
free energy density functional

F [φ] = FHS[φ] + F ex[φ] (2)

in the spirit of Ebner, Saam, and Stroud [19] is chosen,
which comprises a local free energy density functional FHS[φ]
describing a hard-sphere fluid and a quadratic excess free
energy functional F ex[φ] to account for the square-well
potential U (r) [see Eq. (1)]. Using a local functional FHS[φ]
to describe hard spheres is obviously not expected to be
quantitatively precise, in particular in the context of steep
interfaces, and there are numerous highly sophisticated density
functionals which reproduce the structure of hard-sphere fluids
well [20–22]. However, this is not expected to influence the
general conclusions of this investigation, because FHS[φ] leads
to qualitatively correct profiles.

Here we chose the lattice-gas-like local hard-sphere
functional

FHS[φ] = kBT �max

∫
d3r{φ(r) ln[φ(r)]

+ [1 − φ(r)] ln[1 − φ(r)]} (3)

and the excess functional within random phase approximation
(RPA)

F ex[φ] = �2
max

2

∫
d3r

∫
d3r ′ U (|r − r′|)φ(r)φ(r′). (4)

The former is used, because it is the simplest form which leads
to fluid densities �(r) strictly in the interval [0,�max]. More-
over, the theoretical phase diagram resulting from Eqs. (2)–(4)
(see Fig. 1 and Sec. II B) can be calculated analytically,
and it agrees semiquantitatively with the fluid parts of the
phase diagrams of real colloidal dispersions [23]. The perfect
symmetry of the lattice-gas model with respect to an exchange
of particle and vacancy is irrelevant in the present study.

B. Phase behavior

Assuming a uniform bulk state the phase behavior of the
colloidal fluid introduced in the previous Sec. II A can be
inferred from the Helmholtz free energy density

f = F

V
= kBT �max

(
φ ln(φ) + (1 − φ) ln(1 − φ) − φ2

T ∗

)
(5)

with the effective temperature

T ∗ =
(

− �max

2kBT

∫
d3r U (|r|)

)−1

= 3kBT

2πε�maxλ3
. (6)

The equation of state reads

p

kBT �max
= − ln(1 − φ) − φ2

T ∗ (7)

and the liquid phase coexists with the vapor phase at chemical
potential

μ̃co(T ∗) := μco(T ∗)

kBT
= ∂

∂φ

f

kBT �max

∣∣∣∣
co

= − 1

T ∗ (8)

below the critical point (T ∗ < T ∗
c ), which is located at

T ∗
c = 1

2 , φc = 1
2 , μ̃c = μ̃co(T ∗

c ) = −2. (9)
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FIG. 1. Phase diagram of the colloidal fluid described in Sec. II A
of hard spheres interacting by an additional square-well potential.
The solid lines represent the liquid-vapor coexistence curves T ∗

b (φ)
[(a), see Eq. (10)] and μ̃co(T ∗) [(b), see Eq. (8)]. The two-phase
coexistence region terminates in a critical point [•, see Eq. (9)].

Finally the liquid-vapor binodal curve is given by

T ∗
b (φ) = 2φ − 1

ln
(

φ

1−φ

) . (10)

The phase diagram is displayed in Fig. 1. Due to the choice
of a simple lattice-gas-like description the phase diagram in
Fig. 1(a) is symmetric with respect to the critical occupancy
φ = φc. However, this symmetry is irrelevant to all conclusions
to be drawn later.

C. Dynamic density functional theory

If the system is prepared in an arbitrary initial state
φ(r,t = 0), its state φ(r,t > 0) evolves with time t such that the
Helmholtz free energy F [φ(t)] reaches a minimum at t → ∞.
In the present work the colloidal processes to be described in
terms of φ(r,t) are much slower than the molecular degrees

of freedom. Hence one can assume local thermodynamic
equilibrium and define the local chemical potential [18]

μ(r,[φ(t)]) = 1

�max

δF

δφ(r)
[φ(t)], (11)

which leads to a local force −∇μ(r,[φ(t)]) that generates a
flux [18]

j(r,[φ(t)]) = −D�max

kBT
φ(r,t)∇μ(r,[φ(t)]) (12)

with the collective diffusion constant D. From the continuity
equation of the particle number one obtains the conserved
dynamics (model B [24]) equation of motion of φ(r,t):

�max
∂

∂t
φ(r,t) = −∇ · j(r,[φ(t)]). (13)

In the low-density limit, φ(r,t) � 1, Eqs. (11)–(13) lead to
the well-known diffusion equation ∂φ(r,t)/∂t = D∇2φ(r,t).
However, in general, Eqs. (11)–(13) do not correspond to
a simple diffusion equation of the occupancy φ(r,t) for at
least three reasons: First, at higher densities the effective
diffusion “constant” becomes φ(r,t) dependent, which renders
the problem nonlinear. Second, upon deriving an approximate
diffusion equation from Eqs. (11)–(13) one has to decide
around which reference density to expand, and there is no
unique natural choice in the context of liquid-liquid interfaces.
Third, the driving force for the diffusion process described by
Eqs. (11)–(13) is not a nonvanishing gradient in the density
(consider, e.g., a liquid-liquid interface at equilibrium), but
in the local chemical potential [see Eq. (12)]. Hence any
derivation of a diffusion equation introduces some assumption
concerning the final structure at the end of the relaxation
process. However, Eqs. (11)–(13) lead uniquely, i.e., without
further assumptions, from any initial state to that final state
which is consistent with the underlying density functional.

In the following a planar surface between liquid and
vapor bulk states (see Fig. 1) will be considered. The lateral
translational symmetry leads to profiles φ(z,t) = φ̃(̃z,̃t) which
depend only on the coordinate z = z̃λ normal to the surface
and on the time t = t̃ τ with the diffusion time τ = λ2/D.
Using Eqs. (1)–(4) one obtains from Eq. (11)

μ̃(̃z,[φ̃]) := μ(z,[φ])

kBT

= ln

(
φ̃(̃z)

1 − φ̃(̃z)

)
− 3

2T ∗

∫ 1

−1
du(1 − u2)φ̃(̃z + u).

(14)

Equation (12) leads to

j̃ (̃z,[φ̃]) := j (z,[φ])

�maxλ/τ
= −φ̃ (̃z)

∂

∂z̃
μ̃(̃z,[φ̃]) (15)

and Eq. (13) takes the form

∂

∂t̃
φ̃(̃z,̃t) = − ∂

∂z̃
j̃ (̃z,[φ̃ (̃t)]). (16)

Equations (14)–(16) demonstrate that, when expressed in
terms of the interaction range λ and the diffusion time τ , the
temporal evolution of the state of the system φ̃(̃z,̃t) depends
only on one parameter: the effective temperature T ∗.
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In the present study Eqs. (14)–(16) are solved numerically
subject to the boundary conditions

φ̃ (̃z → −∞,̃t > 0) → φL, (17)

φ̃ (̃z → +∞,̃t > 0) → φV, (18)

where the bulk occupancies φL and φV correspond to the
reduced bulk chemical potential differences from coexis-
tence 
μ̃L := μ̃L − μ̃co(T ∗) � 0 (liquid) and 
μ̃V := μ̃V −
μ̃co(T ∗) � 0 (vapor), respectively, at a given temperature
T ∗ � T ∗

c (see Fig. 1).
Since our interest here is not in describing a realistic

system quantitatively but in inferring the general mechanism
of interface formation, we consider the artificial but simple
initial state

φ̃ (̃z,̃t = 0) =
{

φL, z̃ < 0

φV, z̃ � 0.
(19)

The conclusions to be drawn later are not expected to depend
on this choice.

D. Gibbs dividing surface

In order to quantify the amount of colloidal particles
evaporating from the liquid into the vapor phase the position
of the Gibbs dividing surface zGDS(t) at time t is introduced
by [2]∫ zGDS(t)

−∞
dz[φ(z,t) − φL] +

∫ ∞

zGDS(t)
dz[φ(z,t) − φV] = 0.

(20)

In the light of the continuously spreading tails of the liquid-
liquid interface to be observed later [see, e.g., Fig. 2(d)] the
notion of a Gibbs dividing surface might appear somewhat
unusual, but it is only the aspect of the position and not that of
the (diverging) width which is used here. Taking the derivative
of the previous equation with respect to time t leads to

(φL − φV)
dzGDS(t)

dt
=

∫
dz

∂φ(z,t)

∂t

= − 1

�max

∫
dz

∂j (z,t)

∂z

= − 1

�max
[j (∞,t) − j (−∞,t)]

= 0. (21)

Therefore, the position of the Gibbs dividing surface is
independent of time: zGDS(t) = zGDS(0) = 0 [see Eq. (19)].
Consequently, the excess number of particles per cross-
sectional area in the liquid phase

�L(t) := �max

∫ 0

−∞
dz [φ(z,t) − φL] (22)

changes with the rate

d�L(t)

dt
= �max

∫ 0

−∞
dz

∂φ(z,t)

∂t
= −

∫ 0

−∞
dz

∂j (z,t)

∂z

= − [j (0,t) − j (−∞,t)] = −j (0,t). (23)

This finding is to be expected due to the underlying conserved
dynamics of the colloidal fluid. A dimensionless form of
Eq. (22) is given by

�̃L(̃t) := �L(t)

�maxλ
=

∫ 0

−∞
dz̃[φ̃ (̃z,̃t) − φL]. (24)

E. Interfacial tension

The interfacial tension is defined as the work per interfacial
area which is required to increase the interfacial area A but
keeping the total volume V as well as the number of particles
N constant [2]:

γ [φ] =
(

∂F [φ]

∂A

)
V,N

. (25)

In the present case of a colloidal dispersion a change of
the interfacial area between the colloidal liquid and the
colloidal vapor could be achieved by deforming the container
of the fluid appropriately, which leads to a deformation of
the incompressible molecular solvent dragging the dispersed
colloids with it. Due to the separation of molecular and
colloidal time scales, one is able to perform this deformation,
on the one hand, sufficiently slow in order to stay in the
regime of low Reynolds numbers to avoid dissipation due
to turbulence, and, on the other hand, sufficiently fast such
that the colloidal distribution φ(z,t) is practically not evolving
during the measurement.

Consider the system volume V ⊆ R3 and a divergence-free
map w : V → R3, i.e., div w = 0, which corresponds to the
incompressibility of the solvent. This leads to a shift of any
point r ∈ V to the new position rw := r + w(r) as well as to the
deformation of the system volume V into Vw := {rw ∈ R3|r ∈
V}. Moreover, div w = 0 implies that the number density of
colloids does not change due to deformation w: φw(rw) = φ(r).

The free energy Fw[φw] of the deformed system Vw in state
φw is given by [see Eqs. (2)–(4)]

Fw[φw] = kBT �max

∫
Vw

d3rw{φw(rw) ln[φw(rw)]

+ [1 − φw(rw)] ln[1 − φw(rw)]} + �2
max

2

∫
Vw

d3rw

×
∫
Vw

d3r ′
w U (|rw − r′

w|)φw(rw)φw(r′
w)

= kBT �max

∫
V

d3r{φ(r) ln[φ(r)]

+ [1 − φ(r)] ln[1 − φ(r)]} + �2
max

2

∫
V

d3r

∫
V

d3r ′

×U [|r − r′ + w(r) − w(r′)|]φ(r)φ(r′). (26)
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FIG. 2. (Color online) Temporal evolution of the occupancy profiles φ̃ (̃z,̃t) in terms of the dimensionless position z̃ = z/λ and the
dimensionless time t̃ = t/τ for reduced temperatures T ∗ and reduced bulk chemical potential differences from coexistence 
μ̃L,V. Panels (a)
and (b) display the relaxation towards the equilibrium interfaces (thin dashed lines) between bulk phases at coexistence, which slows down
upon approaching the critical temperature T ∗

c = 1/2. The symmetry with respect to the critical occupancy φc = 1/2 is an irrelevant artifact
of the lattice-gas expression Eq. (3). Panels (c) and (d) exemplify the relaxation and translation of the interface in the absence of two-phase
coexistence. Far below the critical temperature T ∗

c [see panel (c)] the interface relaxation is faster than the translation, whereas the opposite
occurs close to the critical point [see panel (d)]. For long times during the early-stage relaxation process the structures of the nonequilibrium
interfaces become identical to the equilibrium interfaces at the corresponding temperatures T ∗.

Obviously only the RPA part of Fw[φw] depends on the
the deformation w, i.e., only this double volume integral
contributes to the interfacial tension Eq. (25).

If the deformation w stretches the Cartesian z component
z − z′ of the difference vector r − r′ between two points r,r′ ∈
V by a factor η and the projection 
r⊥ onto the x-y plane by,
due to div w = 0, a factor −η/2, i.e.,

|r − r′ + w(r) − w(r′)|
=

√
(1 − η/2)2
r2

⊥ + (1 + η)2(z − z′)2, (27)

the RPA part of Fw[φw] equals

−πε�2
maxA

2

∫
dz φ(z)

×
∫ z+λ/(1+η)

z−λ/(1+η)
dz′ λ2 − (1 + η)2(z − z′)2

(1 − η/2)2
φ(z′) (28)

and the cross-sectional area A is deformed to Aw =
(1 − η/2)2A.

Equation (25) leads to

γ [φ] = dFw[φw]/dη

dAw/dη

∣∣∣∣
η=0

= πε�2
max

2

∫
dz φ(z)

∫ z+λ

z−λ

dz′[λ2 − 3(z − z′)2]φ(z′)

(29)

and with Eq. (6) to

γ̃ [φ̃] := γ [φ]

kBT �maxλ

= 3

4T ∗

∫
dz̃ φ̃(̃z)

∫ 1

−1
du (1 − 3u2)φ̃(̃z + u). (30)
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F. Dissipation rate

The rate of energy dissipation per cross-sectional area is
denoted by

P (t) = −dF [φ(t)]/A

dt

= − 1

A

∫
d3r

δF

δφ(r)
[φ(t)]

∂φ(r,t)
∂t

= 1

A

∫
d3r μ(r,[φ(t)])∇ · j(r,[φ(t)]). (31)

Since the normal component of the flux j vanishes at the system
boundaries, an integration by parts using the Gaussian integral
theorem leads to

P (t) = 1

A

∫
d3r(−∇μ {r,[φ(t)])} · j(r,[φ(t)])

= kBT

D�maxA

∫
d3r

j(r,[φ(t)])2

φ(r,t)
, (32)

and hence

P̃ (̃t) := P (t)

kBT �maxλ/τ
=

∫
dz̃

j̃ (̃z,[φ̃(̃t)])2

φ̃(̃z,̃t)
. (33)

III. RESULTS AND DISCUSSION

A. Interfacial structure

Numerical solutions φ̃ (̃z,̃t) of Eqs. (14)–(18) are displayed
in Fig. 2 for the two representative reduced temperatures T ∗ =
0.2 [panels (a) and (c)] and T ∗ = 0.45 [panels (b) and (d)]. The
latter temperature is close to the reduced critical temperature
T ∗

c = 1/2, while the former temperature corresponds to a
typical triple point temperature, which for many fluids is
approximately 40% of the critical temperature [25].

Figures 2(a) and 2(b) correspond to the relaxation towards
the equilibrium interface between both bulk phases at co-
existence (
μ̃L = 
μ̃V = 0). At low reduced temperatures
T ∗ the interface forms rapidly [see Fig. 2(a)], whereas the
interface formation is slowed down close to the critical point
[see Fig. 2(b)].

Nonequilibrium conditions are exemplified in Figs. 2(c)
and 2(d) by an oversaturated colloidal liquid (
μ̃L = 1 > 0)
in contact with an undersaturated colloidal vapor (
μ̃V =
−1 < 0). Besides the formation of the liquid-vapor interface
a drift due to the chemical potential difference between the
bulk phases is observed. At low reduced temperatures T ∗ the
interface forms before a significant drift occurs [see Fig. 2(c)],
whereas close to the critical point the interface formation is
slowed down such that the interface drift sets in before [see
Fig. 2(d)].

The remarkable observation to be made in Figs. 2(c)
and 2(d) is that even for strong nonequilibrium conditions
(|
μ̃L,V| �� 1) the interfacial structures become identical to
that of the equilibrium interfaces (thin dashed lines) at the
respective reduced temperature T ∗.

In order to understand the formation process of interfaces,
the reduced local chemical potential difference from coexis-
tence 
μ̃(̃z,̃t) = μ̃(̃z,̃t) − μ̃co(T ∗) and the reduced flux j̃ (̃z,̃t)
are displayed in Fig. 3 for the intermediate reduced temperature
T ∗ = 0.35. In the case of both bulk phases being at coexistence

(
μ̃L,V = 0) one infers a scaling behavior 
μ̃(̃z,̃t → ∞) 
t̃−1M2(̃z̃t−1/2) [Fig. 3(a)] and j̃ (̃z,̃t → ∞)  t̃−3/2J2(̃z̃t−1/2)
[Fig. 3(c)] with scaling functions M2(x) and J2(x). However,
in the absence of two-phase coexistence 
μ̃(̃z,̃t → ∞) 
M1(̃z̃t−1/2) [Fig. 3(b)] and j̃ (̃z,̃t → ∞)  t̃−1/2J1(̃z̃t−1/2)
[Fig. 3(d)] with scaling functions M1(x) and J1(x) is found.
The scaling functions M1,2(x) and J1,2(x) in general depend
on T ∗, 
μ̃L, and 
μ̃V. The total scaling behavior may be
combined to


μ̃(̃z,̃t → ∞)  M1(̃z̃t−1/2) + t̃−1M2(̃z̃t−1/2) (34)

and

j̃ (̃z,̃t → ∞)  t̃−1/2J1(̃z̃t−1/2) + t̃−3/2J2(̃z̃t−1/2). (35)

Obviously, Eq. (35) follows from Eq. (34) by means of
Eq. (15). For two-phase coexistence the scaling function M1(x)
in Eq. (34) vanishes so that the leading contribution is given
by the second term on the right-hand side of Eq. (34). In the
absence of two-phase coexistence the scaling function M1(x)
does not vanish identically so that it gives rise to the leading
order contribution.

Considering the situation of a nonequilibrium interface
displayed in Fig. 3(b), one observes that the reduced local
chemical potential μ̃(̃z ≈ 0,̃t) in the vicinity of the Gibbs
dividing interface is close to the coexistence value μ̃co(T ∗) =
−1/T ∗. Then the scaling 
μ̃(̃z,̃t → ∞)  M1(̃z̃t−1/2) im-
plies μ̃(̃z,̃t → ∞) ≈ μ̃co(T ∗) for an increasingly wide range
|̃z| < R̃(̃t) ∼ t̃1/2 around the Gibbs dividing interface [see
inset in Fig. 3(b)]. Once R̃(̃t) exceeds the bulk correlation
length, the local chemical potential in the interfacial range
coincides with that of the equilibrium interface. Therefore,
during the early-stage relaxation process nonequilibrium
interfaces approach the same structure as the equilibrium
interface at the same temperature, because the finite chemical
potential difference between the bulk phases is bridged by the
local chemical potential over an unlimited spatial range so
that locally, at the interface position, an effectively uniform
chemical potential profile is sensed by the fluid.

B. Interfacial tension

The phenomenon of nonequilibrium interfaces to approach
the structure of equilibrium interfaces discussed in the previous
Sec. III A implies the approach of the interfacial tension,
Eq. (30), towards the equilibrium value. This expectation is
confirmed in Fig. 4, which displays the interfacial tension
γ̃ (̃t) = γ̃ [φ̃ (̃t)] as a function of the dimensionless time t̃

for various equilibrium and nonequilibrium conditions of the
bulk phases and several reduced temperatures T ∗. The curves
approach the equilibrium values (thin horizontal dashed lines)
at the respective temperatures. As is intuitively expected the
initial deviations of the interfacial tension from its equilibrium
value increase with the deviations of the two bulk fluids from
two-phase coexistence. Consequently the larger the deviation
from two-phase coexistence, the longer the relaxation of the
interfacial tension to its final equilibrium value takes.

The actual mode of relaxation towards the equilibrium
value of the interfacial tension can be inferred from Fig. 5,
which displays the difference 
γ̃ (̃t) of the interfacial tension
at dimensionless time t̃ from the final equilibrium value for
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FIG. 3. (Color online) Scaling behavior of the reduced local chemical potential difference from coexistence 
μ̃(̃z,̃t) and of the reduced
flux j̃ (̃z,̃t) in terms of the dimensionless position z̃ = z/λ and the dimensionless time t̃ = t/τ for reduced temperature T ∗ = 0.35. For both bulk
phases at coexistence the leading contributions are of the forms 
μ̃(̃z,̃t → ∞)  t̃−1M2(̃z̃t−1/2) [panel (a)] and j̃ (̃z,̃t → ∞)  t̃−3/2J2(̃z̃t−1/2)
[panel (c)], whereas in the absence of two-phase coexistence the leading contributions are given by 
μ̃(̃z,̃t → ∞)  M1(̃z̃t−1/2) [panel (b)]
and j̃ (̃z,̃t → ∞)  t̃−1/2J1(̃z̃t−1/2) [panel (d)]. The inset in panel (b) illustrates the temporal increase of the spatial range with μ̃(̃z,̃t) ≈ μ̃co(T ∗)
around the Gibbs dividing interface at z̃ = 0.

the reduced temperature T ∗ = 0.35. It can be observed that
for two-phase coexistence the relaxation occurs according to

γ̃ (̃t) ∼ t̃−3/2, whereas in the absence of two-phase coexis-
tence the decay is of the form 
γ̃ (̃t) ∼ t̃−1/2. The algebraic
relaxation of the interfacial tension is related to the underlying
conserved dynamics, which requires rearrangements of the
fluid to occur by transport. The observation that the relaxation
in the case of two-phase coexistence is faster (with exponent
−3/2) than in the absence of two-phase coexistence (with
exponent −1/2) can be understood by noting that in the
former situation only the interface relaxes, whereas in the latter
situation the interface relaxation occurs on top of a diffusive
flow from one bulk phase to the other.

C. Energy dissipation

During the formation of the interface or the evaporation
of particles from the oversaturated into the undersaturated
bulk phase energy is dissipated, which corresponds to a
decrease of the total Helmholtz free energy F [φ(t)]. Since

an isothermal system is considered here the dissipated energy
is absorbed by the heat bath. Figure 6 displays the reduced
energy dissipation rate P̃ (̃t) defined in Eq. (33) for reduced
temperature T ∗ = 0.35 and various equilibrium and nonequi-
librium conditions. The dissipation rate decays algebraically
according to P̃ (̃t → ∞) ∼ t̃−5/2 for two-phase coexistence
and P̃ (̃t → ∞) ∼ t̃−1/2 otherwise. These exponents are a
simple consequence of Eq. (35) used in Eq. (33).

The origin of the observed differences between the case of
two-phase coexistence and that of nonequilibrium conditions
is again the fact that in the absence of two-phase coexistence
dissipation is dominated by the diffusive flow induced by the
two bulk phases being not at equilibrium with each other,
which does not occur for two-phase coexistence.

D. Evaporation

In the absence of two-phase coexistence with an oversatu-
rated liquid and/or an undersaturated vapor phase one expects
evaporation of the liquid. This terminology is used here also
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FIG. 4. (Color online) Temporal evolution of the reduced inter-
facial tension γ̃ (̃t) in terms of the dimensionless time t̃ = t/τ for
various reduced temperatures T ∗. Irrespective of the states 
μ̃L,V of
the bulk phases, the interfacial tension approaches the values of the
equilibrium interfaces (thin horizontal dashed lines) at the respective
reduced temperatures T ∗.

in the context of colloidal fluids with colloid-rich (liquid) and
colloid-poor (vapor) phases. Amongst the various possibilities
to quantify evaporation two are shown in Fig. 7.

Figure 7(a) displays the reduced number of evaporated
particles per cross-sectional area −�̃L(̃t), which is identical
to the negative of the reduced excess number of particles per
cross-sectional area in the liquid [see Eq. (24)]. The asymptotic
behavior is given by −�̃L(̃t → ∞) ∼ t̃1/2. Therefore, the
number of evaporated particles is not bounded, but the rate
of evaporation is approaching zero.

Figure 7(b) depicts the absolute reduced interface position
|̃z1/2(̃t)|, which is defined by the location of the occupancy
50%, i.e., by φ̃ (̃z1/2(̃t),̃t) = 1/2. One observes |̃z1/2(̃t →
∞)| ∼ t̃1/2, which implies that the interface is shifted infinitely
far from the location of the Gibbs dividing interface. It is
interesting to note that z̃1/2(̃t) is positive, i.e., the interface
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FIG. 5. (Color online) Deviation 
γ̃ (̃t) of the interfacial tension
from the equilibrium value as a function of the dimensionless time
t̃ = t/τ for reduced temperature T ∗ = 0.35. As a function of time t̃

the relaxation occurs algebraically according to 
γ̃ (̃t → ∞) ∼ t̃−3/2

for both bulk phases at coexistence and 
γ̃ (̃t → ∞) ∼ t̃−1/2 for
nonequilibrium conditions.

is shifted towards the vapor phase, for (
μ̃L,
μ̃V) = (1,−1)
and (1,0), whereas it is negative, i.e., the interface is shifted
towards the liquid phase, for (
μ̃L,
μ̃V) = (0,−1). This
finding may be illustrated by saying that an oversaturated liquid
is “flooding” the vapor phase, whereas an undersaturated vapor
is “eroding” the liquid phase.
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FIG. 6. (Color online) Reduced energy dissipation rate P̃ (̃t) per
cross-sectional area as a function of the dimensionless time t̃ = t/τ

for reduced temperature T ∗ = 0.35. As a function of time t̃ the
dissipation decays algebraically according to P̃ (̃t → ∞) ∼ t̃−5/2

for both bulk phases at coexistence and P̃ (̃t → ∞) ∼ t̃−1/2 for
nonequilibrium conditions.
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FIG. 7. (Color online) Reduced number of evaporated particles
−�̃L(̃t) per cross-sectional area [panel (a)] and absolute reduced
interface position |̃z1/2(̃t)|, where φ̃ (̃z1/2(̃t),̃t) = 1/2, [panel (b)]
as functions of the reduced time t̃ = t/τ for reduced temperature
T ∗ = 0.35. Both quantities increase algebraically ∼̃t1/2.

IV. CONCLUSIONS AND SUMMARY

In this work the early-stage relaxation of equilibrium and
nonequilibrium interfaces in colloidal dispersions have been
studied, which can separate in a colloid-rich (liquid) phase
and a colloid-poor (vapor) phase (Fig. 1). Close to the critical
point the interface formation is considerably slowed down as
compared to temperatures further away (Fig. 2). Moreover,
for the bulk phases being not at equilibrium the process
of interface formation is superimposed by the evaporation
of colloidal particles from the liquid into the vapor phase
(Fig. 2). However, the most surprising observation is that,
irrespective of how much the bulk phases differ from two-
phase coexistence, the interfacial structure approaches that
at two-phase coexistence during the early-stage relaxation
process. This surprising observation implies that the relaxation
towards global equilibrium of the interface is not following
but preceding that of the bulk phases, i.e., the interface relaxes
independently of the bulk phases.

During the early-stage relaxation process the local chemical
potential and the flux, which, as functions of position,

interpolate between the corresponding bulk values, approach
scaling forms [Fig. 3 and Eqs. (34) and (35)]. On the one
hand, the leading order contributions in this scaling exhibit
power-law behavior in time, the values of the exponents of
which depend on whether an equilibrium or a nonequilibrium
system is considered [Eqs. (34) and (35)]. The occurrence
of power-law behavior is linked to the underlying conserved
dynamics (model B), while a nonconserved dynamics (e.g.,
model A [24]) would give rise to an exponential decay. On
the other hand, the spatial range in which the local chemical
potential interpolates between the bulk values grows diffu-
sively with time so that the gradient, and thus the flux, decays
with time. Hence, the chemical potential becomes locally
constant during the early-stage relaxation process, which, at
the value of the coexistence chemical potential, explains the
occurrence of a liquid-vapor interfacial structure identical
to that for two-phase coexistence, even in nonequilibrium
systems. Consequently, the interfacial tension decays to the
value at two-phase coexistence irrespective of whether an
equilibrium or a nonequilibrium system is considered (Fig. 4),
while the degree of nonequilibrium merely determines the
quantitative deviation from the equilibrium value.

Concerning the questions raised in the Introduction on
nonequilibrium interfaces in molecular fluids one notes that
these systems, in contrast to colloidal fluids, have to be
described by model H dynamics [24] rather than by model
B dynamics. Hence, due to the possibility of waves and
turbulence within model H dynamics, it is conceivable that
the decay modes of the interfacial tensions (Fig. 5) and of
the dissipation rates (Fig. 6) could be different for molec-
ular and for colloidal fluids. However, due to the line of
arguments for model B dynamics given above, which merely
relies on the existence of a local chemical potential which
interpolates between the bulk values and which becomes
locally constant, the interfacial tensions in nonequilibrium
systems within model H dynamics can also be expected to ap-
proach the coexistence values during the early-stage relaxation
process.

Finally, the evaporation of colloidal particles from the
liquid into the vapor phase in nonequilibrium systems exhibits
diffusive signatures (Fig. 7), which is obviously linked to the
underlying conserved dynamics.

To summarize the present work, the early-stage relaxation
of an interface in nonequilibrium colloidal fluids, during
which the interface but not the bulk phases relax, towards
that for two-phase coexistence has been observed, explained,
and quantified within a simple model. It has been argued
that during the early-stage process an approach of quan-
tities such as the interfacial tension towards the equilib-
rium values can be expected to occur also for molecular
fluids, whose dynamics differ from that of colloidal flu-
ids. Experimental investigations using colloidal fluids may
be interesting to verify the theoretical picture obtained
here.
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