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Molecular dynamics simulations with varying damping are used to examine the effects of inertia and spatial
dimension on sheared disordered solids in the athermal quasistatic limit. In all cases the distribution of avalanche
sizes follows a power law over at least three orders of magnitude in dissipated energy or stress drop. Scaling
exponents are determined using finite-size scaling for systems with 103–106 particles. Three distinct universality
classes are identified corresponding to overdamped and underdamped limits, as well as a crossover damping
that separates the two regimes. For each universality class, the exponent describing the avalanche distributions
is the same in two and three dimensions. The spatial extent of plastic deformation is proportional to the energy
dissipated in an avalanche. Both rise much more rapidly with system size in the underdamped limit where inertia
is important. Inertia also lowers the mean energy of configurations sampled by the system and leads to an excess
of large events like that seen in earthquake distributions for individual faults. The distribution of stress values
during shear narrows to zero with increasing system size and may provide useful information about the size
of elemental events in experimental systems. For overdamped and crossover systems the stress variation scales
inversely with the square root of the system size. For underdamped systems the variation is determined by the
size of the largest events.
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I. INTRODUCTION

Many slowly driven systems respond to a driving force
through bursts of activity termed avalanches. These avalanches
often follow a power-law distribution over many decades,
signaling the existence of a nonequilibrium critical depinning
transition at the onset of motion. Systems showing this scal-
ing behavior include charge-density waves, fluid interfaces,
magnetic domain walls, granular media, foams, crystals,
amorphous metals, and the earth’s crust [1–10].

One of the unresolved aspects of the depinning transition
is the role of inertia. Most computational work has focused
on the overdamped limit and studies that include inertia
suggest that it fundamentally changes the depinning transition
from a continuous second-order transition to a discontinuous
transition with hysteresis [11–14]. In contrast, experiments
have reported power-law scaling even in systems that display
underdamped dynamics such as earthquakes and compressed
laboratory samples. In this paper we present simulations of
quasistatic plastic deformation in two- and three-dimensional
disordered solids that show that inertia does not destroy critical
behavior at depinning, but does change the universality class.

Theoretical studies of avalanches have generally considered
lattice-based models with simple site interaction rules [8–23].
These models are computationally and analytically tractable,
but have the limitation that position and stress changes are
discrete. Most studies consider scalar order parameters, ignore
correlations in deformation, and are in the overdamped limit.
Then the rate of avalanches of size S follows a power law
R(S) ∼ S−τ , with a universal value of τ = 3/2 [16,17]. Strain
and stress in deformed solids are tensorial quantities rather
than scalars. A recent model shows that this can produce a
lower value of τ = 1.25 [21] and produce long-range spatial
correlations in deformation like those found in atomistic
simulations [24]. Older models with different rules for site
evolution, such as long-term damage to sites, also find

that spatial correlations affect the power-law exponents for
avalanche statistics [9].

Another limitation of lattice models is the difficulty of
including inertia. One common approach is to add rules
that lower barriers to motion when an avalanche starts
[10,13–16]. This fits the intuitive picture that inertia can
carry a system over successive potential energy barriers,
but inertia is highly directional and decreases the chance
of passing over barriers that are not in the direction of the
momentum. Studies of scalar lattice models find that including
inertia in this simple way fundamentally changes the nature
of the depinning transition. All find that inertia introduces
hysteresis, with different stresses required to initiate and stop
motion [13–15,25]. Most predict that the transition becomes
first order [13,14,25], but a hysteretic second order has also
been proposed [15]. Experimental evidence for hysteresis and
a first-order depinning transition has been reported for granular
media and sandpiles [26,27].

Many other experiments have reported a continuous
second-order transition with critical scaling in plastically
deformed disordered solids, including granular packings,
colloidal glasses, foams, and metallic glasses [28–37]. The
longest range of scaling is for earthquakes, where the con-
version of the magnitude on the Richter scale to the energy
or moment is complicated, but gives τ = 5/3 [38]. Studies of
granular media have found values of τ that are 2–6 [31,37]
or as small as 1.2 [7,37,39]. Sun et al. have reported results
from deformation of bulk metallic glasses, finding avalanche
distribution exponents τ between 1.3 and 1.5 [40,41]. The
variation in laboratory measurements reflects the difficulty in
detecting events with a wide range of sizes. In addition, it is
difficult to vary the rate, system size, and other experimental
parameters that cut off the largest events and influence the
apparent exponent [10]. Simulations allow a full analysis of
these effects.
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Particle-based simulations of plastic deformation provide
more realistic microscopic detail than lattice models, but are
also computationally more intensive. Early simulations of bub-
bles in the overdamped limit found a power-law distribution
of rearrangements with exponent τ = 0.7 [42,43]. Maloney
and Lemaı̂tre found similar scaling using energy-minimization
dynamics for quasistatic shear of a model two-dimensional
glass, but τ appeared to decrease from 0.7 to 0.5 with
increasing system size [44]. They also found that the size of the
largest avalanche increased with system size, as expected at
a critical depinning transition. A power-law increase in event
size was seen in later simulations of a similar two-dimensional
model by Lerner and Procaccia [45] and three-dimensional
simulations of a more realistic model of amorphous metals
by Bailey et al. [46]. The computational studies described
above have all been on systems of about 2 × 104 particles or
less, restricting the range of power-law scaling and making τ

difficult to measure.
In a recent paper [47], we examined scaling of avalanches

in two-dimensional systems with more than 106 particles. This
allowed τ and other critical exponents to be determined as a
function of damping. The results showed that the depinning
transition remained second order in the underdamped limit,
but that the universality class changed with damping. The
current paper expands our studies of two-dimensional systems
and extends them to three dimensions. All simulations are
performed in the athermal quasistatic limit, but with varying
levels of damping to change the role of inertia in the
system. Finite-size scaling is used to develop scaling relations
between critical exponents and analyze data from systems
with the number of particles ranging from thousands to
several million.

We find that inertia leads to the same three universality
classes in two and three dimensions. Some of the exponents,
including τ , are independent of dimension. In the overdamped
limit, τ is close to the value of 1.25 obtained in a recent
lattice model that includes directional stress transfer [21] and
less than the value of 1.5 obtained for scalar lattice models
[10,14,16]. In the underdamped limit, τ is also near 1.25, but
the distribution of stress drops can exhibit a higher apparent
exponent. The most dramatic effect of inertia is to increase the
prevalence of large avalanches. The magnitude of the largest
events grows more rapidly with system size and the avalanche
distribution has a plateau at large magnitudes. The longest
range of scaling is observed for the crossover damping that
corresponds to a multicritical point separating the overdamped
and underdamped regimes. The energy scales with τ = 1 for
more than five decades.

There is no evidence of the hysteresis predicted by lattice
models of inertia [11,12,14–16,25]. The range of stresses
sampled during quasistatic motion shrinks to zero with increas-
ing system size. In the overdamped limit, stress fluctuations
decrease as the inverse square root of the number of particles.
Stress fluctuations drop more slowly in the underdamped
limit, where they are determined by the size of the largest
avalanches. In all cases, the rise in maximum avalanche size
with system size reduces the rate of small avalanches, which
scales sublinearly with system size. Both effects may be useful
in analyzing the effective size of elemental deformations in
experimental systems.

The relationship between the change in shear stress,
energy dissipation, and plastic deformation during individual
avalanches is studied in detail. The drop in stress and the
energy dissipated are uncorrelated for small events, but become
linearly related for the larger events that exhibit critical scaling.
The spatial size of avalanches is proportional to the energy
dissipated. This provides evidence that bigger avalanches
spread over a larger area rather than producing greater local
strains in the deformed region.

An outline of the remainder of the paper is as follows.
Section II details the system studied, including the particle
interactions, damping, and protocol for reaching the quasistatic
limit in simulations with inertia. Section III presents results for
the effect of inertia on the energies and stresses sampled during
shear, the rate of avalanches, the critical scaling exponents, and
the relation between the energy dissipated, stress change, and
plastic deformation associated with each avalanche. Finally,
Sec. IV presents a discussion and summary of the findings.

II. METHODS

This paper presents results from molecular dynamics (MD)
simulations of deformed disordered solids in two and three
dimensions. In all cases, the system studied is a binary glass.
The two species of particles A and B both have mass m,

but have different diameters to prevent crystallization. The
particles interact via a smoothed Lennard-Jones (LJ) potential,
which depends only on the magnitude r of the vector r
between two particles and their species. This potential keeps
the standard LJ form at small distances

UIJ (r) = 4u[(aIJ /r)12 − (aIJ /r)6] + uc, r < 1.2aIJ , (1)

where u is the characteristic energy, uc is an energy offset, and
aIJ is the interaction length between particles of type I and J .
The A-A particle interaction length is taken as the fundamental
unit of length a ≡ aAA. The B-B particle interaction length
aBB = 3/5a, while the mixed interaction length aAB = aBA =
4/5a. Outside the LJ region the potential has a polynomial
form
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IJ
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IJ
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IJ

)4
, 1.2aIJ < r < 1.5aIJ , (2)

with coefficients Ci chosen so that the energy, the force, and
the derivative of the force match the LJ form at the inner
cutoff radius 1.2aIJ and go to zero at an outer cutoff radius
r

(c)
IJ = 1.5aIJ . For these cutoff radii the binding energy of a

single bond is about 0.5u. The strength of the interaction,
particle radius, and mass set the fundamental unit of time t0 =√

ma2/u. Simulations were performed with the LAMMPS MD
simulation code, using a velocity Verlet integration algorithm
with an integration time step �t = t0/200 [48].

Two-dimensional systems are initialized by placing parti-
cles at random in a square periodic simulation cell with the
ratio of the number of particles of species A and B: NA/NB =
(1 + √

5)/4. Next, the system is heated well above the glass
transition temperature and then quenched to zero temperature
at constant pressure. The pressure is chosen to be near zero,
but slightly compressive. The results are insensitive to the
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precise value. Following this procedure, the system density
is ρ = 1.38a−2 and the square simulation box has period L.
We consider five box sizes with L = 55a,109a,219a,437a,
and 875a. These sizes correspond to N ≈ 4 × 103 to 106

particles.
A similar equilibration protocol is followed for three

dimensions. After equilibration the density is ρ = 1.71a−3 and
the simulation is a cube with period L. Sizes are L = 20a,40a,

and 81a, corresponding to N ≈ 104–106 particles.
After the quench process, the samples are strained. The

periodic boundary conditions are changed and a correspond-
ing affine displacement is applied to the position of each
particle. The deformation applied to the simulation box in
two dimensions is a pure shear strain at a true strain rate
ε̇ = ε̇xx = −ε̇yy . In three dimensions the system volume is
conserved by applying an axisymmetric compressive strain
rate −ε̇ in two dimensions x and y and an extensional strain
rate 2ε̇ in the third direction z. The deformation leads to
changes in the instantaneous stress tensor, which is calculated
from the kinetic energy tensor and the virial tensor for all
particles [49].

Our aim is to study the athermal limit, which requires
constantly removing kinetic energy from the simulation. A
viscous drag force is applied to damp particle motion. The
drag force has the form Fdrag = −�mv, where v is the peculiar
velocity, with displacement due to the affine deformation
subtracted. The dissipation rate � plays a central role in
our simulations by controlling the relative importance of
the inertial term in the particle equations of motion. As
� decreases, the dynamics changes from overdamped to
underdamped (inertial) dynamics.

Generically, a strained disordered solid will load elastically
for some strain interval and then plastically deform, decreasing
the stress in the system and releasing stored elastic energy
as kinetic energy. These sudden bursts of particle motion
are termed avalanches. In the quasistatic limit the series of
elastic loading segments and plastic deforming avalanche
events should be independent of the strain rate and depend
only on the total strain interval. One way to realize this limit
is to deform the system at a very low rate so that the kinetic
energy from one avalanche has been dissipated long before
the system has been strained enough to nucleate the next
avalanche. Since the rate must be set low enough to prevent
overlap of the closest events, this is not computationally
feasible for all system sizes and damping rates. Instead, we
implement a protocol where the system is strained at a finite
strain rate, which is then reduced to zero when an avalanche is
detected.

A representative strain-avalanche-strain interval, shown in
Fig. 1, illustrates how the system evolves with this quasistatic
avalanche detection scheme. When the system is deformed, the
nonaffine response due to heterogeneity in the solid produces
a small background kinetic energy density Kback. This kinetic
energy is nearly constant during elastic loading at constant
strain rate (solid lines). When an avalanche starts, there is
a sharp rise in kinetic energy. The strain rate is reduced to
zero when the kinetic energy exceeds Kback by roughly two
orders of magnitude. The straining of the solid resumes when
the kinetic energy has fallen below Kback by at least two
orders of magnitude. We have checked that the strain rate
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FIG. 1. (Color online) (a) Event sequence showing the kinetic
energy thresholds (dotted horizontal lines) used to reach the qua-
sistatic limit. Here an L = 219a system is strained at a rate of
ε̇ = 10−6t−1

0 during the solid (red) segments. The plateaus of low
constant kinetic energyKback result from nonaffine displacements due
to heterogeneity. Avalanches cause a sharp spike in kinetic energy
that decays more rapidly as � increases. The strain rate is set to
zero (dashed blue segments) after the upper threshold is exceeded
and returned to 10−6t−1

0 when a lower threshold is passed. (b) The
stress-strain curve rises linearly during elastic loading (solid red
segments) and drops rapidly as the avalanche begins (dashed blue
segments). There is often an overshoot (arrow) where the stress drops
below the steady-state value.

chosen is low enough that the results are not sensitive to these
thresholds.

The stress response of the system illustrated in Fig. 1(b)
is typical, showing linear behavior during the strain interval,
followed by a rapid drop during an avalanche event. Dur-
ing avalanches with low particle damping the stress often
overshoots the steady-state value that is used to quantify the
size of avalanches. This overshoot complicates the analysis of
simulations at constant strain rate.

Even after eliminating the connection between strain rate
and avalanche duration, there is still the problem of the very
long duration of large avalanches at very low damping rates. As
the damping coefficient � becomes small and events become
large, the peak kinetic energy in the system approaches 10−3u

per unit area (volume). At our prescribed strain rates there
is then a factor of Kmax/Kback ≈ 108 between the maximum
kinetic energy and the kinetic energy during straining. This
energy must be removed by the viscous drag force and
one can estimate that for the smallest damping rates we
simulate, �t0 = 10−3, the decay of the kinetic energy will
take a time of about ln(Kmax/Kback)/� ≈ 20 000t0. This is
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FIG. 2. (Color online) Typical stress-strain curves in two di-
mensions for system size L = 219a and three different damping
rates: �t0 = 1 (solid blue line), �t0 = 0.1 (dashed green line), and
�t0 = 0.001 (dash-dotted red line).

not only computationally expensive, but unnecessary. Even
for our largest system sizes the time for sound waves to
propagate across the system, tprop = L/c ≈ 250t0, is much
smaller. Underdamped systems seldom show signs of further
instability, such as kinetic energy spikes or stress drops, after
about 2tprop–3tprop.

In order to expedite draining the system of kinetic energy
when �t0 = 10−3, we quench the kinetic energy rapidly by
increasing � to 10t−1

0 once a threshold has been reached. Our
criterion is that when the kinetic energy in the system has fallen
to about 10−3 times the peak kinetic energy, the avalanche is
effectively over and no other instabilities will be activated. For
the viscous damping force discussed above, this is equivalent
to a time criterion since the decay of the kinetic energy in
the system is exponential. For comparison, the time for this
decrease in kinetic energy is still roughly ten times larger
than the time scale for sound to propagate across the largest
simulation cell (L = 875a). It is also much larger than the time
for the stress to reach its steady-state value (Fig. 1), indicating
an event is over.

In order to verify that the quench procedure does not affect
system evolution, we compared it to simulations with constant
damping. For a subset of avalanches simulated with both the
“quench” protocol and fixed damping rate, the total energy
dissipated in each event differed by less than 10−9u. This
is orders of magnitude smaller than the smallest avalanches
recorded, which have energy E ≈ 10−5u. We conclude that the
quench protocol produces a system in the same local potential
energy minimum as the unquenched simulation.

Typical two-dimensional (2D) stress-strain loading curves
are shown in Fig. 2. Curves for three-dimensional systems are
similar. For all damping rates the systems reach steady state
after roughly 5% strain. There is a small drift in the hydrostatic
pressure at larger strains, but quantities of interest such as the
shear stress and avalanche statistics become stationary and do
not evolve with strain. Only avalanches at strains greater than
7% are included below.

Generically, the elastic energy density stored in a system
by a differential strain dε is dustrain = σij dεij , where σij is the
stress tensor and summation over repeated indices is implied.
Because the 2D strain geometry is pure shear, this can be
simplified by defining ε ≡ εxx = −εyy and σs ≡ σxx − σyy .
The stored elastic energy density is then

dustrain = σsdε. (3)

The elastic strain energy in three dimensions has the same form
if one defines σs ≡ σxx + σyy − 2σzz and ε ≡ εxx = εyy =
−1/2εzz.

III. RESULTS

A. Time dependence of stress and energy

This section illustrates some of the dramatic effects that
inertia has on the mean of and fluctuations in the shear
stress and potential energy density in steady-state quasistatic
shear. One limiting case is the overdamped (large-�) regime,
where the potential energy decreases monotonically to the
next minimum during each avalanche. In the opposite, un-
derdamped limit, there is negligible damping during plastic
rearrangement and inertia can carry the system over successive
small energy barriers. We present typical results from these
limiting regimes with damping rates �t0 = 1 and 0.001,
respectively. Reference [47] identified a critical intermediate
damping rate of �t0 = 0.1 that acts like a multicritical point
separating the overdamped and underdamped regimes. We find
that this crossover damping rate is the same in two and three
dimensions within our uncertainty.

Figure 3 illustrates how damping affects the potential
energy density and stress. Note that systems with different
damping rates sample completely different regions of phase
space with almost no overlap. Differences of approximately
30% in the mean value of the potential energy density persist
in our largest system sizes in two dimensions. There is a smaller
but significant change of about 10% in the mean stress. In three
dimensions the mean potential energy in the overdamped and
underdamped limits differs by about 8% and the stress by 6%.
As the damping decreases, inertia is able to carry the system
over barriers in the potential energy landscape to progressively
lower minima. In addition to reducing the mean potential
energy, inertia leads to larger avalanches. The increase in the
size of energy and stress drops is evident in Fig. 3 and related
to changes in scaling exponents discussed below.

As illustrated in Fig. 3, the evolution of the stress and
potential energy density is characterized by linear rises, where
elastic energy is stored, and sudden drops during avalanches.
Each avalanche can be characterized by the potential energy
density drop �U and stress drop �σs. In what follows we want
to compare avalanches of the same absolute size in systems of
different linear dimension L. We define absolute measures of
energy and stress drop as

E ≡ Ld�U , S ≡ 〈σs〉Ld

4μ
�σs. (4)

The shear modulus μ and the steady-state shear stress 〈σs〉 are
introduced so that both S and E have units of energy. We have
found that both μ and 〈σs〉 are nearly independent of system
size and relatively insensitive to damping rate.
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FIG. 3. (Color online) (a) Potential energy and (b) stress in three
systems during a representative strain increment. The three systems of
length L = 219a started at the same zero-strain particle configuration
but evolved with different representative damping rates: �t0 = 1
(solid blue line), �t0 = 0.1 (dashed green line), and �t0 = 0.001
(dash-dotted red line). The mean values and the size and rate of
fluctuations in energy and stress vary significantly with damping rate.

With these normalizations, energy conservation imposes a
sum rule ∑

i

E(i) =
∑

i

S(i), (5)

where the sum is over all avalanches i in the steady-state
regime. This connection has been noted previously by Lerner
and Procaccia [45] and is derived in Appendix A.

The sum rule in Eq. (5) only constrains the sum over all
events, but one might expect that something similar to the
principle of detailed balance leads to a correlation between
E and S for individual events. This correlation clearly breaks
down for small events. Indeed, while E is always positive,
S can have either sign for small events [45]. Large events
dominate the sums in Eq. (5) and their energy and stress drops
are more strongly correlated.

Figure 4 shows how the mean and variation in S for events of
a given E change with avalanche size. Results are normalized
by E to accentuate deviations from linear behavior and results
from different damping rates are offset to prevent overlap.
For energies less than a crossover energy the mean stress
drop is much larger than E and has large fluctuations. In the
overdamped regime this crossover occurs between 1u and 2u

for both two and three dimensions, while for the crossover
damping regime we estimate the crossover energy to occur
between 2u and 4u. The presence of large fluctuations and
occasional negative drops suggests that events smaller than
these crossovers do not necessarily contribute to a release of
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FIG. 4. (Color online) Ratio of mean stress drop to energy drop
〈S〉/E of the avalanche events for (a) 2D and (b) 3D systems,
binned by the logarithm of energy. To prevent overlap, the results
for overdamped and underdamped systems are multiplied by 10 and
0.1, respectively. Error bars indicate the spread in stress drop for
avalanches of a given energy. A linear relationship between 〈S〉 and
E holds for E greater than a few u for the overdamped and crossover
damping.

the imposed shear stress. For energies larger than the crossover
energy the mean stress drop is nearly equal to E for the over-
damped and crossover damping cases. Only these larger events
exhibit critical scaling for both E and S. Figure 4 implies
that E and S should have the same scaling exponents in this
regime.

In the underdamped limit, 〈S〉/E only approaches unity for
the largest events, which move to larger E as L increases.
The sum rule is not violated, but the scaling of avalanches
with E and S may be different. The data can be fit to a power
law 〈S〉 ∼ Eη with η ≈ 0.9 over the range 5u < E < 2000u,
but the prefactor must be L dependent so that S/E → 1 at
the largest events. The deviation from linearity is a natural
result of reduced damping and inertia. In the overdamped limit
there should be a correspondence between stress and potential
energy, as traversing each potential energy barrier dissipates
energy. In the underdamped limit potential energy barriers
may be surmounted with little energy dissipation, leading to
decoupling of the dissipated energy and the stress drop. The
implications of this decoupling are discussed further in the
section on finite-size scaling (Sec. III C).

B. Avalanche distributions

To characterize the different universality classes associated
with the three damping regimes we examine the behavior of
the avalanche rate distribution. To form this distribution we
count the number of avalanche events with energy drop E or
stress drop S during a given strain interval. We define the rate
of events as the number of events per unit strain and energy.
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FIG. 5. (Color online) Unscaled distribution of stress drops
R(S,L) for overdamped 3D systems.

The rates of events with size E and S in a system of length L

are denoted by R(E,L) and R(S,L), respectively.
Raw R(S,L) distributions for the overdamped regime in

three dimensions are shown in Fig. 5. As expected, the number
of events of a given size increases with system size. One
might expect the rate of small avalanches R(S,L) to scale with
the number of particles, i.e., as Ld. This would be the case if the
density of nucleation sites were independent of system size.
Many previous studies of avalanche behavior, for example, in
interface depinning, have found or assumed this extensive
scaling [8,50,51]. In contrast, we find subextensive scaling
in the avalanche rate distribution for all damping rates in both
two and three dimensions.

Figure 6 shows R(S,L) and R(E,L) scaled by Lγ with
γ chosen to collapse the distributions for E and S within the
critical scaling range. Results for two and three dimensions are
similar and only one example is shown for each �. For different
geometries and damping rates both R(S,L) and R(E,L) follow
a power-law dependence on avalanche size from ∼u up to a
maximum size that grows with system size. Note that the nature
of the cutoff at large avalanche sizes varies with damping rate.
There is a simple rapid decay in the number of large events
for the overdamped and crossover cases. For the underdamped
case there is an excess of large events that leads to a plateau
before the distribution cuts off.

We have already shown in Fig. 4 that E and S become
decorrelated for energy drops smaller than a crossover
energy. The distributions R(S,L) and R(E,L) also differ
below this scale and only follow critical scaling for larger
events. For underdamped systems, R(E,L) and R(S,L) both
show L-dependent saturation below E ∼ 0.3u and S ∼ 2u,
respectively. For overdamped and crossover systems R(S,L)
saturates for S � 0.1 while R(E,L) continues to rise as a
power law as E decreases. At the crossover damping, R(E,L)
follows a single power law up to the size-dependent cutoff.
For overdamped systems there is a change in power law at
E ∼ u. The exponent for small avalanches is less than unity
and varies with system size. Previous simulations [42–44] have
also observed this regime, but were too small (L � 50a) to see
the critical scaling at large E. Note that L = 55a results are
cut off by system size at E � 8u, giving less than a decade of
scaling.

Table I lists the values of γ that give the best collapse
of R(E,L) and R(S,L) in the critical scaling region from
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FIG. 6. (Color online) Avalanche distributions R(S,L) and
R(E,L) scaled by Lγ for the (a) 2D overdamped (�t0 = 1),
(b) 3D crossover (�t0 = 0.1), and (c) 2D underdamped (�t0 = 0.001)
regimes. In each panel, R(S,L) is multiplied by a factor of 100 to
prevent overlap. Straight lines indicate power laws with the exponents
τ given in Table I.

the crossover energy to the upper cutoff. Quoted uncertainties
indicate where deviations between curves for different L differ
by more than the statistical errors, which are comparable to the
symbol size. As noted above, γ is substantially less than d in all
cases. One possible origin of the subextensive scaling (γ < d)
is that the same local nucleation site is likely to produce a
bigger avalanche in larger systems because there are more
surrounding regions to trigger. Another is tied to the growth in
the size of the largest events with L. These larger avalanches
may reduce the probability that a given region can nucleate
small events. The size of the largest avalanches increases with
decreasing � and there is a corresponding drop in γ.

Note that for the overdamped regime the stress distribution
shows a larger range of power-law scaling in Fig. 6, while
in the crossover and underdamped regimes the energy drop
shows a larger range of power-law behavior. The deviation in
behavior of S and E comes from the regions where 〈S〉/E > 1
in Fig. 4. This region extends to larger E as L increases for
underdamped systems. There is a corresponding shift to larger
S in the start of the scaling regime in R(S,L)/Lγ .
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TABLE I. Scaling exponents determined for overdamped (�t0 =
1) and underdamped (�t0 = 0.001) limits and at the crossover regime
�t0 = 0.1 in two and three dimensions. Quoted values satisfy the
scaling relation γ = d − (2 − τ )α and error bars are estimated from
the finite-size-scaling collapses for E and S. The probability of
avalanches decays as E−τ , the largest avalanche scales as Lα , the
rate of small avalanches scales as Lγ , and the range of stresses scales
as L−φ .

� d τ α γ φ

1.0 2 1.3 ± 0.1 0.9 ± 0.05 1.3 ± 0.1 1.00 ± 0.1
0.1 2 1.0 ± 0.05 0.8 ± 0.1 1.2 ± 0.1 0.9 ± 0.1
0.001 2 1.25 ± 0.1 1.6 ± 0.1 0.8 ± 0.1 0.5 ± 0.1
1.0 3 1.3 ± 0.1 1.1 ± 0.1 2.1 ± 0.1 1.5 ± 0.2
0.1 3 1.05 ± 0.05 1.5 ± 0.1 1.6 ± 0.1 1.30 ± 0.1
0.001 3 1.2 ± 0.1 2.1 ± 0.2 1.3 ± 0.2 0.9 ± 0.1

Given the above observations, the most accurate exponents
are obtained from R(S,L) in overdamped systems and R(E,L)
for crossover and underdamped systems. The difference is
only significant for the underdamped case. In fact, the value
of γ recorded for the underdamped regime is substantially
different from the previously reported value of 1.2 in Ref. [47].
This is because previous analysis had regarded the collapse of
R(S,L) with more importance and had considered small events
(S < u) in the fit. The current collapse puts more emphasis on
the quantity R(E,L) and only attempts to collapse the scaling
region E > u.

The solid lines in Fig. 6 show power-law fits R(χ,L) ∼ χ−τ

with τ given in Table I and χ = S for overdamped systems and
χ = E for other cases. Parallel lines are drawn near R(E,L)
for overdamped systems and R(S,L) for other cases. The
results are clearly consistent with power-law scaling over three
decades in event size, but the precise limits of the critical region
where the slope of the distributions should be fit are difficult
to determine using this figure. As in other critical systems,
finite-size scaling of results for different L provides a better
method for determining the range of critical scaling for the
avalanche rate distribution [52,53].

C. Finite-size scaling

The assumption underlying the finite-size-scaling proce-
dure is that rather than depending separately on S or E and L,
the avalanche rate distributions are a function only of the ratio
of avalanche size to a power of the system size [52]. They then
obey the scaling ansatz

R(χ,L) = Lβg(χ/Lα), (6)

where χ is either E or S and g(x) is a scaling function that
depends on damping rate � and may be different for E and
S. The scaling function decays to zero at large arguments so
that there are few avalanches above a largest size χmax that
increases with system size as Lα. Given the assumption that
no smaller energy or length scales are important, g(x) must
scale as a power law at small arguments:

g(x) ∼ x−τ , x 	 1. (7)

As shown above, the number of avalanches of a given size
χ scales as Lγ for χ < χmax. Combining Eqs. (6) and (7) gives

R(χ,L) = Lβg(χ/Lα) ∼ Lβ+ατχ−τ . (8)

This gives us our first scaling relation between exponents

γ = β + ατ. (9)

Another scaling relation can be derived from energy balance
in steady state. The total work per unit volume per unit strain
is just the mean stress 〈σs〉. Equating the total work done in
the entire system to the sum of energy drops in all avalanches
one finds ∫

R(E,L)EdE = 〈σs〉Ld. (10)

Inserting the scaling relation and changing variables to x =
E/Lα, one finds

Lβ+2α

∫
g(x)xdx ∼ Ld, (11)

yielding

β = d − 2α. (12)

Note that the integral in Eq. (11) converges and is insensitive to
the lower bound because τ < 2 for all systems. If hyperscaling
was obeyed, γ = d would imply τ = 2, which is clearly
inconsistent with the data.

Figure 7 shows finite-size-scaling collapses for both the
energy and stress drop using the scaling ansatz in Eq. (6),
with β obeying Eq. (12). The exponent α is chosen so that
data for large events from different system sizes collapse onto
a universal curve that corresponds to the scaling function
g(χ/Lα). In all cases the curves deviate from the scaling
function at a scaled energy E ∼ u/Lα, which decreases with
increasing L. The energy of a single bond (∼u) is a natural
discrete energy scale where the assumption of scale invariance
underlying Eq. (6) breaks down. We also considered collapses
where β was allowed to deviate from the scaling relation in
Eq. (12), but found there was no significant improvement. As
with the exponent γ, the uncertainties in the value of α are
determined by varying α and finding a range of values over
which the collapse is acceptable. This determination utilizes
the fact that the symbol sizes in Fig. 7 are comparable to the
error bars.

The exponent τ listed in Table I is found by multiplying the
distributions R(χ,L) by χτ in order to make the curves flat
over the range of energies from u to χmax (figures not shown).
The uncertainty in the exponent τ is determined from the range
of values over which the distributions appear approximately
flat. The values of the exponent τ given in Table I are consistent
with the scaling relation (9) and fit the unscaled data shown
in Fig. 6. In the overdamped regime fits to R(S,L) give the
smallest uncertainty and in the other cases fits to R(E,L)
extend over the longest range. Fits to S and E only differ
significantly for the underdamped case. The slope of R(E,L)
is given in Table I, while the slope of R(S,L) appears larger for
both two and three dimensions, closer to τ ≈ 1.5 for certain
energy ranges. This difference in slope can be explained by the
features in Fig. 4. Since S and E are not linearly related, their
distributions should also differ slightly, with R(S,L) being

062206-7



K. MICHAEL SALERNO AND MARK O. ROBBINS PHYSICAL REVIEW E 88, 062206 (2013)

L/a= 55
         109
         219
         438
         875

(a) (b) (c)

(e) (f )

L/a= 20
          40
          81

(d)

10-2

102

104

10-4

100

R(
S,

L)
/L

2−
2α

 , 
10

2  R
(E

,L
)/

L2−
2α

10-2

102

104

10-4

100

10-2

102

104

106

100

R(
S,

L)
/L

3−
2α

 , 
10

2  R
(E

,L
)/

L3−
2α

102

104

106

100

10-2

102

104

106

100

108

102

104

106

108

10-4 10010-2

E/Lα, S/Lα

10-4 10010-2 10-4 10010-2

10-4 10010-2

E/Lα, S/Lα

10-6 10-210-4

10-6 10-210-4 100

E/Lα, S/Lα

FIG. 7. (Color online) Finite-size scaling collapse for R(E,L) and R(S,L) distributions in two dimensions (top) and three dimensions
(bottom) for (a) and (d) overdamped, (b) and (e) crossover, and (c) and (f) underdamped regimes. The value of α used in each collapse is given
in Table I and symbol sizes are comparable to statistical error bars.

steeper. As with the exponent γ, our previous paper [47]
reported a larger value for τ. This steeper slope reflects a
value consistent with the distribution R(S,L) as opposed to
R(E,L).

It is clear from the finite-size-scaling collapses that di-
mensionality does not affect the function g(x), but that its
form changes with damping rate. The form of g(x) in the
underdamped regime is of particular interest. It displays a
characteristic plateau at large avalanche sizes in both two and
three dimensions. Such an excess of large avalanches is seen
in both earthquakes and experiments on sand [7,26,38]. An
excess of system spanning events has also been seen in the
Burridge-Knopoff model. In some versions of that model a
consistent finite-size-scaling collapse was not found because
a high-energy peak separated from the lower part of the
distribution [54–56]. In our system there is a plateau rather
than a second peak and the entire distribution collapses at
large scaled energies.

D. Spatial extent of avalanches

The goal of this section is to relate the spatial extent
of the plastic deformation produced by avalanches to the
corresponding energy and stress drops. This is complicated
by the long range of elastic interactions. The simplest type of
shear displacement involving a local rearrangement of a few
atoms produces elastic strains that decay as r−d , where r is
the distance from the atoms and d the dimension [57–60].
A threshold must be introduced to distinguish these small
elastic strains from the plastic deformations in the central
region. Appendix B describes how deviations from the power-
law decay of strain fields can be used to determine the
threshold used in this section. Note that this threshold changes

quantitative prefactors in the following discussion, but does
not affect any of the general conclusions.

To define strain fields we first find the displacement of
each atom during an avalanche. Previous work has emphasized
the importance of subtracting any affine component of these
displacements that reflects deformation of the box [60–62],
but this contribution vanishes in our simulation because no
strain is imposed during the avalanche. The derivative of the
displacement field is calculated by taking a finite difference
of displacements on nearby atoms. In two dimensions we
form a Delaunay triangulation of the particle positions.
A linear fit to the displacements of the particles on the
corners of each triangle gives ∂ui/∂xj , the derivative of the
displacement u along direction i with respect to xj [63].
The symmetrized strain tensor εij = 1/2(∂ui/∂xj + ∂uj/∂xi)
is then constructed to eliminate the effect of any transla-
tion or rotation of the triangle. In three dimensions, the
strain is obtained from finite differences on a tetrahedral
tiling.

The magnitude of the strain is usually quantified by
rotational invariants. The first, the trace of the strain tensor,
measures the magnitude of dilational strains. Shear is most
simply related to the second deviatoric strain invariant J2. We
define

εd ≡
√

J2 =
√

1
2 Tr

( ↔
ε 2

dev

)
, (13)

where
↔
ε dev ≡ ↔

ε −d−1Tr(
↔
ε )

↔
I is the deviatoric strain tensor.

In the case of a simple shear strain εs in the x-y plane,
then εs = εd . Triangles or tetrahedra with εd greater than
a threshold value εc are identified as plastic. Based on the
results of Appendix B, we use εc = 0.22 in both two and
three dimensions. This is comparable to the ideal elastic limit
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FIG. 8. (Color online) (a) Number of plastically deformed De-
launay triangles (εd > 0.22) during a plastic event versus stress
drop S (open symbols) and energy drop E (closed symbols) for
two-dimensional systems of the indicated size at crossover damping.
Data for E have been multiplied by 100 to prevent overlap. (b) Ratio
of number of triangles to mean event size χ with χ = E (closed
symbols) and χ = S (open symbols) for �t0 = 0.001 and 1. (c) Ratio
of number of plastically deformed tetrahedra to χ for 3D systems of
the indicated size at �t0 = 0.001 and 1. Results for �t0 = 1 in (b) and
(c) are multiplied by 100 to prevent overlap.

in dislocation-free crystals. Similar results are obtained with
other thresholds and by using the dilational strain.

Figure 8(a) shows plots of the number of plastically
deformed triangles N (εd > εc) vs event size for �t0 = 0.1.

The data for energy drop E (open symbols) have been
multiplied by 100. Events in the scaling range (S,E > u) show
a linear relation between the event size (S or E) and area
of the plastic deformation. Data for �t0 = 1 and 0.001 are
similar.

It is not obvious that the spatial extent and energy of
events must be proportional. In particular, larger events could
be associated with greater dissipation in each spatial region
rather than a spread to new regions. To test this we found
the average E or S of events with a given spatial size.
Figure 8(b) shows the ratio of spatial size to mean energy in
the overdamped and underdamped limits. Results for different
� are offset to avoid overlap. For the overdamped data the

spatial size of systems is proportional to both E and S for
events in the scaling region identified in previous sections
(S > 2u and E > 0.3u). The energy and spatial size are also
proportional for the underdamped case. In contrast, results for
S only asymptotically approach a linear relation for the largest
events, which grow in size as L increases. This deviation is
further evidence that E is the most natural quantity for the
finite-size-scaling collapses of underdamped systems.

The straight lines drawn in Fig. 8(b) are the best fit for
the number of plastically deformed triangles per unit energy.
The values are about 20u−1 for the underdamped systems
and 18u−1 for the overdamped systems. The constant energy
dissipation per unit area is consistent with limited local
plasticity and local particle displacements during avalanche
events. Such behavior was found in previous 2D simulations,
where the total nonaffine displacement of particles over strain
intervals of 1/L was at most a [63]. Displacements by a
single-particle diameter are sufficient to completely change
the local forces and thus the shear stress driving further
deformation.

Figure 8(c) shows that the plastically deformed volume also
scales linearly with event energy in three dimensions. As in
two dimensions, the stress drop in underdamped systems is
less simply related to the plastic volume. The horizontal lines
in Fig. 8(c) indicate that the number of plastic tetrahedra per
unit dissipated energy is about 20u−1 for all damping rates.
This result and the corresponding value for two dimensions
explain the limit of the scaling region to energies of order 0.1u

and above. At 0.1u there are only a handful of triangles or
tetrahedra that deform plastically. It is natural that the finite-
size-scaling ansatz breaks down and the discreteness of the
system becomes important when events involve only a few
particles.

Given the linear relation between energy and the total
size of the plastically deformed region, the largest events
involve ∼Lα triangles or tetrahedra. This implies that α is
an effective fractal dimension. Typical examples of large
avalanches are shown in Fig. 9. In the overdamped limit
avalanches contain a number of disconnected regions that tend
to lie along diagonal lines. While the disconnected regions
span the system, they are separated by larger gaps and thus
the fractal dimension is less than unity. In the underdamped
limit, α > d − 1 and the deformed region spreads across the
system with only small breaks. The clusters are still highly
directional with correlations along the diagonals that have
been discussed in past studies of continuous and lattice models
[21,24]. These striking changes in avalanche geometry with �

represent another qualitative difference between underdamped
and overdamped systems that may be readily accessible to
experiments.

E. Distribution of stress values

One of the most basic quantities measured in a deformation
simulation or experiment is the stress. In this section we
consider the distribution of shear stress values before and
after each event P (σs). Figure 10 shows the distribution of
stress values before (closed symbols) and after (open symbols)
avalanches for 2D underdamped systems of different size. The
distributions narrow about a limiting mean value as the system
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FIG. 9. Spatial distribution of plastically deformed triangles
in examples of the largest events in (a) overdamped and
(b) underdamped systems with L = 875a. The overdamped
avalanches have gaps that are large compared to the plastic regions,
while the overdamped avalanche spans the system with only small
gaps. Both show strong anisotropy.

size increases. If inertia drove the system away from criticality
and the onset of shear was a first-order transition with hystere-
sis, one would expect a gap between the distribution of stresses
before and after avalanches. There is no evidence of this
separation in our results. Even as they narrow, the distributions
of stresses before and after avalanches continue to overlap. For
all cases considered, the shift between the two distributions is
much smaller than their width. In the following we combine
the two distributions to improve our statistics. The distribution
of all instantaneous values of stress gives similar results.
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FIG. 10. (Color online) Probability distribution for stress values
P (σs) before (closed symbols and ×) and after (open symbols
and +) each avalanche event in the two-dimensional system in the
underdamped regime.

One way to describe the variation in P (σ ) with system size
is to use a finite-size-scaling ansatz similar to Eq. (6) above.
The shear stress distribution P (σs) can be rewritten with a
scaling function h(x) as

P (σs) = Lφh(σ̃sL
φ), (14)

where σ̃s = σs − 〈σs〉L is the stress value with the system-
size-dependent mean stress 〈σs〉L subtracted. The width of
the distribution around the mean decreases as L−φ with
increasing L. Note that L must enter with the same power
inside and outside the scaling function in order to preserve the
normalization of the probability distribution.

We confirm the scaling form for the shear stress probability
distributions given in Eq. (14) by finding values of φ that
collapse results for the various system sizes and damping rates.
Three such collapses are plotted in Fig. 11, while the best-fit
values of φ for all systems simulated are listed in Table I.

Two upper bounds on the value of φ may be set. If there
were an incoherent addition of stress from different regions
with no correlations in time or space, one would expect the
width of the distribution to scale as the inverse square root of
the number of independent regions (or particles). This yields
a relation

√〈(σs − 〈σs〉)2〉 ∼ L−d/2, or φ = d/2. Correlations
could make fluctuations decay more slowly with L so that
d/2 is an upper bound for φ. The width of the distribution
must also be at least as large as the stress change due to the
largest avalanches, which are of order L−(d−α). This implies
that φ � d − α.

The values of φ listed in Table I satisfy the above bounds in
all cases in two and three dimensions and φ is comparable to
the smallest bound φ ≈ min(d/2,d − α). The 2D overdamped
and critically damped systems have φ ≈ d/2 ≈ d − α. In three
dimensions it is clear that for the overdamped systems d − α

is greater than the d/2 bound and φ ≈ 1.5 = d/2. Finally,
in the underdamped regime α = 1.6 in two dimensions and
α = 2.1 in three dimensions and in both cases φ ≈ d − α.

The crossover from α < d/2 to α > d/2 is equivalent to the
crossover from positive to negative β, indicating that the
rate of events of size Smax ∝ Lα is decreasing, or the strain
interval between such events is increasing. It appears that at
this crossover, the events at Lα begin to dominate and set the
width of the stress distribution.

The conclusion that the largest events can set the width
of the stress distribution seems inconsistent with Fig. 10.
There we found that the distributions of stresses before events
and after events were nearly the same. The resolution of this
discrepancy is that most events are small and can occur at
any stage of the loading. The mean and standard deviation of
the stresses before and after small events are indistinguishable
from the global distribution.

For systems with α < d/2 even the largest events have
a similar distribution. This is evident in Fig. 3 for the
overdamped case where the largest events are smaller than the
spread in stress and occur at all stresses. For the underdamped
case Fig. 3 is dominated by the large events that seem to have
a characteristic scale and time interval. These large events are
in the plateau region where the finite size of the system is
important. While they remain the main source of fluctuations
in stress for all L, the fractional change in shear stress goes
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FIG. 11. (Color online) Scaled distribution of stress values P (σs)
before and after each avalanche event for the (a) overdamped system
in two dimensions, (b) crossover damping in three dimensions, and
(c) underdamped system in two dimensions. While the mean value is
approximately constant for each damping rate, the distribution width
scales with system size as L−φ. Values of φ are listed in Table I. Error
bars are comparable to symbol size except for L/a = 875, where they
are up to five times larger.

to zero as L increases because these largest events increase in
size more slowly than Ld .

Studies of depinning often control the driving stress rather
than the driving rate [10,17,50,64]. There is then a critical
exponent ν relating the distance from the critical stress to the
correlation length ξ , corresponding to the linear dimension
of the largest avalanches: ξ ∼ |σc − σ |−ν . While we have
performed simulations with constant rate, the fact that the
range of stresses scales as L−φ suggests that ν = 1/φ. This
relation applies in the limit where the largest avalanches set
the range of stress fluctuations, giving ν = 1/φ = 1/(d − α).
In the case where φ = d/2, stress fluctuations are instead

set by uncorrelated fluctuations in the local properties of the
system. As pointed out by Pázmándi et al. [65], 1/φ does not
correspond to the intrinsic ν for the correlation length in this
case.

IV. SUMMARY AND DISCUSSION

In this paper we have presented a detailed analysis of the
dramatic effects inertia has on quasistatic shear deformation
of two- and three-dimensional disordered solids. During the
intermittent avalanches of plastic activity, inertia can carry
the system over successive energy barriers and thus change
the ensemble of states sampled. The most direct evidence for
this comes from measurements of the time-dependent potential
energy density and shear stress (i.e., Fig. 3). Damping changes
the mean energy density by about 30% in two dimensions
and 8% in three dimensions, while the shear stress varies by
8% in two dimensions and 6% in three dimensions. Even for
relatively small systems, e.g., L = 200 in two dimensions and
40 in three dimensions, there is no overlap between the range of
energy densities sampled in the underdamped and overdamped
limits.

Previous studies of scalar lattice models with rules designed
to mimic inertia had predicted profound changes in the nature
of the depinning transition with increasing inertia [10,13–16].
All found that the onset of shear became hysteretic, with
different stresses needed to initiate and stop motion. Hysteresis
is also present in the recently identified avalanche oscillator
transition [66]. Our simulations of continuous systems show
no hysteresis. In all cases the range of shear stresses and energy
densities sampled during quasistatic shear goes to zero with
increasing system size. The depinning transition is always con-
tinuous and a power-law distribution of avalanches is observed
even in the underdamped limit. However, the scaling exponents
are different in underdamped and overdamped limits.

Avalanches were characterized by the total energy dis-
sipated E and an extensive quantity S proportional to the
stress drop, which is more easily measured in experiments.
A sum rule based on conservation of energy requires that the
sums over all avalanches of E and S are equal, but does not
relate the two quantities for individual events. Indeed, E is
always positive, while S can be negative in small systems [45].
At sufficiently high energies, E and S become correlated
and exhibit the same critical scaling. For high damping this
threshold is a fraction of a single-particle bond energy, but the
correlation moves to higher energies in the underdamped limit.
For smaller events, the distribution of energies (not stresses)
can exhibit power-law scaling over several decades in E that
is not related to the critical behavior of larger avalanches. Past
simulations used smaller system sizes where these noncritical
avalanches dominated the statistics, making it difficult to
determine critical scaling exponents [44–46].

Finite-size-scaling relations for the rate of avalanches of a
given size in a system of length L were developed and used
to determine scaling exponents as a function of damping. As
in our earlier 2D studies, we find three universality classes
corresponding to overdamped and underdamped limits and
something analogous to a multicritical point at a crossover
damping that separates them. Table I summarizes the numeri-
cal results for the scaling exponents.
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One surprising aspect of the results is that the rate of
small events is not proportional to the system size. If the
probability that a local region would nucleate a small event was
independent of system size, then the rate of small events would
grow as Ld . The observed rate grows as Lγ with γ significantly
less than d. One possibility is that local configurations that
would only produce a small avalanche in a small system can
trigger a string of other instabilities in a larger system. The
long-range power-law decay of elastic interactions makes it
more likely that they can affect scaling exponents in this way.
The size of the largest avalanches grows with system size
and it is also possible that these largest avalanches lower the
number of nucleation sites for small avalanches. The differ-
ence between d and γ for all damping regimes in two and
three dimensions represents a violation of hyperscaling. To
our knowledge, values of γ have not been reported for lattice
models of plastic deformation because authors have considered
normalized distributions rather than absolute rates [10,13–16].
Violations of hyperscaling have been observed in percolation
models and the random field Ising model, but were associated
with the number of system-spanning clusters rather than the
rate of smaller avalanches [53,67–69].

The scaling exponent α reflects the growth of the largest
avalanches with system size Emax ∝ Lα. Values of α in all
systems are found to be less than the spatial dimension d. In
the overdamped limit α is slightly lower than unity in two
dimensions and slightly larger than unity in three dimensions.
Previous simulations of smaller overdamped systems (less
than 20 000 particles) reported α = 1 [44] or 0.74 [45] in two
dimensions and about 1.5 in three dimensions [46], but with
significant uncertainties and poor collapses at the largest ener-
gies. Lattice models of overdamped avalanches that include the
tensorial nature of shear stress find α = 1 [21,22]. This is quite
close to our simulation results, while scalar models predict
α = 2 [14,70]. The large difference in predictions for α make
it a useful quantity to measure in future experiments, but we
know of no existing studies. As noted above, α is effectively
a fractal dimension for the plastically deformed region, which
is generally disconnected and strongly anisotropic [24,58].

The largest avalanches grow much more rapidly with
system size in the underdamped limit: α = 1.6 ± 0.1 and
2.1 ± 0.2 in two and three dimensions, respectively. As a
result, these large avalanches dominate the fluctuations in
instantaneous stress values, which scale as L−φ with φ =
d − α. Plots of the evolution of stress with time are dominated
by these large events. In the overdamped regime, φ = d/2,
indicating that fluctuations are dominated by uncorrelated
variations in interactions and geometry as the configuration
of particles evolves.

Studies of avalanche statistics in slowly driven systems have
generally focused on the exponent τ that describes the decrease
in event rate with event size R(E) ∼ E−τ . Our simulations
reveal similar values of τ ≈ 1.25 for both underdamped
and overdamped limits in two and three dimensions. The
crossover damping has a lower value of τ ≈ 1. Direct fits
of power laws over at least three decades are consistent with
exponents obtained from finite-size-scaling relations. The only
discrepancy is for scaling of stress drops in the underdamped
limit. In this case, the stress drop rises less rapidly than the
energy up to the size of the largest avalanches. This may be

because inertia is more likely to carry the system past barriers
that lead to a lowering in stress than energy. The result is an
apparent τ of about 1.5 over a limited range of stress drops
and a poorer finite-size-scaling collapse. The fact that S and E

are different in the underdamped limit may have implications
for experimental studies where stress or slip displacements are
often more directly accessible than energy.

Lattice models of overdamped dynamics that treat strain
as a scalar variable predict a universal value of τ = 3/2 that
is clearly inconsistent with our scaling relations. Studies of
a model that includes the directional nature of stress transfer
found τ ≈ 1.25 [21], which is consistent with our results τ =
1.3 ± 0.1. A recently posted paper on the same lattice model
finds a slightly higher value of τ ≈ 1.35, which is also within
our error bars [71]. Neither study used finite-size scaling to
determine τ.

As noted above, scalar lattice models predict hysteresis in
the underdamped limit. This is inconsistent with our results
and it would be interesting to see if anisotropic lattice models
also predict hysteresis. It may also be that the hysteresis in
scalar lattice models reflects the fact that they impose a fixed
discrete barrier drop from inertia and fixed discrete changes
in local strain at each lattice site after rearrangements. The
distributions are continuous in our simulations and the effect
of inertia may depend on the size of local energy barriers or
rearrangements.

A critical review of experimental results for τ is beyond
the scope of this paper, but the wide range of reported values
reflects systematic uncertainties in measuring avalanches and
analyzing their statistics. In many cases experiments are not in
the steady-state regime considered here, but collect avalanche
statistics at small strains during the transition from the initial
elastic response to yield (i.e., ε < 0.07 in Fig. 2). We find
that this initial region is sensitive to preparation and exclude it
from our analysis. In most cases the range of avalanche sizes
is only one to two decades. Uncertainties in the limits of the
scaling regime due to finite system size, finite temperature
[72], distance from the critical stress [10], and experimental
noise lead to uncertainties that are greater than the difference
between τ = 1.5 and 1.25. The finite-size-scaling method
used here eliminates such systematic effects, but is difficult
to replicate in experiments.

Earthquake statistics cover the largest range of event sizes,
but involve a wide range of phenomena that are not included
in simple models like ours [38]. Just one example is the
finite thickness (∼10 km) of the active region of the crust.
There is a transition in the effective dimension of earthquake
displacements as the size of the slipping region grows
past this scale [73,74]. Seismologists also treat successive
displacements along different faults as separate events, even
though there is evidence that they are causally connected.
Our quasistatic simulations group together all plastic activity
resulting from an initial instability even if the activity occurs
in widely separated regions and is separated by long quiescent
periods. These long quiescent periods do not occur in lattice
models where changes in local strain are discrete. We are
currently evaluating methods of separating our avalanches into
separate events and initial results suggest the effective value
of τ could increase in the overdamped limit where quiescent
periods are more common.
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Given the difficulties in determining precise values of τ , it
becomes interesting to consider the qualitative difference in the
scaling function g for overdamped and underdamped systems.
Models and experiments on overdamped systems generally
find a simple exponential cutoff for large events [44–46,75,76].
In contrast, studies of earthquakes statistics for single faults
often find an excess of large system-spanning events that
is similar to the plateau seen in our underdamped simulations.
Plateaus of this type are also evident in experimental studies
of steady shear in glass bead packs [7]. Future experiments
that focus on the form of the scaling function and the
fractal dimension α of the largest avalanches may provide the
most sensitive means of detecting inertial effects and testing
theoretical models.
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APPENDIX A: SUM RULE DERIVATION

The sum rule in Eq. (5) follows from energy conservation.
Each avalanche event i is accompanied by a potential energy
density drop �U (i) and shear stress drop �σ (i)

s . This dissipated
energy must be balanced by the work done on the system
during segments where the system loads elastically. For a strain
segment �ε(j ) the work done on the system is σs�ε(j )Ld .
The assumption that there is a well defined steady-state mean
potential energy density allows us to equate the sum of the
energy drops with the total work done∑

i

�U (i)Ld =
∑

j

σs�ε(j )Ld, (A1)

where the sum on the left is over all energy drops and the sum
on the right is over all elastic loading segments, which are
equal in number.

As shown in Figs. 2, 10, and 11 there is also a well defined
steady-state shear stress. Thus we can rewrite Eq. (A1) as∑

i

�U (i)Ld = 〈σs〉
∑

j

�ε(j )Ld, (A2)

introducing corrections proportional to the square of stress
fluctuations, which go to zero as L−2φ in the thermodynamic
limit (Table I). A steady-state shear stress also implies that
the stress rises during elastic loading balance the stress drops
during avalanches over long strain intervals. The stress rise
over each elastic interval j can be written as μ�ε(j ), where μ

is the shear modulus, so that∑
i

�σ (i)
s Ld =

∑
j

4μ�ε(j )Ld. (A3)

Other workers have found that above a length scale much
smaller than our system sizes variations in the modulus μ

between different elastic segments are small [77].
In the main text we measured extensive stress and energy

drops S ≡ �σs〈σs〉Ld/4μ and E = �ULd in order to com-
pare avalanches across different system sizes. Combining the

relations above with the definitions of S and E allows us to
relate total stress and energy drops∑

i

S(i) =
∑

i

E(i). (A4)

Since the summations are over the same set of avalanche events
this also implies that the mean values are equal 〈S〉 = 〈E〉.

APPENDIX B: DISTINGUISHING PLASTIC
AND ELASTIC REGIONS

As noted in the main text, the strain field around a local
plastic region decays as a power of the distance r from the
region [57,59,60,78]. The prefactor should be proportional to
the magnitude of the plastic rearrangement, which we find
scales as the stress drop. Since the spatial arrangements of
plastic regions can be complicated, we consider instead the
distribution of local strain values N (εd ). From the scaling of
the phase space with distance r , we have rd−1dr ∼ N (εd )dεd.

Then the distribution of local strains scales as a power law in
two and three dimensions

N (εd ) ∼ Sε−2
d . (B1)

The cumulative distribution function (CDF) N (εd > x) of
strains larger than x scales as

N (εd > x) ∼ Sx−1. (B2)

Figure 12(a) shows N (εd > x) averaged over avalanche
events of a given stress drop S. Events with damping rate
�t0 = 1 are shown and curves for other damping rates are
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FIG. 12. (Color online) (a) The CDF of εd averaged over events of
the indicated S in two dimensions for damping �t0 = 1 and system
size L = 438a. (b) The CDF after rescaling by S to collapse the
elastic region. An arrow indicates εc = 0.22.
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FIG. 13. (Color online) Maximum percentage bond change that
occurs during an avalanche of stress drop S (open symbols) or energy
drop E (closed symbols) in overdamped 2D systems with L = 109a.

Similar results are obtained for other L and �.

similar. Above a minimum strain that grows with S, each curve
follows the power-law scaling predicted by Eq. (B2). Equation
(B2) also predicts that the prefactor of the power-law region
should grow linearly with the size of the event. Figure 12(b)
tests this prediction. We find that events large enough to be in
the scaling regime (S > u) collapse onto a universal curve
with a power-law regime that is cut off at strains bigger

than about εc = 0.22. We associate this failure of the elastic
prediction with the onset of plastic deformation in the main
text. Note that smaller events are cut off at slightly smaller
strains, providing further evidence that they involve different
types of displacement.

Changes in bond length are another measure of local
deformation that can be used to identify plastic regions.
Figure 13 shows the maximum percentage change of any
bond in the system as a function of event size. Note that
there are almost no events where bonds change less than 2%.
These are associated with extremely small events of order
E ∼ 10−5u. For events in the scaling regime where S and E

are comparable (E > 0.3u), the largest bond change is 20%.
This is comparable to the displacements need to produce a
local strain of εc.

Even the largest events produce only 100% bond changes,
corresponding to displacements of the order of a bond length
relative to neighbors. This is consistent with the conclusion in
the main text that larger events produce a uniform amount of
dissipation over larger regions rather than larger deformations
in a fixed spatial region. The very slow increase in the
maximum bond length change with event size for the largest
events may be attributed to sampling more bond changes from
a fixed distribution. This is consistent with the collapse of the
CDF in Fig. 12.
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