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Structure and coarsening at the surface of a dry three-dimensional aqueous foam
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We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary
of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau’s
laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where
statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical
measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those
for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly
more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles,
due to rearrangement in the bulk, and von Neumann’s law is dramatically violated for individual bubbles. But
nevertheless, our most striking finding is that von Neumann’s law appears to holds on average, namely, the
average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but
with individual bubbles showing a wide distribution of deviations from this average behavior.
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I. INTRODUCTION

The structure and coarsening of three-dimensional foams
is a topic that has long been of interest [1]. However,
characterizing the microstructure in the bulk is difficult and
generally involves the use of sophisticated techniques beyond
direct visual observation [2]. This includes magnetic resonance
imaging [3], optical tomography [4,5], and x-ray tomography
[6–8]. Foam microstructure is further difficult to measure
because it changes with time. Even if drainage and film
ruptures are prevented, pressure differences between bubbles
result in gas diffusion across films, such that some bubbles
grow and others shrink. This coarsening process is not limited
to foams and is observed in other systems as well [9,10]. There
have been measurements of coarsening in three-dimensional
foams using light scattering [11,12], but such measurements
involve an average of the system as a whole and cannot
probe at the individual bubble level. For the case of ideal dry
three-dimensional foams, there is an exact theoretical solution
for the growth rate of an individual bubble with n edges, which
takes the form [13]

dV

dt
= K

(
n∑

i=1

ei − 6L

)
, (1)

where ei is the length of edge i, and L is a quantity called
the mean length that depends on the size and shape of the
bubble. The constant K is proportional to film surface tension,
the solubility and diffusivity of the gas, and the reciprocal of
film thickness. Nuclear magnetic resonance (NMR) [3] and
tomography [4,14] have been used to probe coarsening, but a
connection has not yet been made with Eq. (1).

Much research on coarsening has been done for two-
dimensional foams, where there are no difficulties in imaging
the full microstructure. This includes direct measurements
of bubbles compressed between parallel plates [15–21],
soap froths with different boundary conditions [22–24], and
experiments on lipid monolayers [25,26]. There have also been
simulations of two-dimensional foams [27–33]. These foams

are simpler not only because of greater ease of measurement,
but also because of simpler geometric considerations. In
particular, the coarsening rate of an individual bubble depends
only on its number n of sides according to the celebrated von
Neumann’s law [34]:

dA

dt
= K(n − 6). (2)

The proportionality constant K is not the same as in Eq. (1),
but it has a similar dependence on physicochemical properties
and also has units of area per time.

The surface of a three-dimensional foam is where two and
three dimensions meet. When a three-dimensional foam is in
contact with a flat two-dimensional surface, the films meet the
surface at right angles, and the resulting network of surface
Plateau borders meet at 120◦ at threefold vertices [35,36].
Euler’s law thus implies that the average number of sides, for
a large sample, should be six. Thus the surface foam looks very
much like a two-dimensional foam, and the natural question
we investigate here is the ways in which they are quantitatively
different.

Surface foams have been of previous interest, mostly as
a way of connecting to the properties of the larger three-
dimensional foam. This is especially important for situations
where it is not feasible to measure the full three-dimensional
structure. For example, foams with even a small nonzero liquid
fraction are opaque, so only surface bubbles can be imaged.
Three-dimensional imaging tends to be slow, so it is also
useful to consider surface bubbles for foams under shear.
Prior work includes experiments on the radial distribution
of very wet foams with nearly spherical bubbles [37–39],
experiments on the surface of continuously bubbled foams
[40,41], and work on the effect of liquid fraction [42]. There
has also been theoretical work on the conversion of surface
measurements to bulk measurements [39,43,44], as well as
Surface Evolver simulation comparisons of surface and bulk
properties for very dry foams [45,46]. There also has been
theoretical work comparing the structure of two-dimensional
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coarsening systems with cross sections of three-dimensional
systems [47].

If left to coarsen, both two- and three-dimensional foams
are believed to reach a self-similar scaling state where, apart
from an overall scale factor, statistical distributions of bubble
size, shape, and topology are independent of time. Therefore,
we expect that surface foams will also reach a scaling state,
though with different statistics from a truly two-dimensional
foam. In part this is because boundary bubbles coarsen at a
different rate from bulk bubbles. In two dimensions, the von
Neumann argument can be extended to boundary bubbles by
summing the diffusive flux across interior films and using the
fact that films terminate at the boundary at right angles [29,48].
For the case of a flat boundary, the result is

dA

dt
= K(n − 5). (3)

Thus coarsening still depends only on the number of sides, but
now five-sided bubbles are stationary, and six-sided bubbles
grow. We have similarly calculated the growth rate for a three-
dimensional bubble in contact with a flat boundary, using the
same geometric method as MacPherson and Srolovitz [13].
For a planar boundary, we find

dV

dt
= K

⎡
⎣ ∑

interior

ei +
⎛
⎝3

2

∑
boundary

ei

⎞
⎠ − 6L

⎤
⎦ . (4)

This is similar to Eq. (1), but now the contribution from interior
edges is different from boundary edges due to weighting by
their respective dihedral external angles of π/3 and π/2. Note
that Eq. (4) describes the growth rate of bubble volume, and
not the growth of the face area in contact with the boundary.

Bubble dynamics also include topological changes of
the foam. These topological changes come in two types:
T1 rearrangement processes, which do not change the total
number of bubbles, and T2 processes, which involve the
creation or disappearance of a bubble. In both surface foams
and two-dimensional foams, T1 processes and the subset of
T2 processes that involve the disappearance of a bubble will
look the same. However, in two-dimensional foams, bubble
creation by coarsening is not possible. In surface foams, by
contrast, the movement of a bulk bubble to the surface will
result in the apparent creation of a bubble.

In general it is difficult to photograph just the surface
of a three-dimensional dry foam because both surface and
interior Plateau borders come into focus and cannot be
readily distinguished. To overcome this effect and image only
the surface Plateau borders, we have developed an imaging
technique based on total internal reflection. We thus obtain
clear images of surface foams, where the bubbles consist
of the coplanar exterior faces of three-dimensional boundary
bubbles in a bulk foam. We then use standard digital analysis
methods to extract the properties of individual bubbles, just as
per ordinary two-dimensional foams. We also track the growth
rate of individual bubbles over time.

II. MATERIALS AND METHODS

Our apparatus is depicted in Fig. 1. The foam sample is
inside a sealed plastic bottle with a square cross section of

FIG. 1. (Color online) Schematic diagram of a top-down view of
the imaging setup. The square bottle in the center is filled with foam
and submerged in a tank of water. On the right of the diagram is a
lightbox that provides constant uniform illumination. At the bottom of
the diagram is a camera to image the surface of interest. Not to scale.

9 cm × 9 cm and a height of 14 cm. All areas of the bottle
are masked with electrical tape except for a single flat surface
of interest. The sample bottle is completely submerged in a
square tank of water. A Vista Point A lightbox is placed to
the side of the tank to provide steady, uniform illumination. A
Nikon D80 camera with an AF-S Nikkor 55-200 mm 1.4-5.6G
ED lens is pointed at the face of the tank 90◦ from the lightbox.
The bottle is placed so that the surface of interest is at an angle
relative to the lightbox and the camera.

To create foam, 275 ml of a solution consisting of 75%
deionized water, 20% glycerin, and 5% Dawn ultraconcen-
trated dish detergent is sealed into the bottle and vigorously
shaken. This gives a polydispersed distribution of bubbles
with an average diameter less than 0.5 mm. Data collection
begins after 2 h, when the foam is very dry due to drainage
and the average bubble diameter is more than 10 times larger
due to coarsening. The number of bubbles in the sample at
production, and at the commencement of imaging, are of order
107 and 104, respectively. Film ruptures are never observed in
the course of our experiments.

The apparatus allows the surface foam to be isolated, as
follows. The angle of the bottle is chosen so that if a light
ray strikes a point on the surface of the bottle that has the
interior of an air bubble on the other side, it will be totally
internally reflected in the specular direction toward the camera.
But if the light ray strikes a surface Plateau border, it will be
preferentially refracted into another direction. This gives raw
images with bright cells and dark Plateau borders, as shown
in an example in Fig. 2(a). Only surface Plateau borders are
visible, as desired.

Note that the raw image in Fig. 2(a) is distorted, since
the bottle is at an angle, and this must be corrected. Fiducial
marks are made at the corners to define a rectangular region
with right angle corners. Using the position of these marks,
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FIG. 2. (a) Example of a raw image of the surface foam at half day after production, along with (b) transformed image to correct for
distortion and (c) skeletonized digital image suitable for analysis.

it is possible to transform the image to a direct perspective.
A sample image of the surface foam after this transformation
is shown in Fig. 2(b). After transformation, thresholding and
skeletonization are performed to identify the cells, separated
by skeletonized borders. The results of this image analysis can
be seen in Fig. 2(c). From this we extract relevant quantities for
the individual bubbles, such as area and number of sides, using
standard procedures as described in Ref. [21]. We consider
only bubbles that lie completely within a region of interest
that is higher than a couple centimeters above the drained
liquid, where the average bubble size is independent of height
as seen in Fig. 2. Occasionally the skeletonization procedure
removes a film, as can be seen in Fig. 2(c). Such mistakes are
detected automatically during bubble identification and are
fixed by hand. For noisier images, it might be advantageous to
use the reconstruction method of Ref. [49] since it is immune
to tracking errors.

Before proceeding, we note that the average size of the
surface bubbles in the coarsened foam of Fig. 2 is independent
of height above a couple centimeters from the bottom. We
restrict attention to this uniform region. There, the coarsening
rate must be independent of height, or else there would
be a noticeable vertical gradient in average bubble size.
Consequently, the film thickness must also be nearly constant,
with essentially negligible thinning due to gravity. For our
system, the effective interface potential that controls film
thickness must have a minimum that is very steep compared
to gravity. Indeed, this same behavior was observed directly
in Fig. 4 of Ref. [21], where the rate of area change was
plotted versus height for a few hundred quasi-two-dimensional
bubbles made with the same surfactant system as here.

III. BUBBLE DISTRIBUTIONS

A. Topology

The first relevant quantity to consider for a foam is the
distribution of the number of sides, p(n). This is the probability
that a randomly selected bubble from the foam will have n

sides. Probabilities for n ∈ {4,5,6,7} are shown versus time in
Fig. 3 for one foam sample. The data are noisy, but there does
not appear to be any systematic change over the 30 h period
starting 2 h after production. In other words, fits of p(n) to a
linear function of time all give a slope that is within error of

zero. This is consistent with the foam being in a self-similar
scaling state, where distributions do not change shape with
time. This is expected, since the initial foam is polydispersed
and the average diameter increased by a factor of 10 prior to
data collection. The time to reach the scaling state is faster
for polydispersed samples, but only a factor of 10 in diameter
growth is required even for monodispersed samples [41]. Still,
the noise in the data is large enough that Fig. 3 alone does not
constitute definitive proof that the foam is in a scaling state.

The distribution of the number of sides is also found to be
the same, to within statistical error, for four different runs.
This allows us to average the distribution, p(n), over all
times and for all runs, which form a total of 5966 different
bubbles. The overall side number distribution is shown in
Fig. 4(a). Also shown for comparison is the side number
distribution for an ordinary two-dimensional foam. We see
that there is a difference in the distributions. Even though
the surface foam obeys Plateau’s laws and looks in that way
like a two-dimensional foam, the different dynamics lead
to a different scaling state. We see that the distribution for
the surface foam is broader, with fewer five- and six-sided
bubbles and more four-sided bubbles. This means that the
surface foam has a higher variance, μ2 = 〈(n − 〈n〉)2〉, which

0.1
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FIG. 3. (Color online) Side number distribution, p(n), versus time
for four-, five-, six-, and seven-sided bubbles for a single run. Time
zero for data collection is 2 h after foam production, when the average
diameter is 10 times greater than at initial foam production.

062302-3



A. E. ROTH, B. G. CHEN, AND D. J. DURIAN PHYSICAL REVIEW E 88, 062302 (2013)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 Surface Foam

 2D Foam

p(
n)

(a)

0.05

0.1

0.15

0.2

0.25

0.3

 Surface Foam

 2D Foam

F
(n

)

(b)

5.5

6

6.5

7

7.5

2 3 4 5 6 7 8 9 10 11 12

m
(n

)

n

 Surface Foam

 2D Foam

(c)

FIG. 4. (Color online) (a) Side number distribution, p(n), aver-
aged over all times for all runs. Bubbles with n < 3 or n > 10 were
not observed. Total number of bubbles is 5966. Average number of
sides is 〈n〉 = 5.83 ± 0.02. Data for the two-dimensional foam are
taken from Ref. [21]. (b) Area-weighted side number distribution,
F (n), averaged over all time for all runs. Area-weighted average
number of sides is 〈〈n〉〉 = 6.6 ± 0.2 Data for the two-dimensional
foam are taken from Ref. [21]. (c) m(n) is the average number of sides
of the neighbors of an n-sided bubble. The data are averaged over all
times for all runs. The solid curve is the Aboav-Weaire law, m(n) =
(6 − a) + (6a + μ2)/n, where μ2 is the variance, 〈(n − 〈n〉)2〉, of the
side distribution (for our system μ2 = 1.99 ± 0.04), and a is the only
fitting parameter, which we measure to be a = 1.16 ± 0.07. Data for
the two-dimensional foam are taken from Ref. [21].

we measure to be μ2 = 1.99 ± 0.04, as compared to the value
measured for the two-dimensional foam, μ2 = 1.56 ± 0.02
[21]. The average number of sides of the surface foam is
〈n〉 = ∑

np(n) = 5.83 ± 0.02, which is less than the required
value of six only because the sample is of finite size.

A related distribution that is less well known is the
area-weighted side number distribution, F (n). This is defined
in Ref. [21] as the probability that a randomly selected
point within the foam falls inside an n-sided bubble. When

calculating the growth rate of the average area for a two-
dimensional foam, the rate depends on the quantity

∑
n nF (n).

As with p(n), the distribution F (n) does not vary with time,
and so we can average over all times for all runs. The
results are shown in Fig. 4(b). Also shown for comparison
is the distribution of F (n) for an ordinary two-dimensional
foam. The area-weighted average number of sides is 〈〈n〉〉 =∑

nF (n) = 6.6 ± 0.2, which is slightly larger but within the
error of the result for two-dimensional foams [21].

The average number m(n) of sides of an n-sided bubble
is another topological quantity of interest. As with the side
number distribution, this quantity does not change over time or
for the different runs. This allows us to average over all n-sided
bubbles for all times and for all runs. The results are shown in
Fig. 4(c). The expected form of this relationship, known as the
Aboav-Weaire law, is m(n) = (6 − a) + (6a + μ2)/n, where
μ2 is the variance and a is the only fitting parameter. We find
a = 1.16 ± 0.07, which is within the error of measurements
for ordinary two-dimensional foams [1,21,50].

B. Size

The distribution of bubble areas is one natural measure
of bubble size. Although the average area of the bubbles
increases with time, if we divide out the average area, then
the distribution of the resulting normalized area does not
change with time and is found to be the same for all runs,
to within statistical uncertainty. This is consistent with the
foam being in a scaling state. Therefore it is possible to
average the normalized area distribution for all times and for all
runs. The cumulative distribution of bubble areas is shown in
Fig. 5(a). The curve corresponding to an exponential distri-
bution is shown for comparison as a dotted line. Our data fall
below the exponential curve for large A/〈A〉 and is better fitted
by a compressed exponential, shown as a dotted line. We find
that the cumulative area distribution for the surface foam is
very similar to the distribution for a two-dimensional foam.
While it falls above the two-dimensional data for large A/〈A〉,
this deviation is within the error bars.

As with the area, we measure the perimeter of each bubble.
We average the normalized perimeter across all times and
runs. The cumulative distribution of perimeters can be seen in
Fig. 5(b). The normalized perimeter falls below the exponential
curve and is well fitted by a compressed exponential. The
compressed exponential shown for the perimeter distribution
corresponds to the compressed exponential for the area distri-
bution, assuming that A ∝ P 2 with the same proportionality
constant for all bubbles. This form is the same as Eqs. (7)–(8) in
Ref. [21]. We see that the perimeter distribution for the surface
foam falls on top of the distribution for a two-dimensional foam
and does not show the deviation for large bubbles seen in the
area distribution.

C. Size topology

We have characterized the distribution of the number of
sides and the area distribution, but it is also useful to look at
quantities that depend on both these measurements in different
ways. One example is the average area of an n-sided bubble.
This is a relationship that has been of interest in the past [50].
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FIG. 5. (Color online) One minus the cumulative distribution
of (a) bubble areas and (b) bubble perimeters, averaged over all
times for all runs. The dotted black line is an exponential shown
for comparison. The green dashed curve is fit to a compressed
exponential. The compressed exponential in (b) corresponds to the
form in (a), assuming that A ∝ P 2 with the same proportionality
constant for all bubbles. Data for the two-dimensional foam, and the
compressed exponential curves, are taken from Ref. [21].

The first empirical measurements were made by Lewis for
epithelial cucumber cells, who found a linear relationship of
the form

〈An〉
〈A〉 = 1 + λ(n − 6), (5)

where λ is a parameter of the system [51,52]. It can be shown
that if 〈An〉/〈A〉 is linear in n, then this relationship must hold,
but additional restraints are required to prove that this relation-
ship must be linear [53]. A related measurement that is also
of interest is the relationship between the average perimeter
of an n-sided bubble and n. This analogous relationship is
called Desch’s law or Feltham’s law and is of the same form as
Lewis’s law with the area replaced by perimeter. Specifically,
it has the form

〈Pn〉
〈P 〉 = 1 + ν(n − 6), (6)

where ν is a parameter of the system. It has been shown that
if the average energy of a cell is proportional to its perimeter,
then the entropy is maximized if Desch’s law is satisfied [54].
These laws continue to be of interest [55–57].

We measured A/〈A〉 for all bubbles, and the results, for all
times and all runs, are shown versus side number in Fig. 6(a).
The gray scale corresponds to the probability of finding a
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FIG. 6. (a) Normalized area versus side number for all bubbles.
Gray scale shows the probability of finding a bubble with that side
number and that area. Squares are the average normalized area for a
given n, 〈An〉/〈A〉. The solid line is a fit to Lewis’s law, 〈An〉/〈A〉 =
nλ + (1 − 6λ), with fitted value λ = 0.39 ± 0.03. The dotted line is a
fit to the proportionality 〈An〉/〈A〉 = kn2. (b) Normalized perimeter
versus side number for all bubbles. Gray scale shows the probability
of finding a bubble with that side number and that perimeter. Squares
are the average normalized perimeter for a given n, 〈Pn〉/〈P 〉. Solid
line is a fit to Desch’s law, 〈Pn〉/〈P 〉 = nν + (1 − 6ν), with fitted
value ν = 0.21 ± 0.01. In both parts, data for the two-dimensional
foam are taken from Ref. [21].

bubble with that number of sides and that normalized area for
each point. The average, 〈An〉/〈A〉, is shown as squares. Note
that the distribution of normalized areas around the average for
a given n is not symmetric and, especially for small n, is peaked
near zero. A fit to Lewis’s law is shown as a solid line and does
not match the data closely. This demonstrates that Lewis’s law
is not an appropriate fit for our data, which is fitted better by a
generic quadratic form, shown on the plot as a dotted line. This
result is in accordance with some simulations and experiments
on ordinary two-dimensional foams [21,55,57]. We see that
the values for the surface foam are not significantly different
from the two-dimensional foam, although it looks as though
the two-dimensional data may have slightly more curvature.
Both cases clearly deviate from Lewis’s law. This deviation
from Lewis’s law is consistent with our result that the area
distribution deviates from an exponential [58].

We similarly measured the normalized perimeters, P/〈P 〉,
for all bubbles, and the results for all times and runs are shown
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in Fig. 6(b). As in the plot for Lewis’s law, the gray scale
corresponds to the probability of finding a bubble with a given
number of sides, n, and a given normalized perimeter. The
average for each n, 〈Pn〉/〈P 〉, is shown as squares on the plot.
Note that the distributions about the average are much more
symmetrical than in the area case shown in Fig. 6(a). The fit to
Desch’s law, shown as a solid line on the plot, is a good fit to
the data. Desch’s law is a better fit to our data than Lewis’s law.
We see that the surface foam data is clearly linear, as are the
data for the two-dimensional foam However, the slopes of the
lines in the two cases are different. The value of ν measured
for the surface foam in the fit to Eq. (6) is ν = 0.21 ± 0.01.
This value is in the same general range as measurements made
for ordinary two-dimensional foams [21,55,57].

D. Shapes

There are many ways to characterize the shape of a bubble.
Among the possible shape parameters, there are two that have
special physical significance with regards to the coarsening
process of fairly dry two-dimensional foams [21] with nonzero
liquid content. The first is circularity, defined as

C =
(

1

n

n∑
i=1

1/Ri

) √
A/π, (7)

where A is the area and Ri is the radius of curvature for the
ith side of an n-sided bubble. This dimensionless number is
one for a circle and two for any shape made up of straight
line segments. The sign convention is such that Ri is positive
for the bubble on the high-pressure side of the film. Note that
the surface Plateau borders must be circular arcs for C to be
well defined, which in turn requires the curvature of the films
perpendicular to the surface to be constant. While the films
must certainly meet the boundary at π/2, it is not obvious
that the curvature conditions holds. However, we find that all
surface Plateau borders may be well fitted to circular arcs with
no systematic deviation to within the accuracy of the data. The
second relevant shape parameter is elongation, defined as

E = P/
√

4πA, (8)

where P is the perimeter and A is the area. This dimensionless
number is one for a circle, and a large elongation would
correspond to a shape far from a circle.

The distribution of circularities for all times and for all runs
is shown in Fig. 7. The gray scale corresponds to the probability
of finding a bubble with that circularity and that number of
sides. The average circularity for each n is shown as squares.
For comparison, the circularity of an isotropic bubble is shown
as a straight line. An isotropic bubble is an n-sided bubble with
all sides the same length and having the same curvature. We
see that the circularity for two-dimensional foams and surface
foams is very similar and close to the expectation for isotropic
bubbles. Three-sided bubbles are a notable exception, being
less circular than isotropic bubbles for both two-dimensional
and surface bubbles. The reason for this is unknown.

The distribution of elongations, for all times and for all
runs, is shown in Fig. 8. The gray scale corresponds to the
probability of finding a bubble with that elongation and that
number of sides. The average elongation for each n is shown
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as squares. This average elongation does not depend on n. For
comparison, the elongation of an isotropic bubble is shown as
a dashed line. We see that, unlike the circularity, the values
for isotropic bubbles are not close to the average value. The
overall shape of the distribution has a main peak, with a long
tail and small secondary peak (note that the probabilities are
shown on a logarithmic scale). This long tail and secondary
peak increases the average elongation, but the mode, indicated
by circles on the plot, shows that the distribution is peaked near
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FIG. 8. Elongation, E = P/
√

4πA where P is perimeter and A

is area, plotted versus side number. Gray scale shows the probability
of finding a bubble with that side number and that elongation,
normalized so that the sum over n and integral over elongation gives
one. Squares are the average elongation for a given n. The dashed
curve shows the elongation for isotropic bubbles with n sides. The
dotted line is the limit of the elongation of an isotropic n-sided bubble
as n goes to infinity. The triangles are the mode of the circularity for
a given n. Average elongation data for two-dimensional foam, from
Ref. [21], are also shown for comparison.
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the value for an isotropic bubble. Ordinary two-dimensional
foams have a distribution of elongations that is much less
broad. There is no tail of highly elongated bubbles. We see
that this tail for surface bubbles causes the average value to
be far from the peak of the distribution. Although the average
elongation for the surface foam and the two-dimensional foam
are far apart, the average of the surface foam is close to the
peak of the distribution for the surface foam. This suggests that
most surface bubbles have an elongation in a range similar
to what we see for two-dimensional foams, but in surface
foams there exists a tail of highly elongated bubbles not
present in ordinary two-dimensional foams. The fact that the
elongation distribution is different for the surface foam and
the two-dimensional foam is consistent with the fact that the
area distribution for the surface foam deviates from the area
distribution for the two-dimensional foam, but the perimeter
distributions are the same in both cases.

IV. BUBBLE DYNAMICS

All measurements discussed to this point have involved
individual static photographs and have not considered how
the bubbles change over time. An initial clear signal that the
dynamics are different in the case of the surface foam is the
creation of bubbles. This type of T2 process is not possible
by coarsening in two-dimensional foams, but in our surface
foam we do observe the apparent creation of bubbles. This is
rare and happens when bulk bubbles move to the surface. The
creation of surface bubbles by rearrangement occurred at an
insignificant rate compared to the disappearance of bubbles by
coarsening.

We are also able to track the change in individual bubbles
over time. In a sequence of 30 images, we measure the
area of a bubble at each time and fit to a line to determine
dA/dt . Only bubbles that did not change n during this
window were considered, so topological changes were not
an issue. For area versus time curves that were not linear,
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FIG. 9. (Color online) Area versus time curves for four example
six-sided bubbles. The initial areas are subtracted off for ease of
comparison. Solid lines represent the average growth rates of n-sided
bubbles according to Fig. 10(a).
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FIG. 10. Rate of change of area versus side number for all tracked
bubbles for (a) surface foams and (b) the vertical two-dimensional
foam from Ref. [21]). Gray scale shows the probability of an n-sided
bubble having that coarsening rate. Squares are the average rate of
change of area for a given n. The line is a fit to 〈dAn/dt〉 = K(n − 6),
with K = 2.2 ± 0.1mm2/h for the surface foam and K = 1.20 ±
0.06mm2/h for the vertical two-dimensional foam from Ref. [21].

each linear region was considered separately. In this way
we can measure the coarsening rate of a large number of
bubbles. In a two-dimensional foam, the coarsening rate of
an individual bubble depends only on the number of sides of
that bubble, a surprising result known as von Neumann’s law,
Eq. (2). In the case of our surface foam, we are seeing only the
individual faces of larger three-dimensional bubbles, which
can exchange gas through diffusion not just with the bubbles
we can see, but others in the bulk. The exact equation for the
growth rate of a three-dimensional boundary bubble is shown
in Eq. (4). Additionally, the growth or shrinkage of bubble
volume does not necessarily correspond to the area change of
a single film. The von Neumann argument for two-dimensional
foams thus cannot be applied, and the coarsening rate of
the two-dimensional surface bubbles will not be expected to
depend only on the number of sides. We expect that in three
dimensions, larger bubbles and bubbles with more faces will
be more likely to grow, so there should be some correlation
between number of sides and area and coarsening rate.

In Fig. 9 we plot area versus time curves for four example
six-sided bubbles. In two dimensions, all six-sided bubbles are
stationary and neither grow nor shrink. By contrast, the areas
of the six-sided surface bubbles in Fig. 9 all change with time.
Some grow, and some shrink, at a wide variety of coarsening
rates, occasionally exceeding the average growth rates for five-
and seven-sided bubbles. We also note that the displayed area
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versus time curves are not linear, even though there are no
topological changes during this time window.

The coarsening rate, dA/dt , for individual bubbles is plotted
against number of sides in Fig. 10(a). The density of points,
indicated by gray scale, displays a large scatter of coarsening
rates for bubbles with the same number of sides, and a large
overlap of bubbles with different numbers of sides having the
same coarsening rates. This is very different from coarsening
in a two-dimensional foam, shown in Fig. 10(b), where growth
rates are tightly clustered around the average.

For the case of the surface foam, we expect the coarsening
to be very complicated, with gas diffusion possible between
surface bubbles and bubbles in the bulk, as well as a limited
correlation between the change in bubble volume and the
change in area of a single face on the surface. Indeed, we see
a wide range of growth rates in the case of the surface foam.
However, despite this wide variation for individual bubbles,
we see that on average bubbles with more sides grow faster.
Remarkably, the average coarsening rate of n-sided bubbles
can be well fitted to a K(n − 6) proportionality like von
Neumann’s law; this gives K = 2.2 ± 0.1mm2/h. On average,
von Neumann’s law appears to hold, to within a margin of
error that is small compared to the width of the distribution
of rates found around the average. While we thus detect no
deviation from von Neumann’s law for the average behavior,
except perhaps for n = 3, it is possible that a deviation could
be found by further experiments with better statistics.

V. CONCLUSION

We measured distributions and dynamics of the two-
dimensional surface of a three-dimensional foam. A total-
internal reflection technique involving submerging the appa-
ratus in water allowed us to cleanly image the surface, and
image analysis allowed us to process a large quantity of data
to build good statistics.

Some measurements were very similar to the case for
an ordinary two-dimensional foam. The number of sides
distribution for the surface foam was slightly broader than
for the two-dimensional case, but other topological measure-
ments, such as F (n) and m(n), were nearly indistinguishable.
Likewise, the size distributions were very close in both cases.
There was a slight difference in the area distribution for large
A/〈A〉, but the perimeter distribution was the same in both
cases. The measurement of the shape parameter circularity was
also the same for the surface foam and the two-dimensional
foam.

The distribution of another shape parameter, elongation,
was noticeably different in the surface foam. Unlike the two-
dimensional foam, for the surface foam there was a tail of large
elongation bubbles. This resulted in the average elongation
being different for the two cases, although the distributions
were peaked near the same value.

The greatest difference between the surface foam and
the two-dimensional foam was in the dynamics. Unlike the
two-dimensional foam, which obeys von Neumann’s law,
the surface foam had individual bubbles that coarsened at a
wide variety of rates. Additionally, we observed the apparent
creation of bubbles, a topological change that cannot be caused
by coarsening for truly two-dimensional foams. Despite the
spread in growth rates for the surface foam, von Neumann’s
law appears to hold on average, to within a margin of error that
is smaller than the widths of the growth rate distributions. This
surprising result remains to be explained, perhaps based on
Eq. (4) and suitable assumptions about bubble sizes, shapes,
and size-topology correlations.
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