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White-noise limit of nonwhite nonequilibrium processes
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The asymptotic behavior of a stochastic process subject to a colored noise is considered in the limit of vanishing
correlation time of the noise. The interpretation of the multiplicative noise of the effective equation is investigated.
The mathematically consistent formulation of the stochastic calculus for the limiting process is given. It differs
in general from the Stratonovich one which is recovered when the colored noise obeys detailed balance or is a
one-dimensional process.
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I. INTRODUCTION

White noise is the cornerstone for the formal description
and the understanding of most stochastic processes. This rather
idealized setting can be seen to arise as the limit of a more
realistic colored noise considered on timescales which are
longer than its correlation time [1–4]. In general, the white
noise of the resulting effective equation is a multiplicative one
and it is therefore necessary to specify the prescription for its
regularization (see Refs. [5–8] or others). It is known that if
the colored noise is a one-dimensional Markov process the
resulting equation follows the Stratonovich convention [1–4].
However, this is not necessarily true when the colored noise is
multidimensional. In general there will be correction terms
involving the autocorrelation matrix of the noise [4,9,10].
We will show here that in the multidimensional case the
Stratonovich interpretation is guaranteed if the fast process
admits an equilibrium solution. Conversely, if the fast noise
reaches a nonequilibrium steady state we find that the required
corrections to the Stratonovich regularization stem from the
antisymmetric part of the autocorrelation function of the fast
variables. The influence of the correlations of fast eliminated
processes on the interpretation of the noise of the effective
dynamics has been thoroughly investigated in a number of
publications for richer systems involving several timescales.
In Refs. [11–13] the authors studied the interplay between
the correlation time of the noise and the timescales of the
other processes. The authors of Ref. [14] considered the
interpretation of the noise starting from deterministic systems.
Here we focus on a minimal case in a setting close to the
renowned example of Gardiner’s book [2] where the only
timescales are the fast one on which the correlation of the
noise decays and the one of the effective process. Despite
its simplicity the study case is rich enough to display the
nontrivial deviation from the Stratonovich prescription which
enables us to unveil the importance of the symmetries of the
correlations of the fast process. We provide the mathematically
consistent prescription for the regularization of the noise of
the effective process which accounts for the multidimensional
nonequilibrium effects and reduces to the Stratonovich one
for the equilibrium or the one-dimensional case. In the
main text we show an intuitive derivation of the effective
process and in Appendices B and C we rigorously obtain
the correct discretization by means of adiabatic elimination
of the variables of the underlying fast random processes.

We then study a simple example of a two-dimensional noise
reaching a nonequilibrium steady state. The simple setting
allows to explicitly derive the corrections to the Stratonovich
prescription.

II. MAIN RESULTS

We are interested in the behavior of a process subject to
some colored multidimensional noise in the limit of vanishing
correlation time in analogy with the discussion in Ref. [2], i.e.,
considering the dynamics on timescales much longer than the
correlation time of the noise. This problem can be formally
addressed by studying the differential equation

dXi
t

dt
= αi(Xt ) + ε−1βia(Xt )Y

a
t , (1)

where the colored noise is represented by the fast process Y

and obeys the Itō stochastic differential equation

dY a
t = ε−2Ua(Yt ,t)dt + ε−1σab(Yt ,t) · dWb

t (2)

where · denotes the Itō product, i,j = 1, . . . ,n,a,b = 1, . . . ,m

and Wb
t is a Wiener process. Note that the choice of the

prescription of the fast process is immaterial. The parameter
ε sets the separation of timescales between the two processes.
We require the fast process to have zero mean and to admit a
stationary solution. At the steady state Y has a correlation〈

Y a
τ Y b

0

〉 = gab(τ ) = gba(−τ ), (3)

where 〈· · · 〉 denotes the average over trajectories of Eq. (2)
in the steady state. We remark that we are interested in
investigating the formal aspects of this system in general and
therefore consider generic drift and noise terms in Eq. (1). A
consequence of this generality is that we will not couple the
fluctuating term to the drift and will not address the issue
of fluctuation-dissipation relations. Our focus will instead
be on the time reversibility of the noise and its effects on
the dynamics in the limit of vanishing correlation of the noise.
Indeed, the fact that in multidimensional systems in general
gab(τ ) �= gab(−τ ) is at the core of the results presented below.
We consider the case in which the correlation decays with the
characteristic time τc. Considering the scaling we can see that
the limit ε → 0 corresponds to that of vanishing correlation
time since we have that〈

ε−1Y a
ε−2t

ε−1Y b
0

〉 = ε−2gab(ε−2t), (4)
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which is a regularization of the Dirac delta function and where
we see that τc ∼ ε2. Before moving forward it is worthwhile
to make some considerations about the time integral of the
correlation function of the noise:

μab =
∫ ∞

0
gab(τ )dτ, (5)

which is a positive definite matrix and in general is not
symmetric (see Appendix A). As every matrix it can be
split in its symmetric and antisymmetric components μab =
μab

S + μab
A . If the steady state of the noise is an equilibrium

one it can be shown that the integral of the correlation function
is symmetric and μab = μab

S (see Appendix D). The same
trivially holds if the process (and consequently the matrix) is
one dimensional. Differently, the integral of the correlation
between −∞ and ∞ is always symmetric (see Appendix A):∫ ∞

−∞
gab(τ )dτ = μab + μba = 2μab

S ≡ νacνbc. (6)

In an analogy to Ref. [2] we expect to find an effective equation
of the kind

dXi

dt
= αi + βiaζ a

t , (7)

where ζ a
t is the white-noise limit of Y a

t and has the covariance
〈ζ a

t ζ b
t ′ 〉 = 2μab

S δ(t − t ′). We intend to determine the correct
interpretation of the product βiaζ a

t . We show below that there
is a regularization such that it is possible to express the effective
process as

dXi
t = αidt + βib � dξb

t , (8)

where dξb
t ≡ νbcdBc and the whirl product above implies the

discretization

Xi
t+�t − Xi

t = αi
(
X̂i

t

)
�t + βia(X̂t )η

a
√

�t + O(�t
√

�t)
(9)

where ηa is a multivariate Gaussian with zero mean and
covariance 〈ηaηb〉 = 2μab

S and the point at which the functions
are evaluated is implicitly defined by

X̂
j
t = X

j
t + 1

2

{
αj (X̂t )�t + βjd (X̂t )

× [
δcd + (

μ−1
S

)ce
(μA)ed

]
ηc

√
�t

}
. (10)

Such a point can be seen to deviate from the midpoint
because of the asymmetries of the integral of the correlation
function induced by nonequilibrium:

X̂
j
t = X

j
t + X

j

t+�t

2
+ 1

2
βja(Xt )

[(
μ−1

S

)cd
(μA)da

]
ηc

√
�t

+ 1

2
βib ∂βja

∂xi
(Xt )μ

cb
[(

μ−1
S

)cd
(μA)da

]
�t. (11)

When μab is symmetric (which is the case when the fast
process is at equilibrium or, as in Ref [2], is one dimensional)
X̂

j
t = 1

2 (Xj

t+�t + dX
j
t ), i.e., the whirl regularization reduces

to the Stratonovich midpoint one.
We are also interested in considering the limiting behavior

of a functional of the trajectory described by Eq. (1):

J =
∫ t ′

t

h(Xτ )dτ + f i(Xτ )dXi
τ . (12)

Notice that since Xt is a differentiable process, there is no
ambiguity in the definition of the above functional, which is
in fact an ordinary integral

J =
∫ t ′

t

[
h(Xτ ) + αi(Xτ )f i(Xτ )

+ ε−1f i(Xτ )βia(Xτ )Y a
τ

]
dτ. (13)

In the limit of vanishing correlation time of the noise, we
expect it to become a stochastic integral over the effective
stochastic trajectories with an integration prescription to be
specified. We find it to be

lim
ε→0

J =
∫ t

t ′
hdτ + f i � dXi

τ , (14)

where the whirl product introduced in Eq. (9) is generalized
and implies the discretization∫ t

t ′
f i � dXi

τ ≡
K−1∑
k=0

f i(X̂t ′+k�t )
(
Xi

t ′+(k+1)�t − Xi
t ′+k�t

)
,

(15)

where t ′ + K�t = t and the evaluation point X̂t is the one
defined in Eq. (10).

III. HEURISTIC DERIVATION

We will give a rigorous derivation of the effective equation
for the process by means of adiabatic elimination of the
fast degrees of freedom in Appendix B. We report here a
heuristic argument that clearly highlights the important role of
the symmetries in the correlations of the fast process. Let us
consider a discretized version of Eq. (1):

Xi
t+nτ = Xi

t +
n∑

k=1

αi(Xt+(k−1)τ )τ

+
n∑

k=1

βia(Xt+(k−1)τ )Y a
t+(k−1)τ τ, (16)

where we should recall that Yt ∼ τ
−1/2
c and we do not need

to explicitly write the bookkeeping parameter ε. We choose τ

to be smaller than the correlation time of the noise (τ � τc).
Then we consider a number of steps n such that the time nτ is
much larger than the correlation time of the fast process τc but
the functions α(X) and β(X) have not yet varied considerably
[i.e., τc � nτ � (∂xβ)−2 and nτ � (∂xα)−1]. Given the large
timescale separation this corresponds to the large range of n for
which the autocorrelation of the fast process has decayed and
the slow process has not moved much. Under these conditions
we can Taylor expand the functions α and β and obtain

Xi
t+nτ = Xi

t + nταi(Xt ) + βia(Xt )
n∑

k=1

Y a
t+(k−1)τ τ

+ ∂βia(Xt )

∂xj

n∑
k=1

(
X

j

t+(k−1)τ − X
j
t

)
Y a

t+(k−1)τ τ. (17)

With a few considerations it is possible to express this
equation as a stochastic differential equation (SDE) with
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multiplicative white noise since the first term in Y has a
Gaussian limit. Indeed, variables with identical distributions
that have exponentially decaying correlation functions and are
summed for times longer than their correlation time satisfy
the mixing conditions necessary to extend the central limit
theorem to weakly correlated variables [15]. Therefore their
sum is distributed as a Gaussian and we need only to specify
its average and covariance. As introduced before, the process
Y has zero average and so does its sum over consecutive time
steps. The covariance matrix of the sum is〈

n∑
k=1

n∑
l=1

Y a
t+(k−1)τ Y

b
t+(l−1)τ

〉
� n

τ

∫ ∞

−∞

〈
Y a

s Y b
0

〉
ds = 2

n

τ
μab

S ,

(18)

where in moving from the sum to the integral we have exploited
that nτ  τc and for the last step we have used Eq. (6). The
second sum term involves the correlation between Y and the
process X. It can be taken as an average for the law of large
numbers so that using iteratively the definition of the process
and retaining only the lowest-order terms we have

n∑
k=1

k∑
l=1

〈
Y b

t+(l−1)τ Y
a
t+(k−1)τ

〉 � n

τ

∫ ∞

0

〈
Y a

s Y b
0

〉
ds ≡ n

τ
μab,

(19)

where it is important to note that the second sum (over l) runs
only up to k. Finally, defining �t = nτ we can write

Xi
t+�t = Xi

t + αi(Xt )�t + βjb ∂βia

∂xj
(Xt )μ

ab�t

+ βia(Xt )η
a
√

�t, (20)

where again ηa is a multivariate Gaussian with zero mean
and covariance 〈ηaηb〉 = 2μab

S . This equation is the discrete
version of

dXi
t = αidt + βjb ∂βia

∂xj
μabdt + βiaνab · dBb

t , (21)

where Bb
t is a Wiener process and · denotes the Itō product

reflecting the fact that βia in Eq. (20) is evaluated at the initial
point Xt . Our aim is to determine which interpretation of the
product in Eq. (7) yields this equation. This clearly depends
on the term βjb ∂βia

∂xj μab, i.e., it is determined by the properties
of the integral of the cross-correlation function μab defined
in Eq. (5). For instance, if the integral of the autocorrelation
is symmetric μab = μba = μab

S (which is the case when the
fast process admits an equilibrium or is one dimensional as
in Ref. [2]) we have that μab = (1/2)νacνbc and that Eq. (21)
corresponds to the Stratonovich interpretation of Eq. (7). In
fact, we can write it as

μab = μab
S , dXi = αidt + βia ◦ dξa, (22)

where ◦ denotes the midpoint Stratonovich product. It is
important to note that Eq. (21) cannot be obtained by the Itō
nor by the Hänggi–Klimontovich interpretation of the noise
in Eq. (7). In fact, for Eq. (21) to correspond to the Itō
interpretation of Eq. (7) we would have to require μab = 0
which would also imply that μab

S = 0 and the equation would

not be a diffusive one. Similarly, for the Hänggi–Klimontovich
one μab = 2μab

S which again implies μab = μab
S = 0. For a

generic μab the correct discretization is the one given by the
whirl product as in Eq. (8). Indeed, considering the discrete
equation (9) and iteratively substituting the expression for X̂t

[Eq. (10)] we obtain Eq. (20).

IV. FUNCTIONALS OF THE TRAJECTORY

We now turn our attention to the limiting behavior of the
functional defined in Eq. (12). We omit the heuristic discussion
which would closely follow the one given for the study of
the effective process. The complete derivation is contained in
Appendix C and we list here the results. As for the effective
equation for the dynamics the interpretation of the integral
depends on the correlations of the eliminated fast process.

lim
ε→0

J =
∫ t

t ′
hdτ + f i � dXi

τ

=
∫ t

t ′

(
h + μabβiaβjb ∂f i

∂xj

)
dτ + f i · dXi

τ (23)

over effective trajectories as can be directly checked by
substituting the definition of X̂t given by Eq. (10) in Eq. (15).
This is equivalent to the integral in Stratonovich form:

∫ t

t ′

[
h + 1

2
μab

A βiaβjb

(
∂f i

∂xj
− ∂f j

∂xi

)]
dτ +

∫ t

t ′
f i ◦ dXi

τ .

(24)

From this expression it is again evident that when the fast
process is at equilibrium, the correction due to the anti-
symmetric part of the correlation vanishes, and one recovers
the Stratonovich prescription. It is interesting to note that
when the integrand is a gradient (i.e., f i = −∂U/∂xi) the
nonequilibrium correction vanishes and the stochastic integral
is an exact differential, consistently with the original functional
(12). However, the process itself [Eq. (8)] is still non-
Stratonovich.

V. TWO-DIMENSIONAL NONEQUILIBRIUM
STEADY STATE NOISE

In this section we give a simple example where all details
are worked out explicitly. In order to have an asymmetric μab

we need to consider a nonequilibrium fast process in more than
one dimension. Let us choose as a simple example the case in
which the fast process is given by the two-dimensional motion
of a particle in a parabolic well with an additional nonpotential
rotational force (see, e.g., Ref. [16]):

dY a = ε−2 1

γ
F abY bdt + ε−1

√
2DdWa

t , (25)

where a,b = 1,2,

F =
(−k ω

−ω −k

)
, (26)
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and D = T/γ . The corresponding forward Fokker–Planck
equation reads

∂p(y1,y2)

∂t
= k

γ

∂

∂y1
y1p − ω

γ
y2 ∂

∂y1
p + D

∂2

∂y1∂y1
p

+ k

γ

∂

∂y2
y2p + ω

γ
y1 ∂

∂y2
p + D

∂2

∂y2∂y2
p.

(27)

By casting these equations in polar coordinates (r,φ) it is
immediate to find a solution of the kind ps ∝ exp [−kr2/(2T )].
This is a stationary nonequilibrium solution with a vanishing
flux in the radial direction and an angular one Jφ = −ω

γ
ps .

We can now proceed to the evaluation of the autocorrelation
matrix. By multiplying the Fokker–Planck equation by ya and
y ′b and integrating by parts we obtain (for t � t ′)

dt

〈
Y a

t Y b
t ′
〉 = 1

γ
F ac

〈
Y c

t Y b
t ′
〉
dt, (28)

and consequently the correlation function for t � 0 then reads

gab(t) = 〈
Y a

t Y b
0

〉 = [e
1
γ
F t ]ac

〈
Y c

0 Y b
0

〉
. (29)

Integrating it we obtain

μab =
∫ ∞

0

〈
Y a

t Y b
0

〉
dt

= −γF−1ac 〈
Y c

0 Y b
0

〉 = γ T

k2 + ω2

(
1 ω/k

−ω/k 1

)
, (30)

where we have exploited the fact that 〈Y c
0 Y b

0 〉 = δcb T
k

. The
off-diagonal terms of μ are antisymmetric so that if we sum μ

to its transpose we obtain

2μab
S = μab + μba = 2γ T

k2 + ω2
δab. (31)

The asymmetry of the matrix μ implies that the effective
equation (20) does not correspond to the Stratonovich inter-
pretation of the SDE. In fact, even in the case in which X is a
one-dimensional process we get the effective equation

dXt = αdt + γ T

k2 + ω2

ω

k

(
β2 ∂β1

∂x
− β1 ∂β2

∂x

)
dt

+
√

2γ T

k2 + ω2

(
β1 ◦ dB1 + β2 ◦ dB2) , (32)

where B1, B2 are independent Wiener processes. In general,
this equation does not correspond to the SDE (7) with
a Stratonovich interpretation of the noise (unless β2 ∂β1

∂x
=

β1 ∂β2

∂x
). It is the nonequilibrium rotatory term of the fast process

ω/k which originates the deviation from the Stratonovich
equation.

If we now consider the functional (12) for a two-
dimensional process in X we find that the limiting integral
becomes∫ t

t ′

[
h + γ T

k2 + ω2

ω

k
(β11β22 − β12β21)

(
∂f 1

∂x2
− ∂f 2

∂x1

)]
dτ

+
∫ t

t ′
f i ◦ dXi

τ . (33)

where again the correction to the Stratonovich prescription
is due to the nonequilibrium term of the noise ω/k. As
discussed for the general case if ∂f 1

∂x2 = ∂f 2

∂x1 (i.e., f i is a
gradient) the correction vanishes. However, the process X is
still non-Stratonovich displaying corrections which are the
two-dimensional equivalent of the ones in Eq. (32).

VI. CONCLUSIONS AND DISCUSSION

In the present contribution we have investigated the white-
noise limit of systems driven by a colored process. The
extension of this classic limit to higher dimensions introduces
a richer scenario. The discretization choice for the resulting
multiplicative noise is no longer the Stratonovich one and
differences in the specific process modeling the colored noise
affect the final result. We have provided the expression for
the correct discretization of the process and derived explicitly
the deviation from the Stratonovich one. We have chosen
a simple starting point in order to allow a transparent
interpretation of the results. By doing so we have been able
to trace the corrections back to the antisymmetric part of
the time integral of the autocorrelation matrix of the noise.
The most relevant result of our present work is that the
correct discretization crucially depends on the features of the
eliminated fast process: if it admits an equilibrium solution
the resulting process will follow the Stratonovich prescription
otherwise it will display additional fast-process dependent
corrections. Finally, it is worth pointing out that the choice of
our starting point is not the most general one. We have in fact
restricted consideration to the case in which the fast process
is independent of the slow one and is a Markov process on
its own. This would not be the case if the drift coefficient or
the diffusion matrix in Eq. (2) depended on the slow process
such as, for example, for Langevin Kramers dynamics in the
limit of vanishing inertia with a space-dependent temperature
or friction (see, e.g., Refs. [17–20]).

APPENDIX A: PROPERTIES OF INTEGRAL
OF CORRELATION MATRIX

The symmetry of the integral can be readily checked by
splitting it

Gab =
∫ ∞

−∞
gab(τ )dτ =

∫ ∞

−∞

〈
Y a

τ Y b
0

〉
dτ

=
∫ 0

−∞

〈
Y a

τ Y b
0

〉
dτ +

∫ ∞

0

〈
Y a

τ Y b
0

〉
dτ,

and exploiting the stationarity of the process which ensures
〈Y a

τ Y b
0 〉 = 〈Y a

0 Y b
−τ 〉 together with a simple change of variable:

Gab =
∫ ∞

0

〈
Y a

0 Y b
τ

〉
dτ +

∫ 0

−∞

〈
Y a

0 Y b
τ

〉
dτ

=
∫ ∞

−∞

〈
Y a

0 Y b
τ

〉
dτ = Gba. (A1)

Similarly one can prove that

Gab = μab + μba = 2μab
S . (A2)
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Concerning the positivity we can exploit the Wiener–
Kinchin theorem which states that

〈ỹa(k)ỹb∗(q)〉 = 1

2π
δ(k − q)

∫ ∞

−∞
dτ

〈
Y a

τ Y b
0

〉
eikτ , (A3)

where f̃ (k) denotes the Fourier transform. By setting q =
k = 0 and multiplying to the left and right by any vector v

the positivity is proven. Also μ can be shown to be positive
definite by multiplying left and right by any vector va and
vb and applying the Wiener–Kinchin theorem to the resulting
scalar.

APPENDIX B: EFFECTIVE PROCESS
BY ADIABATIC ELIMINATION

This appendix contains the derivation of the effective equa-
tion for Xt by means of adiabatic elimination of the fast degrees
of freedom (see Ref. [4] for a detailed exposition of such
method). The Kolmogorov equations for the propagator of the
joint process Xt [Eq. (1)] and Yt [Eq. (2)], p(x,Y,t |x ′,Y ′,t ′),
read

∂tp = L†p, ∂t ′p = −L′p, (B1)

where the generator of the diffusion process is

L = ε−2

(
Ua ∂

∂ya
+ 1

2
V ab ∂2

∂ya∂yb

)
︸ ︷︷ ︸

L1

+ ε−1 b(x)iaya ∂

∂xi︸ ︷︷ ︸
L2

+ ai(x)
∂

∂xi︸ ︷︷ ︸
L3

, (B2)

with

V ab = σacσ cb. (B3)

In order to solve this problem by means of multiple-scale
asymptotic methods let us expand the solution as

p = p(0) + εp(1) + ε2p(2) + · · · (B4)

and introduce the very fast and the fast time variables τ = ε−2t

and t̃ = ε−1t . At order ε−2 the backward equation reads(
∂

∂τ
+ L1

)
p(0) = 0. (B5)

We are considering the case in which the fast dynamics relaxes
on very fast timescales to a stationary solution

L
†
1w(y,t) = 0. (B6)

This amounts to saying that the spectrum of L
†
1 has a top

eigenvalue E0 = 0 and a finite gap (E1 < 0). (If L
†
1w = wL1,

then detailed balance holds and the solution is an equilibrium
one.) This implies that p(0) is in the kernel of L1, i.e., does not
depend on y,

p(0) = ρ(x,t,t̃), (B7)

after a very fast transient.
At order ε−1 one has(

∂

∂τ
+ L1

)
p(1) = −

(
∂

∂t̃
+ L2

)
p(0). (B8)

After relaxation, for L1 to be invertible, one has to impose that
the right-hand side is orthogonal to the null space of L

†
1 which

is generated by the stationary w. Therefore, multiplying by w

and integrating over y one obtains the solvability condition

∂ρ

∂t̃
= −βiaya

∂ρ

∂xi
, (B9)

where · · · = ∫
dy · · ·w denotes the average over the stationary

density of the fast variables and we have made use of
∫

dyw =
1 and the explicit expression of L2. Since we are considering
the case in which ya = 0 we have that ∂ρ/∂t̃ = 0 and p(0) does
not depend on the fast timescale t̃ . The formal solution then
reads

p(1) = −bia(x)
∂ρ(x,t)

∂xi
L−1

1 ya + zero modes of L1. (B10)

The equation at order ε0 is(
∂

∂τ
+ L1

)
p(2) = −

(
∂

∂t̃
+ L2

)
p(1) −

(
∂

∂t
+ L3

)
p(0).

(B11)

The solvability condition becomes an effective backward
Kolmogorov equation on slow timescales t

∂ρ

∂t
+ αi ∂ρ

∂xi
+ yb

(−L−1
1 ya

)
βjb ∂

∂xj

(
βia ∂ρ

∂xi

)
= 0. (B12)

The quantity yb(−L−1
1 ya) can be shown to coincide with the

integral of the correlation function

μab = yb
(−L−1

1 ya
) =

∫ ∞

0

〈
Y a

t Y b
0

〉
dt, (B13)

which is in general not symmetric (see Appendix D). The
effective equation can then be rewritten as

∂ρ

∂t
+

(
αi + μabβjb ∂

∂xj
βia

)
∂ρ

∂xi
+ μabβjbβia ∂2ρ

∂xj∂xi
= 0.

(B14)

With the results of Appendix A it is possible to see that

μab + μba =
∫ ∞

−∞
dτ

〈
Y a

τ Y b
0

〉 =
∫ ∞

−∞
gabdτ = Gab, (B15)

which is symmetric. The diffusion term μabβjbβia ∂2ρ

∂xj ∂xi is
also symmetric but because of the interchangeable role of ∂

∂xi

and ∂
∂xj which allows to express it as

1
2dij ≡ βjbβiaμab

S . (B16)

In fact,

μabβjbβia ∂2ρ

∂xj∂xi
= μabβibβja ∂2ρ

∂xj∂xi

= 1

2
μab(βjbβia + βibβja)

∂2ρ

∂xj∂xi

= 1

2
βjbβia(μab + μba)

∂2ρ

∂xj∂xi

= βjbβiaμab
S

∂2ρ

∂xj∂xi
. (B17)
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With these identifications it is possible to write Eq. (B14) as

∂ρ

∂t
+

(
αi + μabβjb ∂

∂xj
βia

)
∂ρ

∂xi
+ μab

S βjbβia ∂2ρ

∂xj∂xi
= 0,

(B18)

which is the Kolmogorov backward equation associated to the
SDE of Eq. (21) in the main text. It is possible to rearrange the
terms of equation (B18) to obtain

0 = ∂ρ

∂t
+

(
αi + 1

2
(μab − μba)βjb ∂

∂xj
βia

)
∂ρ

∂xi

−μab
S

(
βia ∂

∂xj
βjb

)
∂ρ

∂xi
+ ∂

∂xj

(
μab

S βjbβia ∂ρ

∂xi

)
,

(B19)

from which we can see the form that Eq. (21) takes when
considering the kinetic Hänggi–Klimontovich interpretation
of the noise:

dXi
t = αidt + 1

2
(μab − μba)βjb ∂βia

∂xj
dt

−μab
S βia ∂βjb

∂xj
dt + βiaνab � dBb

t , (B20)

where � denotes the Hänggi–Klimontovich product. In the
equilibrium case μab = μba (see Appendix D) and taking the
square root Gab = μab + μba = νacνbc and defining β̂jc =
νbcβjb one obtains the Stratonovich generator

∂ρ

∂t
+ αi ∂ρ

∂xi
+ 1

2
β̂jc ∂

∂xj

(
β̂ic ∂ρ

∂xi

)
= 0 (equilibrium).

(B21)

APPENDIX C: ADIABATIC ELIMINATION FOR A
FUNCTIONAL OF TRAJECTORIES

The generating function the functional J defined in Eq. (12)
reads

Gs = 〈e−sJ〉 (C1)

and obeys the backward Feynman–Kac equation

∂tG + LG = s(h + f iαi + ε−1f iβiaya)G. (C2)

In order to solve this problem by means of multiple-scale
asymptotic methods let us expand the solution as

G = G(0) + εG(1) + ε2G(2) + · · · . (C3)

At order ε−2 the backward equation reads(
∂

∂τ
+ L1

)
G(0) = 0, (C4)

with solution

G(0) = q
(
x,t,t̃

)
, (C5)

after a very fast transient.

At order ε−1 one has(
∂

∂τ
+ L1

)
G(1) = −

(
∂

∂t̃
+ L2 − sf iβiaya

)
G(0). (C6)

After relaxation, for L1 to be invertible, one has to impose
that the right-hand side is orthogonal to the null space of L

†
1

which is generated by the stationary w.
Therefore, multiplying by w and integrating over y one

obtains the solvability condition

∂q

∂t̃
+ βiaya

∂q

∂xi
= sβiaf iyaq, (C7)

where we have made use of
∫

dyw = 1 and the explicit
expression of L2. Recalling that ya = 0 as required for the
proper behavior of the propagator one concludes that ∂q/∂t̃ =
0 and G(0) does not depend on the fast timescale t̃ . The formal
solution reads

G(1) = −bia ∂q

∂xi
L−1

1 ya + sβiaf iqL−1
1 ya. (C8)

The equation at order ε0 then is(
∂

∂τ
+ L1

)
G(2) = s(h + αif i)G(0) + sf iβiayaG(1)

−
(

∂

∂t̃
+ L2

)
G(1) −

(
∂

∂t
+ L3

)
G(0).

(C9)

The solvability condition becomes an effective backward
Kolmogorov equation on slow timescales t :

∂q

∂t
+ αi ∂q

∂xi
+ μabβjb ∂

∂xj

(
βia ∂q

∂xi

)

= s(h + αif i)q + sμabβjb ∂

∂xj
(βiaf iq)

+ sμabβiaβjbf j ∂q

∂xi
− s2μabβiaβjbf if jq. (C10)

This corresponds to the Feynman–Kac equation for the
generating function of the functional

lim
ε→0

J =
∫ t

t ′

(
h + μabβiaβjb ∂f i

∂xj

)
dτ + f i · dXi

τ (C11)

over effective trajectories. Recasting the integral in
Stratonovich form one has

lim
ε→0

J =
∫ t

t ′

[
h + 1

4
(μab − μba)βiaβjb

(
∂f i

∂xj
− ∂f j

∂xi

)]
dτ

+
∫ t

t ′
f i ◦ dXi

τ . (C12)

In terms of a kinetic Hänggi–Klimontovich integral one would
find

lim
ε→0

J =
∫ t

t ′

(
h − μbaβiaβjb ∂f i

∂xj

)
dτ + f i � dXi

τ . (C13)
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APPENDIX D: EQUILIBRIUM OF FAST PROCESSES AND
SYMMETRIES IN μab

In general, for any f such that f = 0 one has

(−L−1
1 f

)
(z′) =

∫
dz

∫ t

−∞
dt ′W (z,t |z′,t ′)f (z)

=
∫

dz

∫ t

−∞
dt ′

∑
E

φE(z′)φ+
E (z)e−E(t−t ′)f (z)

=
∑
E>0

E−1φE(z′)
∫

dzφ+
E (z)f (z). (D1)

Above, W is the propagator of the fast process generated
by L1 (with frozen-in slow variables), i.e.,(

∂

∂t ′
+ L′

1

)
W (z,t |z′,t ′) = 0, (D2)

(
∂

∂t
− L

†
1

)
W (z,t |z′,t ′) = 0, (D3)

and its biorthogonal decomposition is

W (z,t |z′,t ′) =
∑
E

φE(z′)φ+
E (z)e−E(t−t ′), (D4)

L1φE = −EφE, L
†
1φ

+
E = −Eφ+

E . (D5)

With this property we can express the Green–Kubo–Taylor
formula for the diffusion matrix of the effective equation

yb
(−L−1

1

)
ya =

∫
d y′d y

∫ t

−∞
dt ′w( y′)y ′bW ( y,t | y′,t ′)ya

=
∫ t

−∞
dt ′

〈
Y a

t Y b
t ′
〉
, (D6)

which, given that the process is stationary, can be written as

yb
(−L−1

1

)
ya =

∫ ∞

0
dτ

〈
Y a

τ Y b
0

〉 = μab. (D7)

Since in general

yb
(−L−1

1

)
ya �= ya

(−L−1
1

)
yb, (D8)

μab may not be symmetric.
If the steady state of the fast variable is an equilibrium one

then has

φ+
E = weqφE (D9)

by detailed balance and we can invert the order of the terms in
Eq. (D7) since for any f and g with f = g = 0,

g
(−L−1

1 f
) =

∑
E>0

E−1f φE gφE = f
(−L−1

1 g
)
. (D10)

This implies that μab is symmetric and consequently the
effective equation is to be interpreted with the Stratonovich
convention.
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