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Drag force on a spherical intruder in a granular bed at low Froude number
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The drag force on an object, or “intruder,” in a granular material arises from interparticle friction, as well as
the cyclic creation and buckling of force chains within the material. In contrast to fluids, for which drag forces
are well understood, there is no straightforward relationship between speed and mean drag force in granular
materials. We investigate spherical intruder particles of varying radii moving at low speeds through granular
beds. The system can be parametrized using the dimensionless Froude number Fr = 2v/

√
gR, for intruders of

radius R moving at a speed v. For frictional systems, we find the drag force obeys a linear relationship with Fr
for low Froude numbers above Fr > 1. For Fr < 1 we observe a deviation from this linear trend. This transition
can be explained by considering the characteristic inertial and gravitational granular time scales of the system.
We show that a suitably normalized measure of dissipated power obeys a linear relationship with the imposed
intruder velocity, independent of the intruder dimensions. This is found to hold even for particles with no friction,
identifying a relationship between the imposed motion of the intruder and the resistance of the granular material
to purely geometric rearrangements.
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I. INTRODUCTION

In comparison to the well-known drag forces for objects
immersed in fluids, the investigation of drag forces on objects
in granular media is an active and relatively new research area.
In part this is due to the complexity of granular material which,
unlike fluids, do not have a fully encompassing macroscopic
constitutive formulation. Instead, granular materials can be
regarded as a network of contacts which not only exhibit
complex dynamics as they evolve under load, but is also
a medium through which complex and multiscale processes
occur. From this perspective, forces on objects (commonly
referred to as “intruders”) in response to imposed motion
can be viewed as a measure of resistance to structural
rearrangement within the granular material. These forces act
in addition to any interparticle frictional forces which may
be present. Arguably the most striking aspect of drag or
resistance to moving objects in granular beds is the emergence
of two cojoined strong and weak particle networks [1–3].
Similar to architectural constructions, those in the strong
network (the force chains) form columns in alignment with
the major (most compressive) principal stress, while those in
the complementary weak network form trusses which confine
and laterally brace the force chains [1–5]. Rearrangements in
the material are a result of the collapse of axially compressed
force chains by buckling, along with the creation of new
force chains which form at locally jammed sites within the
bed [6]. Experiments by Geng and Behringer have shown
that the coexisting creation and failure of these force chains
constitutes the principal mechanism responsible for the drag
force experienced by intruders in dense granular material [7,8].
This rearrangement can also clearly be seen if a single particle
in the bed is gradually loaded until failure occurs [9]. If the load
on an intruder within the bed is maintained, multiple cycles
of buckling and reformation can occur. As the rearrangement
time scale is typically much shorter than the time scale between
failure events, these manifest as stick-slip cycles [10,11].
Consequently, fluctuations govern the instantaneous drag force

measured in a granular bed. However, a mean drag force can
be found if these forces are averaged over many of these
cycles. This drag force, which represents the macroscopic
response of the bed, can therefore give some insight into the
complex dynamics of force chain evolution occurring within
the granular media.

Understanding the mechanism governing the forces acting
on solid objects in granular materials is important in many
real-world settings. These include the prediction of failure
in soil-structure interaction [12,13], the characterization of
stick-slip in laboratory faults in earthquake mechanics [14], the
modeling of damage from large-scale geophysical events (e.g.,
avalanches [15–17] and landslides [18]), and the optimization
analysis of a myriad number of industrial operations associated
with the handling, transport, and processing of powders and
grains [19]. The large length scales and grain numbers in such
real-world systems make the granular mechanics giving rise to
forces very difficult to identify in detail. In this study, we reduce
the loading on a granular system to a single intruder. This
allows a careful examination of the mechanism of response,
which may be directly applicable to these larger systems.

Despite the considerable attention devoted to the study of
force chains, the connection between these emergent load-
bearing structures and granular drag has not yet been fully
characterized. Moreover, the existing literature, covering the
range of experimental and theoretical studies, has mainly
focused on the two flow regimes at the opposite ends of
the spectrum: quasistatic and dynamic. The intermediate or
transition flow regime, wherein arguably the richest dynamics
occur, remains largely unexplored. Our ultimate aim is to
characterize this transition regime across the micro-meso-
macro levels. To achieve this, we employ a two-stage approach.
This first stage focuses on the connection between the drag
force and the two known sources of granular strength at
the microscopic (particle) level: interparticle friction and
geometric impenetrability. The next stage, which will be
reported in a future study, will focus on the connection
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between the drag force and the mesoscopic structures of force
chains within the system. We note that the limiting case
of zero inter-particle friction is intimately tied to geometric
impenetrability, the effects of which often manifest through
Reynolds’ dilatancy [20–22]. In order for the intruder to
advance, the particles in the bed must be moved from the path
of the intruder, leading to dilatancy. In other words, work must
be done against any confining pressure to shear the granular
bed.

The rest of this paper is arranged as follows. We devote the
remaining subsections of this Introduction to a brief review
of the extant literature on granular drag for the quasistatic
and dynamic regimes, before a brief outline of our strategy to
the characterization of the intermediate regime. We present
the methodology in Sec. II, followed by our results in
Sec. III. Finally, a summary of our findings and future research
directions is given in Sec. IV.

A. Quasistatic regime

A number of studies have previously been carried out to
investigate granular drag forces. In the quasistatic regime, the
first to study the force on plates and cylinders drawn through
a bed of granular material was Wieghardt [23], who found a
force dependence of h5/2, where h is the depth of the intruder
below the free surface. The force on a number of different
intruder shapes, including spheres, within in a granular bed
has also been investigated in detail by Albert et al. [10,24,25].
Their experimental setup used a horizontal rotating granular
bed into which a cylinder was vertically immersed, the force
on which was recorded using a load cell. For determining the
forces on differently shaped intruders, a thin cylinder was used
with the intruder attached to the end. Typical intruder speeds
studied in this “slow drag” regime were O(1 mm/s). The drag
force was found to be a function of the cross-sectional area and
a quadratic function of the intruder depth below the granular
surface. The drag force in all cases was, however, found to be
independent of the speed of the intruder. Such a relationship
has also been found to hold for other shapes, such as vanes
immersed in a granular medium [26]. This unintuitive finding
results from the requirement that any externally imposed
rearrangement of the the bed must involve the buckling of force
chains. Unlike fluids, the drag force on an intruder in a granular
material instantaneously jumps to a threshold value at nonzero
speed. As pointed out by Albert et al. [10], this minimum
force gives an insight into the local jamming and buckling
mechanisms in granular materials. The forces on a horizontal,
rather than vertical, cylindrical intruder moving at slow speeds
have been investigated experimentally and computationally
by Ding et al. [27]. Forces in their setup were also found
to be independent of the speeds considered in their study,
v < 0.4 m/s. A further finding was a net shape-dependent lift
force on the intruder. Interestingly, their work is part of a wider
study on the locomotion of a unique creature which executes
an undulating motion that is a cross between a snake and a
fish, thereby exploiting the solidlike and fluidlike properties of
sand to generate propulsion [28]. Geng et al. have investigated
the slow drag regime in a two-dimensional experimental setup,
using a horizontally rotating annulus filled with disks [8]. The
force on an intruder fixed relative to the flow of disks was

measured using a load cell. This was found to slowly increase
with rotation speed, rather than being effectively constant, as
reported by Albert et al. [10].

B. Dynamic regime

Several studies have investigated the forces on intruders
in the high-speed, dynamic regime. Here, the bed is fluidized
in the wake of the intruder, forming a similar structure to
a fluid bow shock wave [29,30]. In this dilute regime, the
drag forces are dominated by momentum transfer from grains
impacting on the intruder and the drag force follows the
classical quadratic drag law of fluids [31]. Such studies are
usually carried out in vertical chutes, or in simulations using
jets of particles in which gravity is not considered [29,31].
Careful investigations of the forces on a cylinder in a rapid
vertical stream of particles have revealed a transition from
an effectively discrete to continuum system as the Knudsen
number approaches unity [32]. This transition bears close
similarity to transitions in supersonic gas flow around objects.
Such systems are also of interest for high-speed impact and
subsequent penetration of objects into granular beds [33].
Horizontal motion of a cylindrical intruder has recently been
investigated [30], where a quadratic drag law was found to
hold at high speeds and small intruder depths. Wake formation,
similar to the vertical setup, was also observed independent of
depth at high intruder speeds.

C. Characterization of the intermediate regime

Our strategy for the characterization of the intermediate
regime is to simplify the load on a granular system to a
single intruder, allowing us to develop an understanding of
the basis for the forces resisting motion within a granular bed.
In this study we consider a sphere moving horizontally through
a packed bed of grains at speeds within the intermediate
regime between the quasistatic and dynamic regimes. We
chose a sphere, as it represents the simplest possible intruder
shape and can be compared to similar drag systems in
fluid mechanics, such as Stokes drag. Previous studies have
investigated either experimental analogs, such as a rod drawn
through a granular bed, or have restricted their investigations to
two-dimensional systems [30]. This intermediate flow regime
has received little attention, although it contains potentially
the most interesting transition in granular dynamics for this
system. The existence of a transition can be determined by
considering two characteristic time scales for an intruder
moving horizontally in a granular bed [24,30]. The first is
the time for a particle to fall back into the bed as the intruder
moves past, τp = 2

√
R/g, where R is the intruder diameter

and g gravitational acceleration. The second is the time scale
of the intruder movement τi = R/v, where v is the intruder
speed. The transition between these time scales therefore
occurs at τp/τi = 1, where this ratio is the Froude number
for the system, Fr = 2v/

√
gR. In this study we investigate

the dynamics around a Froude number ∼1, as well as the
dependence of the drag forces on the intergrain friction.
The case with zero intergrain friction is also considered,
where the drag forces can only result from the resistance to
structural rearrangement in the bed. It should be noted that
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a horizontally driven system, such as the one used in this
study, is very different from a vertical system as used by, for
example, Chehata et al. [34]. In a vertical system, the flow
direction and gravity are aligned so there is no comparable
τp and therefore no equivalent transition at Fr = 1 from the
competition between gravitational stabilization of the bed and
the forcing from the intruder particle.

II. METHODOLOGY

The setup consisted of a particle bed of dimensions 2 × 2 m
in the x and z directions, respectively, filled to a height of 1.3 m
in the y direction. A large spherical intruder, initially centered
in the bed, was moved at a constant velocity along the x axis.
This setup is shown schematically in Fig. 1. Gravitational
acceleration was fixed in the vertical y direction at −9.8 m/s2.
The particles filling the bed were spheres of mean radius
25 mm, with a random ±10% variation in diameter to provide
a polydisperse packing, preventing crystallization effects.
Intruder radii of 50, 75, 100, and 125 mm were used. The
total number of particles used was approximately 50 000. A
number of different driving velocities were applied to the
intruder, varying from 0.05 to 2.5 m/s. Any interstitial gas
effects were neglected in this study, as it was assumed that
they were negligible in comparison to the interparticle forces.

The system was computationally modeled using the discrete
element method. Forces and torques on each particle in the
system were individually summed from the interactions with
only neighboring particles. This locality is allowable as the
time step �t in the system was set to be �t < rmin/vp, where
rmin is the smallest particle radius in the system and vp is
the elastic p-wave speed within the particles. This time step,

FIG. 1. Schematic cutaway of the setup used (not shown to scale).
A large spherical intruder particle of radius R is moved through a bed
of particles at an imposed speed along the x axis, 0.6 m above the
base of the bed. The domain is 2 × 2 m in the x and z directions,
respectively, with a free surface approximately 1.3 m above the base.
Periodic boundary conditions are applied in the x and z directions.
The lower boundary condition consists of a layer of fixed particles.

similar to the Courant-Friedrichs-Lewy condition for fluid
dynamics, ensures that disturbances in the system could only
propagate less than one particle radius during each time step.
Once the forces and torques on each particle were determined,
the system was integrated forward in time using a Verlet
scheme to give the positions and velocities of the particles
at the next time step.

We used the nonlinear Hertz-Mindlin contact model to
calculate the normal and tangential forces at contact points
between particles. Although this contact model is more
computationally expensive than more commonly used contact
models, such as linear Kelvin-Voigt formulations, it has a
stronger physical basis as it uses a Hertzian contact force
in the normal direction. The accuracy of the contact model
is paramount in slow granular processes, such as the ones
modeled for this study. Furthermore, it allows the use of
physical constants in the simulation, such as Young’s modulus
and the Poisson ratio, without having to tune parameters to
provide an approximation in the model for these constants.

In the Hertz-Mindlin model the contact force between two
particles Fc is the vector sum of the normal contact forces
Fn and the tangential contact forces Ft , Fc = Fn + Ft . The
normal contact force is modeled using a Kelvin-Voigt model
with a nonlinear spring,

Fijn = −(
Knδlij

3/2 + Cnvijn · nij

)
nij , (1)

for two particles with indexes i and j , where Kn is a spring
stiffness, lij the particle overlap, vij the relative velocity vector,
and nij the displacement vector between the centers of the two
particles. The spring stiffness for particles of identical Young’s
modulus E and Poisson ratio ν is given by

Kn = 2

3

E
√

r ′

(1 − ν2)
, (2)

where r ′ is the effective particle radius given by r ′ = rirj /(ri +
rj ). The normal damping coefficient is calculated as

Cn = αl
1/4
ij

√
mKn

√
δlij , (3)

where α is an empirically determined constant [35]. The
tangential force is modeled using a Kelvin-Voigt formulation,
incrementally calculated by

Ft = min
[

tan(θ )|Fn|,
∑

Ktvt �t + Ctvt

]
, (4)

where θ is the friction angle, Kt the tangential spring stiffness,
vt the relative tangential velocity, �t the incremental time step,
and Ct = Cn is a tangential damping coefficient. The friction
angle is related to the coefficient of friction μ by μ = tan(θ ).
The static and dynamic friction coefficients are also assumed to
be equal in these simulations. The incremental sum models the
tangential elastic deformation of the surface, which is limited
by the Coulomb friction μ|Fn| acting in the direction opposing
the applied force. The tangential spring stiffness Kt in the
Hertz-Mindlin model is given by

Kt = 2E
√

r ′

(1 + ν)(2 − ν)

√
δlij . (5)

The bed was filled by creating a set of nonoverlapping
particles and allowing them to settle around the intruder under
gravity. Periodic boundary conditions were imposed in the
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FIG. 2. Cross section of particle bed showing particles shaded by
speed (m/s) at 4 s into a simulation. The large central intruder particle
is 100 mm in radius and has an imposed velocity of 1 m/s along the
x axis. All particles have a friction angle of 15◦. Periodic boundary
conditions are applied in the x and z (not shown) directions.

x and z directions. This gave effectively “open” granular
boundaries in the horizontal directions and allowed the intruder
particle to repeatedly cycle through the bed at higher velocities.
Fixed boundaries were not used, as these would cause the force
chains to terminate prematurely as the intruder approached the
boundary. Care was taken to ensure the periodic boundary
conditions did not interfere with the dynamics of the system.
Simulations at high velocities were inspected to ensure that
the intruder always moved into a static region of the bed, and
the repeated cycling through the periodic boundaries did not
cause a net motion to accumulate over all the particles in the
bed (this was found to occur for simulations in much smaller
domains). The top boundary condition was a free surface,
and the simulations were inspected to ensure that the intruder
was at a sufficient depth for negligible surface deformation
to occur. The lower boundary condition was a layer of frozen
particles to ensure a rough fixed base of particles, representing
a lower static bed. An example case of a 100-mm radius particle
moving at 1 m/s is shown in Fig. 2, where particles are shaded
by speed. The movement can be seen to be limited to the local
area surrounding the particle, with static particles elsewhere
in the bed.

We investigated the force dependence on friction and
particle diameter at a range of velocities. As we were
concerned with the low-Froude-number regime, a larger
number of low-velocity than high-velocity cases were used.
The dependence on depth has been studied in detail, and is
known to be a quadratic function of intruder depth [24]. Due
to this, the depth was not varied in this study and the center
of the intruder was fixed in our investigation at 0.7 m below
the mean free surface, and 0.6 m from the lower boundary. The
parameters used in the simulations in this study are shown in
Table I. The physical parameters used for the particles were
chosen to represent the stiffest possible material that could
be calculated in a tractable computational time. The values
used gave an effective spring constant in the normal direction
of Kn ∼ 1 × 108 kg/(s2√m). All simulations used the open
source software Yade for the discrete element calculations
[36], as well as the measurement of the net force on the sphere.
The software has been extensively validated for many types

TABLE I. Simulation parameters used.

Parameter Symbol Value

Young’s modulus E 1 × 109 Pa
Poisson ratio ν 0.3
Coefficient of restitution 0.5
Density ρ 2700 kg/m3

Intruder depth 0.7 m
Intruder radii R 50,75,100,125 mm
Bed sphere radii r 25 mm
Friction angles θ 0◦,7.5◦,15◦,30◦

of granular flow, ranging from quasistatic [37] to rapid flow
conditions [15]. The supplied Hertz-Mindlin model was used
to simulate the contact mechanics [38].

To measure the drag force, the x component of the force on
the intruder was recorded. Drag forces in granular materials
originate from cycles of stick-slip loading and unloading from
microscale mechanics [24]. Due to this, any instantaneous
forces measured are highly variable and must be averaged
over many loading cycles to give a mean force. Here, we
allowed the system 1 s to settle and calculated the subsequent
cumulative average force in the x direction on the particle. An
example force plot is shown in Fig. 3, with the cumulative
average overlaid. It can be seen that although the instanta-
neous force rapidly fluctuates, the cumulative average quickly
reaches a steady value. All simulations calculated the drag
forces over 10 s in total, and the cumulative average from 1 to
10 s was taken as the average drag force on the intruder. The
time steps in the simulations were O(10−5) s.

III. RESULTS

The average nondimensionalized force in the x direction
F̄ , measured on the intruder particle, is plotted against the
intruder Froude number for friction angles of 15◦ and 30◦ in
Fig. 4 and 0◦ in Fig. 5. The force was nondimensionalized
by dividing by the average weight of a particle in the bed,
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FIG. 3. Instantaneous force measured on an intruder particle
100 mm in diameter moving at 1 m/s (gray line) and cumulative
average force from 1 s onwards (black line). The inset shows an
example of multiple stick-slip cycles occurring in the instantaneous
drag force from 2 to 2.5 s.
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FIG. 4. Mean nondimensionalized force in x direction on intruder
particle against intruder for a system with a friction angle of 15◦

(upper) and 30◦ (lower). The solid line is a best-fit spline. Four intruder
particle radii are shown, 50,75,100, and 125 mm.

F̄ = F/(4πρr2), where F is the mean measured force, ρ the
particle density, and r the average radius of the particles in
the bed. In all cases, it was found that the drag force was
nonzero as the Froude number approached zero. This effect
has previously been investigated in detail [23,24,30] and, as
previously discussed, results from the minimum force required
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FIG. 5. Mean nondimensionalized force in x direction on intruder
particle against Froude number for a system with a friction angle of
0◦. The solid line is a fit to a function of the form F − const ∝ √

Fr.
Four intruder particle radii are shown, 50, 75, 100, and 125 mm.

to buckle force chains, allowing rearrangement of the bed to
occur.

In the cases with friction, the measured force flattens at low
Froude numbers, giving a force that appears approximately
constant at low velocities. The small upward turn in the trend
at low Froude numbers for a friction angle of 30◦ is unexpected
and may result from averaging the data at low speeds. However,
a similar trend appears in a comparable experimental plot by
Wieghardt [23] for intruders well below the granular surface.
Further work is required to investigate this phenomenon in
detail. Above a Froude number of Fr ∼ 1 the force follows a
linear trend, which is plotted in Fig. 4 as a solid black line.
This linear trend has been extended for visual comparison as
a dashed line to Fr = 0. For all Fr > 1 this trend matches
a linear model with R2 > 0.99. Drag forces given by Geng
and Behringer [8] follow a similar increase in force with
respect to relative velocity in their two-dimensional setup.
The drag forces reported by Potiguar and Ding [30] use a
friction angle of approximately 15◦ and show comparable
results for intruders immersed at half the depth of the granular
bed. Although a quadratic dependence was found to fit well
for intruders near the surface, they note evident deviation from
a quadratic dependence for intruders deeply immersed within
the bed. The available data from their study for the Froude
range considered here (Fr < 6) appears to also match a linear
trend.

The case with zero friction is markedly different from the
cases with friction. In each case there is a nonzero intercept at
Fr = 0, showing a minimum force is required to initiate motion
in the bed, even in the absence of interparticle friction. The
curve of force against Froude number follows a smooth form of
F̄ (

√
Fr). The frictionless case has no tangential forces, and the

drag force must therefore be dependent only on the geometry
of the spherical intruder moving through the bed. No plateau
in the force is found for Fr < 1 and no transition appears to
exist at Fr = 1. This indicates that the approximately constant
force found in the frictional cases for Fr < 1 is a consequence
of both the intergranular frictional forces in addition to the
geometrical effects of the spherical intruder moving through
the bed.

The force on the intruder is transmitted through contacts
with neighboring particles. It is therefore useful to consider a
normalized local coordination number κ for the intruder. This
is defined as the number of particles contacting the intruder n

normalized by the average coordination number for all parti-
cles in the bed Z. This is multiplied by a nondimensionalized
measure of relative surface area (R + r)2/(2

√
3r2), where

2
√

3r2 is the area of a hexagon into which a particle in the bed
would fit. A hexagonal area was chosen as the ideal kissing
number for spheres in two dimensions is 6, and spheres were
expected to pack approximately two dimensionally over the
surface of the larger spherical intruder. Altogether, the quantity
κ is given by

κ = Z

n

(R + r)2

2
√

3r2
. (6)

The relationship between κ and Fr is plotted in Fig. 6 for
all particles considered. The trend of this relationship is well
fitted by κ = 1 + 1

5 Fr, which is plotted in Fig. 6 as a solid
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FIG. 6. Normalized contact number κ against Froude number for
both frictionless particles and particles with friction angles 7.5◦, 15◦,
and 30◦. The solid line is a fit to the data of the form κ = 1 + 1

5 Fr.

black line. The interesting result that the intercept at Fr = 0 is
close to 1 only holds if κ is defined using a hexagonal area. For
the static case of Fr = 0, n = Z(R + r)2/(2

√
3r2), providing

an expression for the approximate number of contacts for an
intruder in three dimensions, which is not easy to accurately
determine [39].

The local contact number n also enables the expression of
a linear relationship between the speed of the intruder and the
resultant drag force. Figure 7 shows the function F

√
gR/n

plotted against the intruder speed v. This follows a linear form
of

F
√

gR

n
= α + βv, (7)

where α and β are constants. In the limit v → 0, F/n =
α/

√
gR, giving the minimum force per contact required to
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FIG. 7. Power dissipated per contact, F
√

gR/n, against imposed
intruder speed v. The relationship is dependent on intergrain friction,
but linear for all cases considered. The value at v = 0 gives the
minimum power per contact which must be maintained to allow
motion of the intruder within the bed α. The slope of the lines
represents the constant effective frictional force per contact β. The
zero friction case has both a nonzero intercept and slope, showing an
effective frictional force in the absence of any intergrain friction.

mobilize the bed. Alternatively, the parameter α has units of
power and can therefore be regarded as the minimum power
per contact which must be maintained for structural rearrange-
ments of the granular material to occur. The parameter β has
units of force, and the product βv has units of power. As
frictional power is dissipated as μNv, where μ is a friction
coefficient and N is a normal force, we can equate this with
the expression for βv to give μ ∼ β/N . From the definition of
the friction coefficient μ = Ff /N , where Ff is the frictional
force, β can be identified as a per-contact dynamic frictional
force resulting from the reorganization of the bed.

There is a nonzero intercept and slope in the case with
zero friction. This shows that there is still an effective friction
on the particle resulting purely from the rearrangement of
particles within the bed. This effective friction acts even in
the absence of interparticle friction. The parameters α and β

in this case therefore represent a direct measure of the
resistance to rearrangement of the granular material arising
purely from the structural micromechanics within the bed.
Interestingly, the existence of an effective friction for friction-
less particles has previously been found, albeit in the context
of a sheared cell [22] and biaxial compression of a granular
material [20]. However, the effective friction observed here,
resulting from localized rearrangements around an intruder,
has not previously been reported.

IV. CONCLUSION

We have examined the drag forces on a spherical intruder
particle immersed within a granular bed at low Froude number.
Although the instantaneous forces on the intruder are highly
variable, there is a well-defined mean force. For frictional
systems, a linear dependence between force and Froude
number was found for Fr > 1. For Fr < 1 the dependence
between Force and Froude number is unclear but could
be reasonably approximated as a constant force, which has
previously been reported for systems in this regime. The
observed dependence on Froude number can be explained
in terms of the two characteristic time scales for the system
τp ∝ 2

√
R/g and τi ∝ R/v, with τp/τi = Fr. The case with no

friction, in contrast, has no evident transition over the range of
Froude numbers considered and has a smooth functional form
F̄ (

√
Fr). This indicates that the approximately constant force

observed for frictional granular material at very low intruder
speeds is a purely frictional effect.

At higher Froude numbers, which were not considered
in this study, a further transition to an inertial regime must
exist. This inertial regime would be governed by a quadratic
drag law, which can be seen by considering the force on a
sphere impacted by a column of particles moving at a speed
v. From dimensional considerations, this would be given by
F ∼ ρAv2, where A is the cross-sectional area of the intruder
and ρ the bulk density of the bed. This quadratic dependence
has, indeed, been reported in high-speed systems [30,31]. In
this case, there appears to be three types of drag present
in frictional granular systems: at very low Froude numbers,
Fr < 1, the motion is quasistatic and there is an effectively
constant force resulting from a limited bed rearrangement
around the intruder. In this regime, particles do not lose contact
with the intruder. At higher Froude numbers, Fr > 1, particles
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lose contact with the rear of the intruder, causing a wake to
form. Drag in this regime is governed by particles sliding over
the forward face of the intruder, and appears linear with Froude
number. Finally, at Fr � 1, inertial collisions dominate and the
drag force follows a quadratic form.

The normalized contact number follows a linear trend of the
form κ = 1 + 1

5 Fr for both frictionless and frictional particles.
Further work is required to investigate whether this trend holds
in similar granular systems. Nevertheless, it is remarkable that
a straightforward linear trend, which is independent of friction,
can be found relating the dynamic properties of the bed Fr to
the structural configuration around the intruder κ . We have also
shown that the drag force per contact with the intruder follows
a linear relationship of the form F/n = α/

√
gR + βFr. The

parameter α is the power per contact required for structural
rearrangements within the granular material. The parameter β

is the dynamic drag force per contact in the bed. In the case
of zero friction both α and β are nonzero, showing evidence
for an effective granular friction resulting from only the local
structural configuration of the bed.

This study highlights a number of important challenges
for the multiscale characterization of granular drag. Foremost
is the connection between the drag force and the underlying
mesoscale mechanisms of confined force chain evolution and
dilatancy. An interesting question is whether an expression for
the resultant drag force per contact, under both frictionless and
frictional conditions, can be derived from the micromechanics
of the bed. This can be explored using structural analysis

of confined force chain buckling under quasistatic loading
conditions [40]. The special case of zero friction in the static or
quasistatic limit is particularly interesting from the standpoint
of force chain evolution. As friction serves to stabilize the
contacts, the absence of friction would leave geometrical
interlocking as the only mechanism through which the material
could mobilize resistance to a moving intruder. For a system
comprising spherical particles, the degree of geometrical
interlocking is small compared to that for assemblies of
irregularly shaped particles. It would therefore be expected
that the resultant force chains would be highly unstable for
the cases with zero friction considered in this study. This is
consistent with findings in an earlier study by Tordesillas
et al. [13], which showed a relatively sparse force chain
network develops beneath an indenting rigid punch in the
low friction limit. Furthermore, a by-product of force chain
buckling is the creation of voids between the buckling chain
and the surrounding particles. In the large strain or so-called
critical state regime in biaxial tests [21], systems with more
stable force chains develop higher residual macroscopic void
ratios due to their higher sliding friction and resistance to
rotation. The next stage of this research is ongoing and
is focused on unraveling these micromechanical details of
granular drag. In particular, the evolution of the local contact
topology and force chain network around the intruder will
be characterized, as well as how this evolution is influenced
by the competing driving forces of gravity and intruder
motion.
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Theory Exp. (2009) P06012.

[16] T. Faug, P. Caccamo, and B. Chanut, Phys. Rev. E 84, 051301
(2011).

[17] T. Faug, P. Caccamo, and B. Chanut, Geophys. Res. Lett. 39,
L23401 (2012).

[18] S. Moriguchi, R. Borja, A. Yashima, and K. Sawada, Acta
Geotechnica 4, 57 (2009).

[19] J. E. Hilton and P. W. Cleary, Phys. Rev. E 84, 011307 (2011).
[20] N. Kruyt and L. Rothenburg, J. Stat. Mech.: Theory Exp. (2006)

P07021.
[21] A. Tordesillas, Philosophical Magazine 87, 4987 (2007).
[22] P.-E. Peyneau and J.-N. Roux, Phys. Rev. E 78, 011307 (2008).
[23] K. Wieghardt, Mechanics Research Communications 1, 3

(1974).
[24] R. Albert, M. A. Pfeifer, A.-L. Barabási, and P. Schiffer, Phys.

Rev. Lett. 82, 205 (1999).
[25] I. Albert, P. Tegzes, R. Albert, J. G. Sample, A. L. Barabási,

T. Vicsek, B. Kahng, and P. Schiffer, Phys. Rev. E 64, 031307
(2001).

[26] R. Soller and S. A. Koehler, Phys. Rev. E 74, 021305 (2006).
[27] Y. Ding, N. Gravish, and D. I. Goldman, Phys. Rev. Lett. 106,

028001 (2011).
[28] R. D. Maladen, Y. Ding, C. Li, and D. I. Goldman, Science 325,

314 (2009).
[29] A. Levy and M. Sayed, Powder Technol. 181, 137 (2008).
[30] F. Q. Potiguar and Y. Ding, Phys. Rev. E 88, 012204 (2013).
[31] C. R. Wassgren, J. A. Cordova, R. Zenit, and A. Karion, Phys.

Fluids 15, 3318 (2003).
[32] J. F. Boudet and H. Kellay, Phys. Rev. Lett. 105, 104501 (2010).

062203-7

http://dx.doi.org/10.1016/0022-5096(72)90029-4
http://dx.doi.org/10.1016/0022-5096(72)90029-4
http://dx.doi.org/10.1103/PhysRevLett.80.61
http://dx.doi.org/10.1103/PhysRevLett.80.61
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1103/PhysRevE.81.041302
http://dx.doi.org/10.1103/PhysRevE.81.041302
http://dx.doi.org/10.1103/PhysRevE.81.011302
http://dx.doi.org/10.1103/PhysRevE.81.011302
http://dx.doi.org/10.1080/17486020902767347
http://dx.doi.org/10.1080/17486020902767347
http://dx.doi.org/10.1103/PhysRevLett.93.238002
http://dx.doi.org/10.1103/PhysRevE.71.011302
http://dx.doi.org/10.1063/1.4812063
http://dx.doi.org/10.1063/1.4812063
http://dx.doi.org/10.1103/PhysRevE.64.061303
http://dx.doi.org/10.1209/0295-5075/93/64003
http://dx.doi.org/10.1016/j.coldregions.2012.04.005
http://dx.doi.org/10.1016/j.coldregions.2012.04.005
http://dx.doi.org/10.1088/1742-5468/2006/09/P09003
http://dx.doi.org/10.1088/1742-5468/2006/09/P09003
http://dx.doi.org/10.1063/1.4790833
http://dx.doi.org/10.1063/1.4790833
http://dx.doi.org/10.1088/1742-5468/2009/06/P06012
http://dx.doi.org/10.1088/1742-5468/2009/06/P06012
http://dx.doi.org/10.1103/PhysRevE.84.051301
http://dx.doi.org/10.1103/PhysRevE.84.051301
http://dx.doi.org/10.1007/s11440-009-0084-5
http://dx.doi.org/10.1007/s11440-009-0084-5
http://dx.doi.org/10.1103/PhysRevE.84.011307
http://dx.doi.org/10.1088/1742-5468/2006/07/P07021
http://dx.doi.org/10.1088/1742-5468/2006/07/P07021
http://dx.doi.org/10.1080/14786430701594848
http://dx.doi.org/10.1103/PhysRevE.78.011307
http://dx.doi.org/10.1016/0093-6413(74)90027-5
http://dx.doi.org/10.1016/0093-6413(74)90027-5
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevE.64.031307
http://dx.doi.org/10.1103/PhysRevE.64.031307
http://dx.doi.org/10.1103/PhysRevE.74.021305
http://dx.doi.org/10.1103/PhysRevLett.106.028001
http://dx.doi.org/10.1103/PhysRevLett.106.028001
http://dx.doi.org/10.1126/science.1172490
http://dx.doi.org/10.1126/science.1172490
http://dx.doi.org/10.1016/j.powtec.2006.12.005
http://dx.doi.org/10.1103/PhysRevE.88.012204
http://dx.doi.org/10.1063/1.1608937
http://dx.doi.org/10.1063/1.1608937
http://dx.doi.org/10.1103/PhysRevLett.105.104501


J. E. HILTON AND A. TORDESILLAS PHYSICAL REVIEW E 88, 062203 (2013)

[33] M. P. Ciamarra, A. H. Lara, A. T. Lee, D. I. Goldman, I. Vishik,
and H. L. Swinney, Phys. Rev. Lett. 92, 194301 (2004).

[34] D. Chehata, R. Zenit, and C. R. Wassgren, Phys. Fluids 15, 1622
(2003).

[35] Y. Tsuji, T. Tanaka, and T. Ishida, Powder Technol. 71, 239
(1992).

[36] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofenko, J. Duriez,
A. Gladky, J. Kozicki, C. Modenese, L. Scholtès, L. Sibille,
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