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Analog of surface melting in a macroscopic nonequilibrium system
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Agitated wet granular matter can be considered as a nonequilibrium model system for phase transitions,
where the macroscopic particles replace the molecules and the capillary bridges replace molecular bonds. It is
demonstrated experimentally that a two-dimensional wet granular crystal driven far from thermal equilibrium
melts from its free surface, preceded by an amorphous state. The transition into the surface melting state, as
revealed by the bond orientational order parameters, behaves like a first order phase transition, with a threshold
being traceable to the rupture energy of a single capillary bridge. The observation of such a transition in the
macroscopic nonequilibrium system triggers the question of the universality of surface melting.
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Surface melting has been a topic of interest since Michael
Faraday’s observations on regelation, the welding of two
blocks of ice after contact below 0 ◦C [1]. After more than
a century of investigations, it becomes clear that melting
is a continuous process that tends to start from the free
surface [2–4]. The qualitative idea initiated by Frenkel [5]
is the reduction of surface energy due to the weaker binding
of molecules at the surface compared with that within the
bulk. Quantitative experiments pioneered by Frenken and
colleagues [6,7] have revealed that many solids melt by
forming a premelted film, an intermediate state between a solid
and a liquid, below the bulk melting temperature [4]. From
a microscopic perspective, the kinetics of melting transition
have also been explored in detail by means of molecular
dynamics simulations [8–10] and experiments [11–15] with
colloidal suspensions as model systems, in order to test
existing models [16]. Despite that the term “surface melting”
was originally introduced for equilibrium systems and most
investigations are performed with thermodynamic equilibrium
as a precondition, there exists evidence showing surface
melting persists as a crystal is driven away from thermal
equilibrium [2,17]. An interesting follow-up question is: Can
our current microscopic view on melting be extended to the
wide spreading nonequilibrium systems in nature?

Here, we try to address this question with a wet granular
model system. Granular matter, besides its ubiquity in nature
[18,19], has been frequently used as a model system for
phase transitions far from thermal equilibrium [20–29], due to
the strongly dissipative particle-particle interactions. Here,
we use a monolayer of wet particles as a model system,
because the cohesion arising from the formation of capillary
bridges, which mimics molecular bonds, effectively leads to a
crystalline structure with a free surface. The melting of such a
wet granular crystal is found to be a two-step process: a plastic
deformation into an amorphous state, followed by melting
from the surface. The abrupt transition into the surface melting
regime is reminiscent of a first order phase transition. The
transition threshold can be rationalized by a balance between
the effective energy injection and the rupture energy of a single
capillary bridge.
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The wet granular sample is prepared by adding a certain
volume of purified water Vl into a monolayer of N = 250
cleaned black glass spheres (SiliBeads P) with a density
ρp = 2.58 g/cm3 and a diameter d = 4 ± 0.02 mm. The
liquid content is defined as W = Vl/Vs, with Vs the total
volume of the spheres. The cylindrical container made of
polytetrafluoroethylene (PTFE) has an inner diameter of
D = 102 mm, a height of 6 mm, and a glass lid sealed with
indium to avoid evaporation. The glass lid is heated slightly
during the experiments to minimize the liquid condensation.
The container is fixed on a swirling table leveled within
5.7 × 10−3 degrees to avoid the influence from gravity. The
swirling table (see [30] for a sketch) provides a horizontal
circular motion with a frequency f and amplitude a as
control parameters. These two combined horizontal vibrations
provide an isotropic energy injection, since the amplitude
of the agitation velocity is independent of the phase. The
computer-controlled swirling frequency can be varied with
an accuracy of 6.2 × 10−4 Hz. The dynamics of the spheres
are captured by a camera (Lumenera LU125M) mounted on
the comoving frame of the swirling table. f is obtained via
tracing a fixed point on the swirling table with a second camera
(Lumenera LU075M). The snapshots captured are subjected
to an image-processing procedure to locate all spheres based
on a Hough transformation [31].

From the positions found, the connectivity of two neigh-
boring particles is determined through a comparison of their
distance to the critical bond length rb = 1.25 d, which is
estimated from the rupture distance of a capillary bridge [32].
Local symmetries of particle configurations are characterized
with the bond orientational order parameters (BOOP) [33,34],
defined as

ql =
√√√√ 4π

2l + 1

l∑
m=−l

|Q̄lm|2, (1)

where Q̄lm ≡ 〈Qlm(�r)〉 is an average of the local order
parameter Qlm(�r) ≡ Ylm(θ (�r),φ(�r)) over all bonds connecting
one particle to its nearest neighbors, with Ylm(θ (�r),φ(�r))
spherical harmonics of a bond located at �r . Here, we choose
q6 as the order parameter because of its sensitivity to the
hexagonal order. Based on the deviations of q6 to the standard
values for perfectly hexagonal, square, and line structures,
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FIG. 1. (Color online) Melting process of a wet granular crystal with liquid content W = 2.4% as the swirling frequency increases,
represented by the snapshots (upper panel) and local structures (lower panel). The particles in the lower panel are color coded according to their
local structures: free particles with black; line, square, and hexagonal structures with cyan (light gray), green (dark gray), and orange (gray),
respectively. The gray dashed line corresponds to the start of surface melting. The container swirls in the clockwise direction.

the structure that a particle is most likely belonging to is
distinguished.

To achieve a homogeneous wetting condition, the sample
is swirled with a relatively large initial frequency for at least
one hour. As agitation starts, the initially isolated particles
merge with each other into small assemblies in a rather short
time scale (a few seconds), due to the cohesion arising from
the formation of capillary bridges. As time evolves, those
small assemblies gradually merge with each other into a single
large cluster, within which the particles vigorously exchange
positions with their neighbors, exhibiting a liquidlike state. To
achieve an initial crystalline state, the swirling frequency is
ramped down until the cluster stops reorganizing. Depending
on the ramping rate, the initialized crystal may range from
a perfectly hexagonal structure to a polycrystalline structure.
In order to have a well-defined initial condition, we keep the
ramping rate slow enough for the system to favor the former
structure.

Figure 1 shows the melting process as the swirling fre-
quency grows with a step of 6.2 × 10−4 Hz and a waiting time
of 1 min between each step. A variation of either parameter by
1 order of magnitude yields the same melting threshold. At the
initial frequency f = 0.973 Hz, the particles form a perfectly
hexagonal structure. Although the crystal moves around
collectively in the comoving frame, the internal structure
stays stable. As the frequency increases to 1.000 Hz, the
occasional impacts with the container give rise to temporally
formed cracks inside the crystal. Although the cracks formed
fluctuate with time in such a nonequilibrium steady state, the
reduced overall packing density and the weakened internal
structure persist from a statistical point of view. Note that
this is different from noncohesive particles under vertical
[35] or horizontal [21] agitations, where collisions with the
container will tend to “heat” up the boundary layer and give
rise to a granular temperature gradient as the “heat” flux
propagates through. This difference could be attributed to the
strong cohesion between adjacent particles, which leads to
the favoring of collective motion. As the frequency increases

further to 1.086 Hz, more broken bonds lead to larger voids
within the cluster, along with the plastic deformation of
the crystal into an amorphous state. The enhanced energy
dissipation at the defects effectively increases the susceptibility
for the cluster to deform under normal stress applied by the
container. Meanwhile, the shear stress drives the rotation of
the cluster along the swirling direction.

An abrupt change of the structure occurs between 1.086 and
1.097 Hz: all the voids inside the cluster disappear suddenly
and a state with a perfectly hexagonal core surrounded by
few liquidlike layers arises. We identify the new state as
surface melting, since the deviations from the hexagonal
structure locate only at the outer layers. At the beginning of
the surface melting state, the liquidlike layer tends to “wet”
the crystalline core and keeps a circular shape, suggesting
a tendency to reduce its surface energy. As the frequency
increases further to 1.161 Hz, melting continues inward and
the molten layer tends to deform along the swirling direction.
Eventually at 1.212 Hz, the sample melts completely into
a comma-shaped “droplet” moving along the rim of the
container in the comoving frame. The fluctuations of the
surface of the molten layer, in connection with the interfacial
tension of such a wet granular model system, is an interesting
question to be addressed in further investigations.

To have a quantitative characterization of surface melting,
we analyze the local structure of particles on the edge of a
melting crystal, which is distinguished by the connectivity of
particles. Based on the criteria described above, we locate all
the neighbors of a particle, and recursively the neighbors of
all the neighbors found, until all particles inside are found.
The rescaled BOOP �q̃6 = |q6/q

hex
6 − 1| is chosen as the

order parameter for surface melting, because it measures the
deviation from a perfect hexagonal structure qhex

6 = 0.741.
Note that �q̃6 = 0 corresponds to the initial crystalline state.
Each data point corresponds to an average of all edge particles
and over all frames captured.

As shown in Fig. 2, surface melting can be clearly
distinguished from the order parameter. Within data scattering,
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FIG. 2. (Color online) Deviation of the local structure for edge
particles from a hexagonal one �q̃6 (see text for a definition) as
frequency increases. Inset: A processed image with edge particles
(stars) determined from the distance to the cluster contour line. ri

is the distance between an edge particle and the cluster center O.
The gray dashed line corresponds to the melting threshold fth =
1.088 ± 0.036 Hz, which is determined by linear fits of the data.

�q̃6 initially grows with the swirling frequency. This arises
from the temporarily formed cracks across the crystal, as well
as the following plastic deformation into the amorphous state,
because both processes lead to a weakening of the cluster at
the edge. As surface melting starts, �q̃6 saturates at a value
of roughly 0.125, since particles in a liquidlike state share a
similar local structure. This behavior provides a convenient
way to accurately determine fth. As the solid lines in Fig. 2
demonstrate, two fits, a first followed by a zeroth order, are
applied to the data, and the threshold corresponds to the
intersection point that minimizes the standard error.

Figure 3(a) shows the internal structure of the crystal
during the melting process, from which more features on
the self-organization of particles inside the cluster can be
obtained. First, it represents how the wet granular crystal
evolves from crack forming to the amorphous state. In case
of a crack with a constant width formed across the crystal,
it will lead to a deviation of �q̃6 for all particles associated.
The deviation is pronounced in a periodic manner along the
radial direction, because the positions of particles in such a
crystal are mostly fixed to a hexagonal lattice. The decay of
the deviation with r arises from the average over all azimuth
directions, since the relative influence from the crack decreases
as the distance to the center O increases. As f grows, the
enhanced crack formation leads to a larger deviation of �q̃6

and a continuous increase of the mean crystal size r̄i. At
about 1.016 Hz, the deviation is strong enough to destroy
the initial hexagonal lattice and allow a plastic deformation
of the cluster. Consequently, large fluctuations of �q̃6 and of
the cluster size start. Second, the change of internal structure
presents the abrupt reorganization of the particles as surface
melting starts. The amorphous state with large fluctuations
of �q̃6 is suddenly replaced with a phase separation into a
more compact inner core with a size of about 6d, shielded
with a molten layer of about 2d, suggesting a first-order-like
phase transition. Obvious deviations from a hexagonal packing

(a)

(b)

FIG. 3. (Color online) �q̃6 as a function of the rescaled distance
r/d to the cluster center O as the driving frequency f increases (a) and
decreases (b). Here �q̃6 corresponds to an average of the rescaled q6

over all azimuth directions and all frames. The white curve in either
plot corresponds to a measure of the cluster size r̄i, which is averaged
over all edge particles and all frames recorded.

can be observed within the molten layer, and its thickness
grows monotonically with the driving frequency, along with
the dilation of the cluster. Third, it indicates that the transition
into the liquidlike state is not continuous. As the thickness
of the molten layer reaches roughly half of the cluster size,
the inner core of the cluster loses the hexagonal structure
altogether and the whole cluster reaches a liquidlike state.

Figure 3(b) shows the crystallization process as f decreases
with the same rate. Its similarity to the melting process is
remarkable, except for a shift of the amorphous state to a
slightly lower frequency. It suggests the existence of hysteresis
between the melting and the crystallization process. Further
experiments with various ramping rates up to 14 runs indicate
that the hysteresis, despite being comparable to the error of
the threshold, is reproducible. This behavior presumably arises
from the hysteresis nature between the formation and rupture
of a single capillary bridge [36].

To gain further insights into the melting transition, the fth is
measured for various liquid content W and swirling amplitude
a. As shown in Fig. 4, the threshold increases monotonically
with the liquid content and saturates at W ≈ 6%. Assuming
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FIG. 4. (Color online) Dependency of the threshold frequency on
the liquid content and the swirling amplitude (b). fth is measured with
the �q̃6 of edge particles as order parameter. The upper and lower
triangles correspond to increasing and decreasing f . a and W are
fixed at 31.8 mm and at W = 4.77% in the main panel and in (b),
correspondingly. The dashed and solid lines are estimations from the
model. (a) A sketch illustrating an edge particle rolling away from the
bulk. vs and vb are the velocity of the edge and of the bulk particles
in the laboratory frame. (c) A close view of the edge of a crystal with
W = 2.39%, captured with a microscope. β denotes the half-opening
angle of a capillary bridge.

that surface melting represents the establishment of a new
balance between the energy injection and dissipation, the
dependence on W can be rationalized with the enhanced energy
dissipation due to the larger rupture distance of a capillary
bridge. The viscous effect can be safely ignored, because the
capillary number, the ratio between the viscous and capillary
forces, is less than 10−2. The velocity of the swirling table
v0 = 2πf a, which plays a crucial role injecting energy into
the system, provides a clue to understanding the decay of fth

with the increase of a shown in Fig. 4(b).
Following the above analysis, we propose a model based on

a balance between the effective thermal energy injection Ei and
the rupture energy of a single capillary bridge Eb. The energy
injection is considered to be a two-step process: colliding with
the container wall provides “macroscopic” collective motion
of the cluster, followed by a transfer into the “microscopic”
thermal energy through particle-particle interactions inside. As
illustrated in Fig. 4(a), the particle on the edge of a cluster has
more freedom to roll compared with those in the bulk, due to
less restrictions from the neighbors. This difference provides
the thermal energy for the edge particle m(2πf ak)2/2, with
m its mass and k = 1 − vs/vb the relative velocity difference.
The latter is 5/7 for the case that only edge particles roll,
and roll without sliding and rolling frictions [37]. As the
second step only occurs without interruptions from the wall,
we introduce an additional factor α = (D − 2a)/(D + 2a),

the length scale for a particle to move without disturbance
from the wall over that for the swirling table to reach.
Therefore the effective energy injection Ei = αm(2πf ak)2/2.
On the other hand, the rupture energy of a capillary bridge
can be estimated [32] to be Eb = 3.68 cos(θ )σ

√
Vbd , with

θ = 0.227 the contact angle obtained from a close view of
the bridges, σ = 0.072 N/m surface tension of water, and the
bridge volume Vb = πd3W/(3Ncor). The coordination number
Ncor ≈ 5.5 is obtained from the initial crystalline state.

Consequently, the threshold frequency can be estimated
with

fth = 0.60

ka

(
σ cos(θ )

ρpd

D + 2a

D − 2a

)1/2 (
W

Ncor

)1/4

, (2)

which is shown as dashed lines in Fig. 4. The solid lines
correspond to a more accurate estimation of Eb from a
numerical integration of a more exact force law (Appendix of
[32]), which is accurate to within 3% for W up to 6.58%. This
limit corresponds to the merging of liquid bridges at β = π/6.
A comparison with the experimental results indicates that,
without any fit parameter, the model captures fairly well the
dependency of fth on W and A, provided that the particles
are connected via capillary bridges. The saturation of fth

with W appears earlier than the limiting value, because the
bridge volume is not always homogeneously distributed, as
the snapshot shown in Fig. 4 demonstrates.

In summary, the melting of a two-dimensional wet granular
crystal with 250 macroscopic “molecules” is demonstrated to
be a continuous process starting from the surface. Preceding
surface melting, there exists an intermediate stage where the
crystal deforms plastically into an amorphous state, leading
to a more fragile internal structure with large fluctuations of
voids. The abrupt transition into the surface melting regime,
reminiscent of a first order phase transition, can be rationalized
with the balance of the energy injection and dissipation through
the rupture of capillary bridges. Moreover, this experiment in-
dicates that gravity is not a crucial factor for the surface melting
of such a model system, in connection to a former numerical
investigation [28] on vertically agitated wet granular matter.

In the future, further investigations on the distribution of the
granular temperature, especially close to the melting transition,
are necessary to address the question of the possibility to
extend our current microscopic view of surface melting into
systems out of thermal equilibrium. A comparison to computer
simulations will shed light on such an interesting question.
Moreover, the tendency for the molten layer to minimize
its free surface [3,38–40] provides the opportunity to inves-
tigate the interfacial tension of fluidized cohesive granular
matter.
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