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Magnetic wire-based sensors for the microrheology of complex fluids
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We propose a simple microrheology technique to evaluate the viscoelastic properties of complex fluids. The
method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic
field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an
ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered
rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey
scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the
rheological parameters of the fluid are determined.
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I. INTRODUCTION

Rheology is the study of flow and deformation of fluids
when they are submitted to mechanical stresses. Conventional
rheometers determine the relationship between strain and
stress in steady or oscillating flow on samples of a few
milliliters. Microrheology, in contrast, studies the motion of
micron-size probe particles that are thermally fluctuating via
the interactions with a surrounding medium or particles that are
forced by an external field. In the first case, the microrheology
is said to be passive and in the second active. In both cases, the
motion of the probes is related by the mechanical properties of
the medium. Fluids produced in small quantities, e.g., costly
protein dispersion or fluids confined in small volumes down to
1 pl, such as living cells, can be examined only by use of this
technique.

With the development of microfluidics systems in the past
decade [1], rapid advances were made in the field of microrhe-
ology. Standard experimental protocols and data treatment
software are now available and implemented on a regular and
controlled basis [2–7]. The correspondence between micro-
and macrorheology is now well established. In microrheology,
the objective is to translate the motion of a probe particle
into the relevant rheological quantities of the fluid such as
the elastic complex modulus or the creep response function.
These quantities are expressed as a function of the frequency
or of the time [8]. With passive motion, this transformation
is done using the generalized Stokes-Einstein equation that
relates the mean-squared displacement of the probe and the
fluid parameters [4–7,9,10]. With active motion, it is obtained
by comparing the force applied to the probe and the distances
by which it moved [4,11,12]. The conversion of the time
or frequency dependencies of some local mircrorheology
variables into a macroscopic rheological response remains,
however, a challenging issue. Several factors can affect this
conversion, such as the signal-to-noise ratio, the variability of
the probe or of its environment, the bandwidth in frequency,
the time scale, and so on. In this context, methods able to
retrieve the fluid parameters directly, i.e., without passing
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through complex data treatments, are highly desirable. The
derivation of such a method is the first objective of the present
study.

As a second objective, we aim to test anisotropic colloids in
active microrheology conditions and determine to what extent
the probes are effective for viscoelastic measurements. Most
microrheology techniques developed so far take advantage
of nano- or micron-size spherical beads. These methods are
both powerful and quantitative. Several studies, however,
reported the use of anisotropic objects such as disks [13],
rods [14–20], and wires [21–23] for both passive [13,21,23]
and active [14,16–18,22,24–28] microrheology. Some recent
work has shown that rod- or wire-based microrheology
experiments could also bring significant advances to the
field [18–20,23,27]. Plasmonic nanorod absorbers were, for
instance, developed as orientation sensors using coupled
planar illumination microscopy imaging [19] or polarization-
sensitive photothermal imaging [20]. Each of these methods
provides the particle trajectory and orientation as a function
of the time, an important outcome for the study of anisotropic
or heterogeneous media. For driven motions, the transition
between steady and hindered rotation of a micro-actuator
above a critical frequency was successfully used to evaluate
the viscosity of the fluid [18,24,26–28]. In the latter case, only
Newton liquids were surveyed.

Here we study the rotational properties of magnetic wires
and examine their potential as probe particles for active
microrheology. As emphasized in recent reviews [29,30], wires
at the micrometer range represent an active research topic due
to their unique applications in mesoscopic physics and fabri-
cation of nanoscale devices. With respect to microrheology,
wires also exhibit distinct advantages as compared to beads.
Submitted to a magnetic field, wires then behave more like
a conventional stress rheometer, in the sense that a torque is
applied and results in the rotation of the probe. Moreover, due
to their large aspect ratio, wires can probe a medium over
different length scales and be sensitive to its heterogeneities.
In the present work, we show that by monitoring the motion
of wires under a steady rotational field, the viscoelastic
parameters of a Maxwell fluid can be determined accurately.
Two physical quantities describing the motion of the wire were
introduced and measured as a function of the frequency: the
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average rotation velocity and the amplitude of the oscillation
in the instable regime. These quantities display characteristic
asymptotic behaviors as a function of the frequency and bear
some similarities with those of the elastic complex modulus
of the fluid.

II. THEORETICAL BACKGROUND

The torque exerted on a magnetic nanowire suspended in
a liquid and submitted to a constant magnetic excitation �H
expresses as

��M = μ0V �m ∧ �H, (1)

where V is the volume of the wire (V = π
4 D2L), �m its

magnetization, and μ0 the permeability in vacuum. For a
superparamagnetic wire of susceptibility χ [18], Eq. (1)
becomes

�M = 1
2μ0V �χH 2 sin(2β). (2)

Here �χ = χ2/(2 + χ ) and β is the angle between the wire
and the orientation of the applied field, as shown in Fig. 1.
Under the application of a magnetic torque �M , the wire rotates
in a propeller-like motion so as to minimize the angle β and to
eventually align with �H . With a field rotating at the frequency
ω, one has the relation β = ωt − θ , where θ describes the
wire orientation (Fig. 1). Immersed in a viscoelastic Maxwell
fluid, a wire experiences two restoring torques that slow down
its rotation. One torque has a viscous origin and is written as
follows:

�V = πη0L
3

3g
(

L
D

) dθV

dt
(3)

and one torque has an elastic origin and is written as follows:

�E = πG0L
3

3g
(

L
D

) θE. (4)

θ = ωt − β

x

y
H

θ
β
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FIG. 1. (Color online) Schematic representation of a wire sub-
mitted to a steady rotational magnetic excitation H (t). Immersed
in a viscoelastic Maxwell fluid, a wire experiences two restoring
torques noted �V and �E , associated to the rotation angles θV and
θE , respectively [Eqs. (3) and (4)]. In the model, the Maxwell fluid
is described as a spring and a dashpot in series. θ denotes the wire
orientation and β the retardation angle with respect to the field.

In Eqs. (3) and (4), η0 is the static viscosity of the fluid,
G0 is its elastic modulus, and g( L

D
) is a dimensionless

function of the anisotropy ratio p = L/D. In this study,
we assume that g(p) = ln(p) − 0.662 + 0.917p − 0.050p2,
which is valid in the interval 2 < p < 20 [31]. In rheology, the
Maxwell model is depicted as a spring and a dashpot in series.
In this configuration, the elastic and viscous deformations
are additive, and the shear stresses are equal. By analogy,
we assume here that θ = θV + θE and that �M = �V = �E ,
resulting in the following differential equation:

dθ (t)

dt
(1 + θ0cos2(ωt − θ ))

= ωCsin2(ωt − θ ) + ωθ0 cos 2(ωt − θ ), (5)

where

ωC = 3

8

μ0�χ

η0
g

(
L

D

)
D2

L2
H 2 (6)

and

θ0 = 3

4

μ0�χ

G0
g

(
L

D

)
D2

L2
H 2. (7)

In Eqs. (6) and (7), the two quantities ωC and θ0 vary
quadratically with the magnetic excitation and θ0 = 2ωCτR .
Here τR denotes the characteristic relaxation time of the
fluid (τR = η0/G0). For the data treatment, the geometrical
characteristics of the wire can be advantageously combined
into a single dimensionless parameter L∗ = L/D

√
g(L/D).

In these conditions, Eq. (6) becomes

ωC = 3μ0�χ

8η0

H 2

L∗2
. (8)

In recent studies, the case of the Newton fluid was evaluated
[18,24,26–28]. It was shown that for frequency above ωC

the wire undergoes a hydrodynamic instability between two
rotation regimes [32,33]. In Regime I, the wire rotates at
the same frequency as the field, whereas in Regime II it is
animated of asynchronous back-and-forth motions. Because
wires are superparamagnetic, the frequency of the oscillations
far from the instability (ω � ωC) is twice that of the excitation.
The present study extends these prior observations to a fluid
that is viscoelastic. Figure 2 illustrates the rotational phase
diagram derived from the resolution of Eq. (5). The phase
behavior of a wire immersed in a Maxwell fluid is described
using a three-dimensional representation where the variables
are ωC,ω, and θ0. In this representation, the planes (ωC,ω)
and (ω,θ0) describe the behavior of a purely viscous fluid and
that of a purely elastic solid, respectively. The phase diagram
of Fig. 2 displays again two main regimes of synchronous
(Regime I, ω � ωC) and asynchronous (Regime II, ω > ωC)
rotations. Interestingly, the back-and-forth instability limit
found for the Newtonian case persists for nonzero elasticity
(θ0 �= 0). Figures 2(a)–2(f) illustrate typical temporal evolu-
tions of the wire orientation for viscous [Figs. 2(a) and 2(b)],
elastic [Figs. 2(c) and 2(d)], and viscoelastic [Figs. 2(e)
and 2(f)] cases. The red (light gray) lines indicate the average
angular velocity � = dθ/dt [18,32,33]. For viscous and
viscoelastic fluids, � is positive, whereas it is zero for an elastic
solid. For θ0 � 1, the rotation of the wire displays a second
instability that manifests itself by an abrupt back motion after a
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FIG. 2. (Color online) Rotation phase behavior of a wire immersed in a Maxwell fluid using a three-dimensional representation (ωC,ω,θ0).
Here ω is the angular frequency of the rotating field, ωC the angular frequency of the hydrodynamic instability between the synchronous and
asynchronous regimes, and θ0 = 2ωCτR . In this representation, the planes (ωC,ω) and (ω,θ0) describes the behaviors of a purely viscous fluid
and of a purely elastic solid, respectively. Panels (a)–(f) illustrate the time dependence of the wire orientation angle θ in the different regimes.
The red (light gray) straight lines in (a)–(f) represent the average angular velocity � = dθ/dt in each condition.

period of increase [Fig. 2(d) and 2(f)]. The overall behavior in
this range remains, however, similar to that found for θ0 < 1,
with a periodic back-and-forth motion and a positive average
angular velocity.

III. MATERIALS AND METHODS

A. Magnetic wires

Wires were formed by electrostatic complexation between
oppositely charged nanoparticles and polymers [34,35].
The particles were 10.7-nm iron oxide nanocrystals
(γ -Fe2O3, maghemite) synthesized by polycondensation of
metallic salts in alkaline aqueous media [36]. An extensive
characterization of the nanometric γ -Fe2O3 using various
techniques, including vibrating sample magnetometry,
dynamic light scattering, zetametry, and transmission
electron microscopy, is provided in the Supplemental
Material [37]. To improve their colloidal stability, the cationic
particles were coated with MW = 2100 g mol−1 poly(sodium
acrylate) (Aldrich) using the precipitation-redispersion
process [38]. This process resulted in the adsorption of a
highly resilient 3-nm polymer layer surrounding the particles.
The coassembly process leading to the formation of stiff
magnetic wires followed a bottom-up approach, where
the elementary bricks were the iron oxide nanoparticles
and the “gluing” agent was a highly charged polycation

[35,39], here poly(diallyldimethylammonium chloride)
(Aldrich) of molecular weight MW < 100 000 g mol−1.
Figure S3 in the Supplemental Material illustrates the desalting
protocol designed for the elaboration of the magnetic wires
and displays wires observed by optical microscopy (Fig. S3a)
and transmission electron microscopy (Fig. S3b) [37]. For the
microrheology experiments, the wires were characterized by
an average length L0 = 20 μm and a polydispersity of 0.5. For
this sample, the lengths were composed between 1 and 50 μm.
Electrophoretic mobility and ζ -potential measurements made
with a Zetasizer Nano ZS (Malvern Instruments) showed that
the wires were electrically neutral [35]. The shelf life of the
coassembled structures is of the order of several years.

B. Wormlike micellar solutions and linear rheology

The surfactant solutions investigated here were mixtures
of cetylpyridinium chloride (CP+; Cl−) and sodium salicylate
(Na+; Sal−) (abbreviated as CPCl/NaSal) dispersed in a
0.5 M NaCl brine [40,41]. Since the pioneering work of Rehage
and Hoffman [42], CPClNaSal is known to self-assemble
spontaneously into micrometer-long wormlike micelles. The
surfactant solution was prepared at c = 2wt.%. Under these
conditions, the micelles build a semidilute entangled network
that imparts to the solution its Maxwell viscoelasticity. In
the semidilute regime, the mesh size of the network is
of the order of 30 nm, i.e., much smaller than the wire
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diameter. The frequency dependence of the elastic complex
modulus G∗(ω) = G′(ω) + iG′′(ω) was obtained on a CSL
100 rheometer (TA Instruments) using a cone-and-plate and
controlled shear rate. Dynamical measurements were carried
out for angular frequency ω = 0.1 − 100 rad s−1 at temper-
ature T = 27◦C. The viscoelastic response of CPCl/NaSal
wormlike micelles was that of a Maxwell fluid with a
unique relaxation time τR . The viscoelastic parameters G0,
τR , and η0 = limω→0 |G∗(ω)|/ω were derived from dynamical
frequency sweeps.

C. Microrheology

Bright field and phase-contrast microscopy was used to
monitor the actuation of the wires as a function of time. Stacks
of images were acquired on an IX71 inverted microscope
(Olympus) equipped with 100 × objectives. For optical
microscopy, 35 μl of a dispersion containing the wires were
deposited on a glass plate and sealed into to a Gene Frame
(Abgene/Advanced Biotech) dual adhesive system. The glass
plate was introduced into a homemade device generating both
static and rotational magnetic fields, thanks to two pairs of
coils working with a 90◦ phase shift. An electronic setup
allowed measurements in the frequency range 1 mHz–100 Hz
and at magnetic fields B = 0–20 mT. A stream of nitrogen
directed toward the measuring cell was used to thermalize
the sample at the desired temperature. The image acquisition
system consisted of an EXi Blue CCD camera (QImaging)
working with Metaview (Universal Imaging Inc.). Images of
wires were digitized and treated by the use of IMAGEJ software
and plugins [43].

IV. RESULTS AND DISCUSSION

A. Determination of the magnetic susceptibility

To determine the magnetic properties of the wires, i.e., the
susceptibility parameter �χ in Eq. (2), rotation experiments
were carried out on a viscous fluid of known viscosity.
A 85 wt.% glycerol-water mixture of static viscosity η0 =
0.044 Pa s−1 (T = 32◦C [23]) served as a suspending medium
for the γ -Fe2O3 wires. In this experiment, the typical length
and diameter of the wires were in the range of 5 to 20 μm
and of 0.5 to 1 μm, respectively. The critical frequency
ωC between the synchronous (Regime I) and asynchronous
(Regime II) regimes was measured on 65 different wires
submitted to a magnetic field of 10.4 mT (see the movie in
the Supplemental Material [37]). In Fig. 3, ωC is plotted as a
function of the dimensionless parameter L∗ = L/D

√
g(L/D).

The critical frequency was found to decrease as ωC ∼ L∗−2,
in excellent agreement with the prediction of Eq. (8). From the
prefactor (3μ0�χH 2/8η0 = 1800 ± 400 rad s−1), we infer
�χ = 2.1 ± 0.4 and χ = 3.4 ± 0.4. The wire susceptibility
is here 5 times larger than that obtained in our first report [34].
This increase is attributed to the increase of size of the γ -Fe2O3

particles used in the synthesis, 10.7 nm instead of 7.0 nm in
Ref. [34]. Knowing �χ , the magnetic torque applied to a wire
is evaluated quantitatively.

FIG. 3. Critical frequency ωC as a function of the parameter
L∗ = L/D

√
g(L/D) obtained for wires dispersed in a 85 wt.%

glycerol-water mixture of static viscosity η0 = 0.044 Pa s−1 (T =
32◦C [23]). The straight line is calculated using Eq. (8) and �χ =
χ 2/(2 + χ ) = 2.1 ± 0.4. Here, L, D, and χ are the length, diameter,
and susceptibility of the wire, respectively.

B. Microrheology of wormlike micelles

Macro- and microrheology experiments were performed on
a c = 2wt.% CPCl/NaSal micellar solution at T = 27◦C. In
the Supplemental Material [37] the elastic and loss moduli,
G′(ω) and G′′(ω), and the complex viscosity η(ω) obtained
by cone-and-plate rheometry are shown at this temperature.
With increasing frequency, G′(ω) increases quadratically and
reaches a plateau, whereas G′′(ω) exhibits a resonance-like
profile peaked at ω = 1/τR . The data were adjusted with the
Maxwell model using the expressions G′(ω) = G0ω

2τ 2
R/(1 +

ω2τ 2
R) and G′′(ω) = G0ωτR/(1 + ω2τ 2

R) for the elastic and
loss moduli, respectively. The complex viscosity modulus
was adjusted using η(ω) = η0/

√
1 + ω2τ 2

R , where η0 = G0τR

denotes the static viscosity. At T = 27◦C, the viscoelastic
parameters are G0 = 7.1 ± 0.1 Pa, τR = 0.14 ± 0.01 s, and
η0 = 1.0 ± 0.1 Pa s. These results confirm those published for
the first time on the same system 2 decades ago [40,41,44].

In Fig. 4, a rotating magnetic field of 10.4 mT was applied
to a 8.1-μm nanowire immersed in the CPCl/NaSal solution
at increasing frequencies, between 0.1 and 20 rad s−1 (inset).
Although the wires were assembled from charged particles and
polymers, we did not observe any degradation of the structures
when they were dispersed in the viscoelastic fluid. The motion
of the wires was monitored by optical microscopy, and the time
dependence of their orientation was derived. Figures 4(a)–4(d)
show four time traces θ (t) obtained at ω = 0.14, 0.40,
2.9, and 17.0 rad s−1, respectively. At low frequency, the
wire rotates in phase with the field, and θ (t) = ωt . Above
the critical frequency [Eq. (6)], here ωC = 0.38 rad s−1, the
wires are animated of back-and-forth motion characteristic
of the asynchronous regime (Regime II) and θ (t) displays
oscillations. As illustrated in Figs. 4(b)–4(d), the frequency
of the back-and-forth increases with that of the magnetic
excitation. To interpret the data, we define two quantities that
characterize the behavior of the wire: the average angular
velocity � = dθ/dt given by the slope of the straight lines
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(a) (b)

(c) (d)

FIG. 4. (Color online) Rotation angle θ (t) of a 8.1-μm wire as
a function of the time at various frequencies: (a) ω = 0.14 rad s−1,
(b) ω = 0.40 rad s−1, (c) ω = 2.9 rad s−1, and (d) ω = 17.0 rad s−1.
Inset in (a): Image of the wire by bright-field microscopy (100 × ).
Inset in (b): θB is defined as the angle by which the wire returns back
after a period of increase. The red (light gray) straight lines in (b)–(d)
represent the average angular velocity � = dθ/dt .

in Fig. 4, and the angle θB by which the wire returns back
after a period of increase. θB corresponds to the region
where dθ/dt < 0 [inset in Fig. 4(b)]. In the next section, the
dependencies of �(ω) and of θB(ω) are first discussed.

C. Correspondence between macro- and microrheology

Figure 5 displays the evolution of the average angular
velocity normalized by the critical frequency, �̃ = �/ωC

as a function of the reduced frequency X = ω/ωC obtained
for five nanowires (L = 8 − 14 μm) in different conditions
of magnetic field and rotation frequency. With increasing
frequency, the average velocity increases, passes through a

FIG. 5. Average angular velocity � divided by the critical fre-
quency ωC as a function of the reduced frequency ω/ωC for nanowires
of length L = 8 − 14μm in different conditions of magnetic field and
rotation frequency (see the Supplemental Material [37]). The solid
line corresponds to the best fit using the stationary solutions of Eq. (5).

ωc

θ0

FIG. 6. (Color online) Frequency dependence of the angle θB (ω)
obtained for wires of different lengths [L = 8.2, 6.3, and 8.1 μm for
blue (circles), red (squares), and green (triangles), respectively] and
for B = 10.4 mT. At frequencies such as ωτR � 1, θB (ω) exhibits
a plateau of height θ0 = 2ωCτR . The continuous lines result from
best fits using the Maxwell model and Eqs. (5)–(7). Inset: θB (ωτR)
behaviors for Newton and Maxwell fluids calculated from Eq. (5)
using ωC = 0.1 rad s−1 and τR = 1 s.

cusp-like maximum at the critical frequency (X = 1), and then
decreases. The data in Fig. 5 were adjusted using the stationary
solutions of Eq. (5) [32],

X � 1 �̃(X) = X,
(9)

X � 1 �̃(X) = X −
√

X2 − 1.

Interestingly, the set of equations in Eq. (9) is identical to
that of a Newton fluid, indicating that elasticity does not play
a role in the onset of the instability or on the dependence
of the average velocity with frequency [18]. From the ωC

values obtained, the viscosity of the fluid was calculated
and averaged over the different measurements. It was found
to be η0 = 1.3 ± 0.3 Pa s, in excellent agreement with the
cone-and-plate rotational rheometry value at this temperature,
η0 = 1.0 ± 0.1 Pa s. Details on the determination of the
viscoelastic parameters using microrheology can be found in
the Supplemental Material [37].

Figure 6 displays the frequency dependencies of θB(ω), the
angle by which the wire returns after a period of increase,
for wires of different lengths, L = 8.2, 6.3, and 8.1 μm. θB

being related to the asynchronous regime, it is not defined
for ω � ωC . For frequencies slightly above ωC , the angle
decreases with increasing frequency according to a power
law of the form θB (ω) ∼ ω−α (where α is close to unity),
and then it flattens into a frequency independent plateau. The
height of the plateau depends on the experimental conditions,
and in particular on the critical frequency ωC . The transition
between the θB (ω) ∼ ω−α dependence and the plateau occurs
at ω ≈ 3 rad s−1 in the present case. The continuous lines
between the data are calculated according to Eq. (5) using
τR as a unique adjustable parameter. For ωτR � 1, Eq. (5)
also predicts that limω→∞ θB(ω) = θ0 = 2ωCτR . The limiting
angles θ0 obtained in the different configurations are indicated
on the figure by arrows. The inset in Fig. 6 illustrates
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TABLE I. Viscoelastic parameters η0,G0,and τR of a CPCl/NaSal
wormlike micellar solution at concentration c = 2wt.% and tem-
perature T = 27◦C. The results for the wire-based microrheology
technique are averaged over nine independent measurements using
nine different wires (see the Supplemental Material [37]).

η0(Pas) G0(Pa) τR(s)

Cone-and-plate rheology 1.0 ± 0.1 7.1 ± 0.1 0.14 ± 0.01
Wire-based microrheology 1.3 ± 0.3 9.4 ± 2.0 0.14 ± 0.03
technique

the θB (ωτR) behaviors for Newton and Maxwell fluids on
a broader frequency range. They are calculated according
to Eq. (5) using ωC = 0.1 rad s−1 and τR = 1 s. For the
Newton fluid, the amplitude of the oscillations decreases with
increasing frequency. In contrast, the Maxwell fluid displays
a crossover between the viscous and elastic regimes and
it occurs at a fixed value of the reduced frequency, here
ωτR = 1/2. The value of 1/2 is explained by the fact that
the frequency of the oscillations in Regime II is twice that
of the field. The existence of a plateau in the amplitude of
the oscillations at high frequency equivalent to that of the pure
elastic solid [Fig. 2(c)] represents strong evidence of the elastic
character of the fluid. From the plateau region at θ0 = 2ωCτR ,
the relaxation time τR characteristic of the micellar solution
was determined and found to be in good agreement with the
macrorheology measurements. For the wire-based method,
one obtained τR = 0.14 ± 0.03s, which compares well with
τR = 0.14 ± 0.01s derived from cone-and-plate data. The
elastic modulus G0 is then calculated from the viscosity and
from the relaxation times. One gets G0 = 9.4 ± 2Pa, again
in agreement with macrorheology (G0 = 7.1 ± 0.1Pa). The
viscoelastic parameters obtained by the two techniques are
compared in Table I.

To confirm the adequacy of the model, the time traces of
rotating wires were adjusted using the solutions of Eq. (5).
Figures 7(a)–7(d) show the rotation angle data (closed sym-
bols) of a 8.1-μm wire at ω = 0.4, 1.2, 2.9, and 7.8 rad s−1 as
a function of the product ωt . The adjustment was performed
using ωC and θ0 as fitting parameters and provided excellent
results (continuous curves in red). For this set of data, we
found ωC = 0.38 rad s−1 and θ0 = 0.12 rad, corresponding to
a static viscosity η0 = 1.4 Pa s and to a modulus G0 = 9.2 Pa.
These later values are again in good agreement with those of
the cone-and-plate rheology (Table I).

In the Introduction, it was mentioned that the conversion
of local microrheology variables into macroscopic parameters
may be difficult or have been subjected to large uncertainties
[11,44] and that alternate approaches need to be considered.
Our experiments on wires submitted to rotational magnetic
field show that such approaches exist. For that, we defined
two physical quantities describing the motion of the wires,
�(ω) and θB (ω). The study reveals a formal analogy between
the frequency dependencies of the two quantities and those of
the complex modulus. As G′ (ω) and G′′ (ω) for a Maxwell
fluid, �(ω) and θB (ω) exhibit power-law dependencies as
a function of ω. From the asymptotic behaviors at low and
high frequencies the fluid parameters can be derived. The
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FIG. 7. (Color online) Comparison between experimental (closed
symbols) and predicted (continuous lines) behavior of a 8.1 μm wire
submitted to a 10.4-mT magnetic field at frequencies ω = 0.4 (a), 1.2
(b), 2.9 (c), and 7.8 (d) rad s−1. The angle of rotation is shown
as a function of the product ωt . For the fitting, ωC (=0.38 rad
s−1) and θ0 (=0.12 rad) in Eq. (5) were treated as adjustable
parameters.

correspondence is the most noticeable for G′ (ω) and θB (ω):
Both display a transition between a viscous and an elastic
regime, and both exhibit a frequency independent plateau at
high frequency. Differences between these two sets of variables
exist, however. �(ω) and G′′ (ω) do show maxima, but their
positions on the frequency axis differ, ωC for �(ω) and 1/τR

for G′′ (ω).

V. CONCLUSION

In this paper, we demonstrate that micron-size wires with
magnetic properties can serve as probe particles for active
microrheology experiments. Submitted to a rotating magnetic
field with increasing angular frequency, the behavior of
the wires immersed in viscous and in viscoelastic fluids is
modeled. The rotational phase diagram exhibits a transition
between a synchronous and an asynchronous regime, this
second regime being characterized by a back-and-forth motion
[18,24,26–28]. The instability resembles that observed on
laboratory benches when a viscous solution is actuated with a
magnetic bar. The difference with the present work is in the
size of the bar and in its magnetic property. As demonstrated by
the scaling in Fig. 3, the wires are superparamagnetic and not
ferromagnetic (as magnetic bars are). Hence, for a given value
of the magnetic field the torque applied is known with accuracy
[Eq. (2)]. For the viscoelastic fluid, the transition occurs at a
critical frequency ωC that is independent of the elastic modulus
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G0. For the elastic solid, similar calculations are performed
and show that the wires are oscillating around their initial
position with a constant amplitude. These predictions are
tested using nanostructured magnetic wires of length 5–20 μm
dispersed in a cetylpyridinium chloride-sodium salicylate
solution of wormlike micelles. The most significant findings
to emerge from this work are (i) the excellent agreement
between the model and the experiments performed and
(ii) the accurate derivation of the viscoelastic parameters η0,
G0, and τR of the fluid. These findings have also important im-
plications. They demonstrate a posteriori that the experiments
with micron-size wires are indeed consistent with the linear
regime of shear deformation [45]. Here we do not observe
nonlinear effects in the frequency dependences of the average
velocity �(ω) and the angle θB(ω). These two last quantities
are found to display well-defined scaling behaviors apart
from ωτR = 1/2. The static viscosity is derived from �(ω),
whereas the relaxation time and the modulus are obtained
from θB(ω).

Tested on a Maxwell fluid for sake of simplicity, the
wire-based technique can be extended in principle to any kind
of fluids. For fluids characterized by a distribution of relaxation
times, it is possible to define a generalized Maxwell model
describing the rotation of a wire. The model is based on a
differential equation of the kind of Eq. (5). In its concept, the

approach is similar to that developed for the elastic and loss
moduli G′ (ω) and G′′ (ω), where each mode of the distribution
contribute to the overall viscoelastic response. Interestingly,
even in the case of a fluid with several relaxation modes, the
average rotation frequency �(ω) will still exhibit a transition
behavior similar to that of Fig. 3, allowing the determination
of the static viscosity. If the fluid is gel-like and characterized
by an infinite static viscosity, the wire responses will be
comparable to those illustrated in Figs. 2 for systems in the
ωC = 0 plane. This wire-based technique is also especially
adapted for time-dependent effects and kinetics, since any
temporal change in the viscoelasticity will result in a change
of the average velocity and of the oscillations amplitude. In
conclusion, we have developed an easy and straightforward
technique to measure the linear rheological properties of
complex fluids in confined environment.
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