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Liquid-liquid phase transition in a two-dimensional system with anomalous liquid properties
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The phase diagram of the two-dimensional particles interacting through a smooth version of Stell-Hemmer
interaction was studied using Monte Carlo computer simulations. By evaluating the pressure-volume isotherms,
we observed liquid-liquid, liquid-gas phase transitions and three stable crystal phases. The model shows the
liquid-liquid critical point in stable liquid phase and is confirmed by observing properties of other thermodynamic
functions such as heat capacity and isothermal compressibility, for example. The liquid-gas and the liquid-liquid
critical points were estimated within the thermodynamic limit.
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I. INTRODUCTION

Core-softened potentials were first proposed by Stell and
Hemmer in 1970 [1]. In their work, they proposed the
possibility of a second critical point in addition to a standard
liquid-gas critical point, if interaction potentials have a region
of negative curvature. Order parameter is important in physics
of phase transitions. In the case of phase transition between
two phases, this order parameter can be the difference in
densities of both phases in equilibrium. In simple liquids,
like particles interacting by Lennard-Jones potential there
is only one critical point possible. The phase transition is
a consequence of two parts of potential, attraction, and
repulsion. If the intermolecular potential of the fluid exhibits
two characteristic distances such as two minima, then we
can have another critical point as a consequence of interplay
between these two distances. As it has been shown before,
core-softened potentials, and similar shouldered potentials,
are of particular importance, for they can reproduce various
fluid anomalies that are typical for water and other substances
with angular-dependent interactions [2–4], such as silica [3],
silicon [5], and BeF2 [6]. Core-softened potentials were used to
study single-component liquid metal systems [7–11]. After a
liquid-liquid phase transition was suggested as an explanation
for water’s anomalous properties by Poole et al. [12], there
was increasing interest in studies of such transitions. Various
studies have been done to understand the liquid-liquid phase
transition and its associated properties [13–24]. Franzese et al.
[25] showed that the reason for liquid-liquid phase transition
and its critical point might be due to potential with two
characteristic distances (hard code and soft core). In their work,
they reported the existence of the low-density liquid phase and
the high-density liquid phase obtained for a three-dimensional
(3D) model using molecular dynamics (MD) simulations. On
the other hand, two-dimensional (2D) MD produced only a
density anomaly but no liquid-liquid phase transition [26,27].
Scala et al. [28] carried out MD simulations of 2D discrete
and smoothed versions of potential to study liquid anomalies.
These studies were continued by Buldyrev et al. [13] to explore
the liquid-liquid phase transition for 2D and 3D versions of
potentials and by Almudallal et al. [14]. They both produced
phase diagrams for a discrete version of potential with liquid
anomalies, and no liquid-liquid critical point in the stable liquid
region was obtained. The main difference between their work
and our work is usage of a different simulation method, in our

case Monte Carlo simulation. Our Monte Carlo (MC) results
are in agreement with their reported results for the supercritical
part, but they do not agree for the subcritical part.

This paper is organized as follows. First, we present a
core-softened model. In the next section we present Monte
Carlo simulation details. In the Results section, we present
MC calculations of the phase diagram and critical point. In
addition, we provide different checks for validation of the
liquid-liquid phase transition obtained from MC simulations.

II. MODEL

In this work we use the smooth version of the core-softened
potential proposed by Scala et al. [28]. The interaction
potential between 2D particles U (r) is calculated by adding a
Gaussian well to the Lennard-Jones (LJ) part of the potential,

U (r) = ULJ (r) + U1(r), (1)

where ULJ (r) is standard Lennard-Jones potential and is
defined as

ULJ (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (2)

where ε is the well depth and σ the contact parameter of LJ
potential. The Gaussian part of the interaction is

U1(r) = −λε exp

[
−a

(
r − r0

σ

)2]
. (3)

For the sake of comparison with the previous studies, we adopt
the units and values of model parameters as used before by
Scala et al. [28]. We use ε = 1.0, σ = 1.0, λ = 1.7, a = 25.0,
and r0 = 1.5σ . Figure 1 shows the shape of the smooth version
of the core-softened potential.

III. MONTE CARLO SIMULATION

A 2D system of particles was studied by the Monte Carlo
simulation method in the isothermal-isobaric (NpT) ensem-
ble, and in the canonical (NV T ) ensemble. We calculated
thermodynamic and structural properties of the model. All
simulations were performed with N = 100, 200, 300, or 400
molecules because a finite size scale analysis is important for
validity of critical points. 100 particles in 2D is the equivalent
of 1000 particles in 3D and 400 is equivalent to 8000. It is
well known that small systems favor phase separation which
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FIG. 1. (Color online) The core-softened potential U (r) (solid
line), LJ contribution (long dashed line), and Gaussian part (dashed
line).

might not be present in the thermodynamic limit. At each
step, the displacements in the x,y coordinates were chosen
randomly. We used periodic boundary conditions and the
minimum image convention to mimic an infinite system of
particles. The starting configurations were selected at random.
In the ensemble for every 10 passes, an attempt is made to
scale the dimensions of the box, and all of its component
particles, to hold the pressure constant. The maximum volume
change and particle displacement were calibrated during
equilibration simulations. 5×104 moves per particle were
needed to equilibrate the system. The statistics were gathered
over the next 1×106 moves to obtain well-converged results.
The mechanical properties such as energy, enthalpy, and
volume were calculated as the statistical averages of these
quantities over the course of the simulations [29]. The heat
capacity cp and cv , the isothermal compressibility κ , and
the thermal expansion coefficient α were computed from the
fluctuation formulas [30] of energy U , enthalpy H , and volume
V [30]:

CV = 〈U 2〉 − 〈U 〉2

NT 2
, Cp = 〈H 2〉 − 〈H 〉2

NT 2
,

(4)

κ = 〈V 2〉 − 〈V 〉2

T 〈V 〉 , α = 〈V H 〉 − 〈V 〉〈H 〉
T 2〈V 〉 .
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FIG. 2. (Color online) p-V isotherms for T ∗ = 1.05 (red), for
T ∗ = 1.08 (blue), and T ∗ = 1.10 (green) for 200 particles in the
simulation box.
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FIG. 3. Dependence of critical temperature T ∗
C1 on reverse square

number of particles in simulation box.

IV. RESULTS AND DISCUSSION

We present our results below in dimensionless units,
normalized to the LJ interaction parameter ε and characteristic
length σ . The excess internal energy, enthalpy, and temperature
are normalized as U ∗ = U

ε
, H ∗ = H

ε
, T ∗ = kBT

ε
, all the

distances (r∗ = r
σ

), volume (V ∗ = V/σ 2), and pressure (p∗ =
pσ 2/ε).

First we calculated both critical points, liquid-gas and
liquid-liquid critical points. Figure 2 shows isotherms around
the liquid-gas critical point for 200 particles in the simulation
box and Fig. 3 estimation of thermodynamic limit. By extrap-
olation and within the thermodynamic limit we estimated that
the liquid-gas critical point (C1) is at T ∗

C1 = 1.016 ± 0.002,
p∗

C1 = 0.039 ± 0.002, and ρ∗
C1 = 0.300 ± 0.003. A finite sys-

tem behaves differently than the corresponding infinite system.
Energy per particle decreases with increasing particle size or
size of the simulation box. This means that the location of the
critical point is different for different system sizes. There are
also other size effects that can affect the critical behavior. When
the system approaches the critical point, there are fluctuations
of all sizes in the system and a disturbance in one point of
the system can easily propagate and affect the entire system.
The correlation length increases and for an infinite system
goes to infinity as the critical temperature is approached. For
finite-sized systems the correlation length reaches the system
size before the critical point of an infinite system is reached.
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FIG. 4. (Color online) p-V isotherms for T ∗ = 0.62 (red),
T ∗ = 0.63 (green), and for T ∗ = 0.64 (blue) for 200 particles in
the simulation box.
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FIG. 5. Dependence of critical temperature T ∗
C1 on reverse square

number of particles in simulation box.
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FIG. 6. (Color online) Heat capacity at constant volume for
T ∗ = 0.610 (red), which is below critical point, and for T ∗ = 0.611
(green), which is a temperature above the critical point, for a
300-particle system in a simulation box.
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FIG. 7. (Color online) Average mean square particle displace-
ment as a function of moves per particle for T ∗ = 0.610. Curves
from the bottom up are for densities of 0.57, 0.58, 0.59, 0.60, 0.61,
0.62, and 0.63. In this system we have 300 particles.
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FIG. 8. (Color online) Temperature dependence of density at
constant pressure for p∗ = 0.6 (red) and p∗ = 0.75 (green).
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FIG. 9. (Color online) Temperature dependence of heat capacity
at constant pressure for p∗ = 0.6 (red) and p∗ = 0.75 (green).
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FIG. 10. (Color online) Temperature dependence of the thermal
expansion coefficient at constant pressure for p∗ = 0.6 (red) and
p∗ = 0.75 (green).
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FIG. 11. (Color online) Temperature dependence of isothermal
compressibility at constant pressure for p∗ = 0.6 (red) and p∗ = 0.75
(green).

Because of all this the critical point is shifted as compared to
the infinite system.

Next we estimated the liquid-liquid critical point, which
was a more difficult task because at these isotherms at
lower densities the system splits into two phases (gas and
liquid), while at higher densities it freezes. Figure 4 shows
isotherms around the liquid-liquid critical point for 200
particles in the simulation box, and Fig. 5 shows a calculation
of the thermodynamic limit. Note that the thermal expansion
coefficient is negative in this region, which is the reason for
the isotherms to move in the opposite direction than at the first
critical point. Below critical temperature, the isotherms display
a typical oscillating middle section where pressure decreases as
density increases. This unstable portion of the phase diagram is
compensated for using the Maxwell construction. The plotted
coexistence curve connects the vertices of the Maxwell lines.
The critical point, by definition, is the saddle on the critical
isotherm, where ( ∂p

∂T
)V = ( ∂2p

∂T 2 )V = 0. On the interpolated
polynomial curves fitted to the data we estimated a critical
point for different sizes of the system and then calculated
the thermodynamic limit. In this thermodynamic limit we
ascertained that the liquid-liquid critical point (C2) is at
T ∗

C2 = 0.535 ± 0.004, p∗
C2 = 0.583 ± 0.004, and ρ∗

C2 = 0.591
± 0.005. We have to mention that for smaller sizes (N = 100)
the liquid-liquid phase transition is absent and it appears
bigger only for systems of particles (in our case 200 particles
or more). We checked accuracy of the liquid-liquid critical
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FIG. 12. (Color online) Pair distribution functions at T ∗ = 0.65
(green) and at T ∗ = 0.6 (red) at pressure p∗ = 0.6.

FIG. 13. Snapshots of the system for p∗ = 0.6, T ∗ = 0.6 (left)
and p∗ = 0.6, T ∗ = 0.65 (right).

point by examining other properties. In the NVT ensemble we
checked the heat capacity and mean square displacement of the
particles. Figure 6 shows the heat capacity at constant volume
for a system of 300 particles for temperatures below (T ∗ =
0.610) and above (T ∗ = 0.611) the critical point. There is a
peak at the critical density for the liquid-liquid phase transition,
but for temperatures lower than critical we observed different
kinds of fluid for low densities. In Fig. 7 we plotted the average
mean square displacement of particles as a function of moves
per particle for simulation of a 300-particle system. Results
are presented for different densities for temperatures below
the critical point (T ∗ = 0.610). We can see that we have two
different kinds of fluids, one at low densities and one at high.

In the NpT ensemble we checked the temperature de-
pendence of density (Fig. 8), heat capacity at constant
pressure (Fig. 9), the thermal expansion coefficient (Fig. 10),
and isothermal compressibility (Fig. 11) as a function of
temperature at constant pressure. Plotted are MC simulation
data for a system of 200 particles. From these figures we
can see that at higher temperatures we have a high-density
fluid which changes to low-density fluid, and at very low
temperatures the system starts to freeze. For the end we also
plotted the radial distribution function (Fig. 12) and snapshots
(Fig. 13) of low-density and high-density fluid. From the
radial distribution function we can see that low-density fluid
(red curve) has a longer range of correlations compared to a
high-density fluid (green curve).

In our simulations we observed three different crystal
phases. At low pressures (p∗ < 0.9) molecules freeze in low-
density hexagonal solid phase, at mid-range pressures we ob-
served a cubic solid phase, and at very high pressures (p∗ > 10)
we also observed a high-density hexagonal solid phase. All this
is in agreement with results by Almudallal et al. [14], where
they observed all these phases for a similar square-shoulder
square-well potential. They also observed two additional
phases which we did not observe for the continuous version.

V. CONCLUSIONS

We have studied the phase diagram of two-dimensional
particles interacting through a smooth version of the Stell-
Hemmer interaction using Monte Carlo computer simu-
lations. By analyzing the pressure-density isotherms and
the temperature-density isobars we observed liquid-liquid,
liquid-gas phase transitions and three stable crystal phases.
We clearly observed the liquid-liquid phase transition in
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the one-component system, and this was confirmed by all
calculated properties. The state points inside the coexistence
region separate into two phases characterized by different
densities and structures. We also estimated liquid-gas and
liquid-liquid critical points within the thermodynamic limit.
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