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Influence of stochastic perturbation of both action updating and strategy updating in
mixed-strategy 2 × 2 games on evolution of cooperation
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In a mixed-strategy game framework, each agent’s strategy is defined by a real number; on the other hand,
in a discrete strategy game framework, only binary strategies, either cooperation or defection, are allowed. In a
spatial mixed-strategy game, with respect to the process for updating action (offer), either a synchronous or an
asynchronous strategy update should be presumed. This study elucidates how stochastic perturbation that results
from a synchronous or an asynchronous process for updating action significantly affects the enhancement of
cooperation in an evolutionary process. Especially, when a synchronous process for updating action is assumed,
the extent of cooperation increases with an increase in degree.
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I. INTRODUCTION

The mechanism of emergence and maintenance of co-
operation has attracted significant attention in various sci-
ences [1,2]. Evolutionary game theory sheds some light on this
long-standing issue, allowing exploration of this ubiquitous
cooperation [3]. The theory was first introduced as a tool for
studying animal behavior [4], but it has become a general
theoretical framework for the study of ecosystems, economic
problems, and human social evolution [5]. In particular, a
simple and paradigmatic model, the prisoner’s dilemma (PD)
game, wherein two agents simultaneously decide to adopt one
of two actions, cooperation (C) or defection (D), has been
studied extensively within both theoretical and experimental
studies as a plausible social metaphor of real interactions.
When a PD game is played by an infinite well-mixed
population, the organization of cooperative dynamics is not
supported. In past decades, a great number of scenarios have
been identified to offset such an unfavorable outcome of social
dilemmas, wherein cooperators are condemned to extinction,
thereby leading to the evolution of cooperation [6–11]. As
part of this trend, Nowak has attributed all these to five
scenarios: kin selection, direct reciprocity, indirect reciprocity,
network reciprocity, and group selection, which, compared
with the so-called well-mixed population, can be somewhat
related to the reduction of an opposing agent’s anonymity for
maintaining the cooperative trait [12]. As Nowak explains, the
five scenarios add “social viscosity” to the original well-mixed
population by oppressing anonymity when two agents play a
game.

Since the appearance of the innovative five scenarios,
network reciprocity, in which agents are arranged on a spatially
structured topology and interact only with their immediate
neighbors, who are specified by edges and nodes, has drawn
the greatest interest. This is because in network reciprocity,
cooperators can survive by forming compact clusters, which
minimize exploitation by defectors. This seminal idea, the
role of spatial structure, and its various underlying variances
in evolutionary games have been keenly explored [13–23]
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(see [24] for a recent review). In networks, scientists have
found that strategy update rules and dynamics significantly
impact the evolution of cooperation [25–39]. Let us mention
two notable examples. In recent studies [40–45], where agents
were allowed to adjust their strategy based on diverse learning
ability or aspiration to the fittest opponent, the prevalence
of cooperative behavior, even under significant temptation
to defect, was observed. In [46], it was reported in detail
that several specific evolutionary dynamics presumed that
PD games on heterogeneous networks, such as scale-free
networks, can lead to an outbreak of cooperation, even if
inherent dilemma strength does not favor the spreading of
cooperators. It was promising, furthermore, that both strategy
update and update dynamics, which regulate how the time
step advances in a simulation and which considers either
synchronicity or asynchronicity in a simulation, were more
influential on the evolution of cooperation than network
topology (overviewed in [47,48]).

Going back to the original concept of strategy definition
itself, some researchers altered it to answer the question of why
agents are restricted to act using either C or D in traditional
models [49]. In real systems, individual behavior (or traits in
evolutionary ecology) can hardly be expected to have such
a patently discrete nature. From this perspective, evolutionary
dynamics in mixed-strategy or continuous strategy games have
been studied, strategies that permit agents to act with more
diverse behavior than simply to cooperate or defect [50].
A public goods (PG) game, which can be classified as a
multiplayer PD game, often presumes continuous rather than
discrete strategy, because, unlike binary action, a continuous
range of action is more appropriate to the inherent nature of
this dilemma game [51–53]. Similar to a PD game, a PG
game is thought to be able to model irrational human behavior;
game participants are required to offer a certain cost burden
for their support of sustainable PG. Enhanced cooperation
is observed if an assumed model is efficiently implemented
for adding social viscosity in the society [54–58] (recently
reviewed by [59]).

Despite the reports of several precursors, the manner
in which the different strategy systems produce different
cooperative phases remains ambiguous. A deeper study of both
continuous strategy and mixed-strategy games—in which an
agent decides a subsequent action with probability specified
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by a strategy value—would be especially valuable. As Zhong
et al. [49] found, games on a spatial structure with these
strategies have equilibria that are quite different from those
on well-mixed and infinite populations. In particular, they
showed that a continuous strategy in a spatial PD game with
a relatively larger chicken-type dilemma than stag-hunt-type
dilemma [60], where interactions instinctively tend toward
the so-called internal equilibrium, realizes a much higher
fraction of cooperators than the discrete strategy game. The
reason is that the offer of a middle cooperative action by
a real strategy value between 0 and 1 more efficiently and
flexibly leads to a more cooperative equilibrium. Also, in a
situation in which games feature a relatively stronger stag-
hunt-type dilemma than a chicken-type dilemma, games with
a somewhat bistablelike equilibrium, in which all agents are
either defectors or cooperators, the mixed-strategy game shows
a more cooperative equilibrium.

Meanwhile, in almost all previous studies, a mixed-strategy
game of spatial PD implicitly assumes an asynchronous
action update, in which focal agents stochastically decide
the subsequent action, either C or D, based on their strategy
values to all their neighbors independently. Even though a
mixed strategy by a synchronous action update (wherein focal
agents offer consistent C or D, stochastically determined by
their strategy, to all their neighbors in a single time step) is
as likely as an asynchronous strategy update, it is unclear
what the synchronous process for updating likes and how
it differs from the case of the asynchronous process. In a
conventional discrete strategy game, it is well known that
the so-called “stochasticity” in a game process produced by
features such as underlying networks and strategy adaptation
rules remarkably affects the evolution of cooperation [61–66].
Therefore, evolutionary dynamics in a mixed strategy, where
the decision-making process accompanying the strategy sys-
tem instinctively has large stochasticity, might merit study
for understanding the role of stochasticity in the evolution of
cooperation. This study, motivated by all the above mentioned
factors, thoroughly investigates evolutionary dynamics in the
mixed-strategy 2 × 2 game on a network.

The remaining part of the paper is structured as follows.
Section II is devoted to the description of a 2 × 2 game,
underlying network, and game dynamics by a mixed strategy.
Section III is devoted to a discussion of a series of numerical
simulations highlighting differences that result from different
update dynamics, which determine the moment at which the
agent’s action is updated in a mixed-strategy game. Finally,
conclusions are discussed in Sec. IV.

II. MODEL

A. 2 × 2 game

We consider a 2 × 2 game as an archetype. For a mixed-
strategy definition, agent i has strategy si , which is defined by
a real number in range [0,1] instead of discrete strategy, si =
0 or 1. In this framework, si is the probability that agent i will
cooperate with a neighbor. Namely, agent i always cooperates
if si = 1 (complete cooperator, C) or always defects if si = 0
(complete defector, D).

Agents are rewarded (R) for mutual cooperation and
punished (P) for mutual defection. If one agent chooses C and
the other chooses D, the latter receives a temptation payoff (T ),
while the former receives a payoff labeled as sucker (S).

According to the seminal idea [60], we define Dr = P − S

and Dg = T − R. We should say there is a dilemma to some
extent in a presumed game unless both are negative. Dg

indicates the dilemma intensity of how two equal players are
inclined to exploit each other, which is called the chicken-type
dilemma. While Dr implies the dilemma intensity of how equal
players try never to be exploited by each other, which is called
the stag-hunt-type dilemma. Thus, a PD where both Dg and
Dr are positive has both the chicken- and the stag-hunt-type
dilemmas at the same time. In this study, rescaling the payoffs
such that R = 1 and P = 0 without loss of mathematical
generality, the payoff matrix can be given as

(
R S

T P

)
=

(
1 −Dr

1 + Dg 0

)
, (1)

where the elements are assumed to satisfy T > R > P > S

and 2R > T + S. This means that in the following discussion,
we limit the PD game class by assuming 0 � Dg � 1 and
0 � Dr � 1.

B. Network

As the underlying network on which each agent plays games
with immediate agents connected with edges, we employ a
regular lattice with a periodic boundary condition with various
degrees k. The total number of population N is set to be
70 × 70 = 4900, which is sufficiently large to draw almost
insensitive results to the influence of social size.

C. Strategy updating and action updating

In classic evolutionary 2 × 2 game models with the dis-
crete strategy definition, the updating process for strategy
is presumed to model the concept of strategy adaptation. In
addition to this, the action updating must be presumed before
the strategy updating in the present simulation framework in
which mixed strategy is adopted since each agent’s action can
be switched according to the probability determined by the
strategy during an evolutionary scenario (see Sec. II A). Here
a strategy can be paraphrased as the behavioral profile for
an agent, and action means the actual behavior, either C or
D derived from the strategy. Thus, we inevitably divide the
updating process into two parts in our simulation: strategy
updating and action updating.

First, we explain the part of action updating. Agents must
decide the subsequent action, either C or D, according to the
probability of their own strategy si when they play a game
with opponents specified by the underlying network. The
presumed timing for updating action in mixed-strategy games
can be identified as one of two types: synchronous process for
updating action or asynchronous process for updating action.

In the case of synchronous process for updating action, all
agents update their own action simultaneously according to the
probability, which relies on the strategy si at each time step.
The decided action must be fixed during a time step. After

062149-2



INFLUENCE OF STOCHASTIC PERTURBATION OF BOTH . . . PHYSICAL REVIEW E 88, 062149 (2013)

doing so, using the decided action, each agent accumulates the
payoff while gaming with one’s immediate neighbors.

In the case of asynchronous process for updating action,
agents sequentially update their action at every moment they
play a game with an opponent. Let us take an example
assuming agent i having two neighbors: agent j1 and agent
j2. When agent i plays a game with agent j1, he or she updates
one’s action according to the probability si . Following to this,
agent j1 also updates the action. Subsequently, when agent
i plays a game with agent j2, agent i reupdates the action
according to the probability si . It is followed by agent j2

updating his or her action. Thus, if the asynchronous process
is used for updating action, each one’s action is refreshed at
each gaming event with each opponent to accumulate payoffs.

As is known well in the field, after accumulating pay-
offs, there are also two types of processes, synchronous or
asynchronous strategy updating, to determine the dynamics of
strategy adaptation. If strategy s is updated synchronously, the
game is iterated forward in accordance with the sequential
simulation procedure comprising the following elementary
steps. First, agent i acquires his or her payoff πi by playing
games with all of his or her neighbors. Then, we similarly
evaluate the payoffs of all agents. In each game, each agent’s
action is determined by the rule defined in the previous
paragraph. Last, agents synchronously update their strategy
at every step based on the accumulated payoffs with all
neighbors. If an asynchronous process is used, agent i is
chosen randomly from the whole population consisting of N
agents. Next, agent i and all immediate opponents acquire their
own respective payoffs by playing games with their respective
opponents, and then, each agent’s action is determined by the
rule defined in the previous paragraph. Finally, agent i updates
the strategy based on the accumulated payoff. In the same
manner, by choosing the next focal agent, the procedure is
iterated forward for all agents.

In this study, we adopt imitation max (IM) as the strategy
update rule, in which a focal agent unconditionally imitates the
strategy that acquires the largest payoff among all the strategies
available to both focal agent and immediate neighbors. For
emulating a realistic human decision-making process, one
might think a pairwise process or other stochastic method
would be appropriate, rather than a deterministic method such
as IM. Although we agree, we do, in fact, presume IM this time,
because our primary concern is how stochasticity caused by a
different updating process for action in mixed-strategy games
affects the evolution of cooperation. Thus, other assumed
conditions in simulations such as strategy updating method
and network topology should be fixed to deterministic or
homogeneous.

D. Simulation setting

Each simulation runs as follows. Initially, to initiate the
evolutionary process, each agent is assigned the strategy si

drawn from a uniform distribution of range [0,1]. The action,
either C or D, is determined by the rule mentioned above.
Then, several time steps are run until strategy values arrive at
an equilibrium state. Finally, we obtain the averaged frequency
of cooperators and values of s for the final 100 time steps. In
this framework, an agent can employ a different action for each

FIG. 1. (Color online) Comparison of fraction of cooperators for
discrete strategy definition and mixed-strategy definition in the PD
area on a regular lattice with k = 8. The top panels show results
when the strategy is updated synchronously, while the bottom panels
show when it is updated asynchronously. In this case, for the moment
to update the action for mixed-strategy definition, an asynchronous
process for updating action is used.

neighbor if the action is determined asynchronously, because
it is probabilistically defined. Therefore, the average fraction
of cooperators, ρc, is calculated on the basis of all actions
that actually happened, either C or D, which is observed in
the entire population during the final 100 time steps. From
the perspective of statistical robustness, we take an ensemble
average, which is evaluated on the basis of 100 independent
realizations for each dilemma strength point.

III. RESULTS AND DISCUSSION

Before we discuss the complicated story, to make things
simple and to grasp the entire picture, we first review evolution-
ary outcome in the discrete strategy versus the mixed-strategy
2 × 2 game. Figure 1 shows the fraction of cooperators in the
discrete strategy setting, where si = 0 or 1 only is allowed and
in the mixed-strategy setting, where si is initially defined in
the range from 0 to 1 by random uniformity. Here we employ
a square lattice with k = 8 and an asynchronous process
for updating action in the mixed-strategy game. Apparently,
mutual cooperation is enhanced in a mixed strategy than in a
discrete strategy if we are concerned only with a game that
features a strong stag-hunt-type dilemma. In the conventional
discrete strategy setting, the variety of payoffs that a cooperator
obtains is either R or S, and a defector can obtain either T or P.
On the other hand, in the mixed-strategy setting, it would be
possible to acquire all four payoffs, R, S, T, and P, irrespective
of strategy value (except for si = 0 and 1), because each action
is a result of the stochastic process arising from the focal
agent’s strategy; thus, even a relatively cooperative (defective)
agent may act as a defector (cooperator). Because of this,
a mixed-strategy game prevents a C-type agent (a relatively
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FIG. 2. Snapshots for action C (black solid square) and D (white
square) in Dg = 0 and Dr = 0.8 (shown in Fig. 1 by the white circle
on the horizontal axis). Panel (a) shows the action in a discrete
strategy setting, where either si = 0 or 1 is permitted as the strategy
parameter. Panel (b) shows the action in a mixed-strategy setting with
an asynchronous process for updating action. IM is employed for both
simulations as a strategy update rule.

cooperative agent equipped with si > 0.9 [67]) from being
exploited, and it decreases the payoff of a D-type agent who
imposes S on a C-type opponent and acquires T. Such an
effect sustains cooperation in the long run under the setting for
a mixed strategy. Figure 1 also indicates that a synchronous
process for updating strategy surpasses an asynchronous one.

To verify the above observations, Fig. 2 shows snapshots
depicting each agent’s actual action, C or D, with a corre-
sponding color. In the case of a discrete strategy setting, where
only a pure strategy is allowed, in the early period of an
evolutionary scenario, cooperators are invaded by surrounding
defectors; thus, they are exploited by neighboring defectors
who impose S on them; thus, the cooperators hardly form a C
cluster. Therefore, cooperation does not evolve when dilemma
strength becomes strong [panel (a) of Fig. 2]. In contrast,
in the case of a mixed-strategy setting, D-type agents that

have a low si value do not always have an advantage over
C-type agents, because all agents act stochastically, not always
offering a time constant C or D, even under the same strategy
value. Hence, once cooperators survive the initial invasion by
defectors, some germs of C clusters can survive, leading to the
maintenance of cooperation to some extent [panel (b) of Fig. 2].
To paraphrase, cooperators who would become defectors at the
beginning of the evolutionary dynamics in a discrete strategy
game framework are allowed to remain as cooperators in a
mixed-strategy game framework, although other cooperators,
who would not become defectors, might convert to defectors
in the discrete strategy game framework.

Incidentally, we may ask why the choice of strategy
adaptation process—synchronous or asynchronous accumula-
tion of payoff after playing games with neighbors—greatly
affects the outcome of the evolution of cooperation even
under a mixed strategy, which is inherently stochastic. The
presumed framework of how an agent accumulates payoff
strongly controls the amount of stochastic randomness, or say
stochasticity, which the model has as a whole. As mentioned
above, in mixed-strategy games, to a great extent, in the
decision-making process of an agent whose action depends on
a strategy value ranging from 0 to 1, stochastic nature is already
embedded. Despite this fact, the further stochastic mechanism
by which an agent’s payoff is accumulated, or says whether
strategy update dynamics are synchronous or asynchronous,
still significantly impacts the final outcome (right panels of
Fig. 1). Meanwhile, in the discrete strategy setting, cooperation
is slightly destroyed when payoff is calculated asynchronously
(left panels of Fig. 1). In both discrete and mixed-strategy
cases, since the asynchronous update rule adds stochastic per-
turbation, it is difficult to accomplish the perfect cooperative
phase, although cooperation can be slightly maintained even
in some part of strong dilemma areas. One possible reason for
the phenomenon is that when randomness that exists in the

FIG. 3. (Color online) From left to right, the final fraction of cooperators on a regular lattice with k = 8, 12, 24, and 48 with the
mixed-strategy definition for agents’ strategy. The panels in the top row are results in the case of an asynchronous process for updating action,
and the panels in the bottom row are results in case of a synchronous process for updating action.
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FIG. 4. (Color online) Snapshot for the average of each strategy value si and its evolutionary course, which is defined by a real number
in range [0,1] on a regular lattice with k = 8, for Dg = Dr = 0.3, respectively. The synchronous process for updating action is employed.
The number shown in the upper part of each snapshot corresponds to the generation of the evolutionary scenario. The red dotted lines also
correspond to the generations for the snapshot. In the first step, D-type agents having low si invade C-type agents who possess a relatively high
value of si . However, as time advances, surviving C-type clusters can expand gradually and finally reach a frozen state.

game process increases, the survival of cooperators will not
be always guaranteed, whereas cooperators have a chance to
survive under a strong dilemma structure [68]. As explained
above, we find that the stochastic nature of the game process
tremendously influences the evolution of cooperation.

As the next step, we discuss the result of the mixed-strategy
game in more detail. For mixed-strategy games, two types of
update timing can be assumed to determine the moment when
agents update the subsequent action based on the probability
si . We verify the effect of the rule for updating action on
the evolution of cooperation in the mixed strategy. In the
above discussion, although we found that the setting of the
strategy adaptation process—the calculation method for pay-
off, whether synchronously or asynchronously—significantly
affects the final state in the mixed-strategy games, we briefly
introduce the following discussion: We set a synchronous
update for the strategy adaptation process (we confirm that
the same conclusion would be drawn if an asynchronous
strategy update was presumed). We now show the result.
Figure 3 indicates the fraction of cooperators when either a
synchronous or an asynchronous process for updating action is
used for different degrees in terms of the underlying network.
Obviously, a different way of updating action brings about

an entirely different final result. This is especially true in the
case of a synchronous process, where mutual cooperation is
remarkably promoted. Of particular note is that the prosperity
of a cooperator is proportional to the number of degrees
of the underlying network. As previous studies highlight,
despite the fact that a discrete strategy system is assumed,
it is well known that increasing anonymity on a network
by increasing average degree means approximately closing
it to a well-mixed population, driving the population to a
defective state in PD games. This is consistent with the result
for an asynchronous process (top panels in Fig. 3), where we
see that cooperation weakens as degree increases. However,
the result for a synchronous process for updating action
(bottom panels in Fig. 3) surprisingly contradicts this. This
means that the influence of reducing social viscosity, which
usually induces defective behavior, might work positively in
the present framework.

Our next question is, “Why does the choice of synchronous
versus asynchronous updating of a process for action have a
large impact on the evolution of cooperation in mixed-strategy
games?” To answer this in detail, we look at a typical snapshot
of a small-degree case and a large-degree case. Figures 4
and 5 illustrate a time series of average strategy value s for all

FIG. 5. (Color online) Snapshot for the average of each strategy value si and its evolutionary course, which is defined by a real number
in range [0,1] on a regular lattice with k = 192, for Dg = Dr = 0.3, respectively. The synchronous process for updating action is employed.
The number shown in the upper part of each snapshot corresponds to the generation of the evolutionary scenario. The red dotted lines also
correspond to the generations for the snapshot. In the first step, D-type (or those possessing a half-baked value of si) agents invade fiercely.
However, in the second step, the surviving C-type cluster can expand rapidly.
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agents on a regular lattice network with k = 8 and k = 192,
a synchronous process for updating action. By observing
cooperator fraction ρc, which decreases at first (END, shown
in Fig. 8) and increases afterward (EXP, shown in Fig. 8),
we conjecture what happens as follows: D-type agents attack
C-type agents during the early period of the episode (END),
and surviving C-type agents successfully form several C-type
clusters after this early period of ordeal (EXP). Comparing
both cases of different k, we can confirm that a higher degree
facilitates a higher cooperation at the equilibrium, which is
realized by a single cluster composed of C-type agents with a
single uniformed cooperative strategy. The stability of a C-type
cluster generally depends on the amount of obtained payoff.
Let us observe the payoff difference in the two different k

cases taken in Figs. 4 and 5. Figure 6(a1) shows the time
series of average payoffs for five agent groups classified by
the level of strategy, while Fig. 6(a2) shows the time series of
maximum payoff among agents in each of the five different
strategy groups. These are drawn from the same trial observed
in Fig. 4 snapshot, which is the case for k = 8. Figures 6(b1)
and 6(b2) indicate the counterpart of Figs. 6(a1) and 6(a2)
for the k = 192 case observed in Fig. 5. Note that none of
these five strategy groups necessarily implies a single agent

cluster, except for the more cooperative strategy groups after
the seventh generation in case of k = 192.

We start the discussion with the case of k = 8 shown in
Figs. 6(a1) and (a2). We should note that two strategy groups,
0.60–0.65 (dotted red line) and 0.70–0.75 (dotted purple line
with square), survive until the end of the episode, although they
are neither the most cooperative (0.95–1.00, dashed sky-blue
line) nor the most defective (0.00–0.05, dash-dotted line)
group. This is the way that these two strategy groups generate
a higher maximum payoff than other groups for most of the
period except for the initial chaotic time [Fig. 6(a2)]. This
inhibits the follower agents from belonging to the same cluster,
sharing the same strategy and having the highest maximum
payoff agent similar to their neighbors, and copying a more
defective strategy from neighboring strategy groups. This
implies that this particular strategy group has less incentive to
change strategy, and it can maintain its relatively cooperative
strategy despite neighboring agents having a less cooperative
strategy. Furthermore, in a PD game, a less cooperative strategy
can always earn more than a more cooperative strategy. If
this is so, why does the event mentioned before happen,
and can cooperative clusters survive stably? To elucidate the
answer, we consider a relatively cooperative cluster. Even

FIG. 6. (Color online) Time series for the average payoff among agents, which is classified by strategy values possessed (interval depicted
shown in legend) and maximum payoff among them. Panels (a1) and (a2) show the average payoff and maximum payoff for k = 8, for
Dg = Dr = 0.3, and panels (b1) and (b2) show them for k = 192, for Dg = Dr = 0.3, respectively. Payoffs in these figures are normalized by
the number of degrees of the network, k. A logarithmic axis is used when k = 8 for simple visual information because we need long time steps
to equilibrium. The synchronous process is used as a process for updating action.
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in a cooperative cluster, by the dint of the mixed strategy
with a synchronous process for updating action, agents may
offer D’s to all of their neighbors in spite of their relatively
cooperative strategy, and most of their neighbors perhaps
offer C because of their relatively cooperative strategy. Thus,
the focus agent can temporarily obtain several T’s from
neighboring agents in the cluster (belonging to the same
strategy group, of course). This pushes the agent to be the
max-payoff agent among those in the same strategy group
and in comparison with other strategy groups. In the case of a
large-degree network, namely, results for k = 192 [Fig. 6(b2)],
such an effect becomes more prominent. The most cooperative
strategy group among those from which the agent draws,
0.85–0.90 (dashed sky-blue line) is able to survive until the
end [Fig. 6(b1)] and entirely dominates the system (Fig. 5).
In spatial PD games on homogeneous networks, it is evident
that a cluster formed with a high value of s can always acquire
more payoff than that with a low value if the cluster size is
sufficiently large (see Appendix A). Therefore, it is natural
that a cluster with a relatively high value of s can stably exist
once its members successfully form a sufficiently large cluster.
Meanwhile, in case of a large-degree network, agents with a
relatively cooperative strategy can temporarily obtain many T’s
by offering D against their many neighbors who are honestly
offering C. This transient event enables them to acquire the
extremely high payoff at a certain moment. In addition, an
IM of a large degree helps to enhance this, because the speed
of strategy diffusion in the case of IM is much larger than
in other pairwise ways. For all of these reasons, the case of
a large network degree realizes a more cooperative strategy
group surviving by constructing an extremely large C-type
cluster, almost dominating the system, as we observed in Fig. 5.
Likewise, one might expect that games on a network with a
small degree might cause the same phenomenon. However, it
is not noticeable, as we confirmed in Fig. 4. This is because
the probability that this situation actually happens, i.e., one in
which an agent standing at the center of the cluster offers D,
while all neighbors offer C, is much higher in a small-degree
case than it is in a large-degree case (see Appendix B).
This means that in a small-degree case, many more agents
who can obtain the maximum payoff by this special situation
simultaneously exist. Among those agents’ strategy that will
be copied by their immediate neighbors, some of their strategy
values might be high and some might be low. Thus, the
clear difference of maximum payoffs among several groups is
difficult to establish throughout an episode in the small-degree
case, as compared in Figs. 6(a2) and 6(b2). Consequently, the
evolution of cooperation is far inferior to that of an interaction
with a large degree.

In the case of an asynchronous process for updating
action, since focal agents update the action each time they
play a game with each of their neighbors in accordance
with the probability, the payoff of the focal agent does
not have drastic ups and downs as in the synchronous
process we discussed above. This indicates that there is
no special advantage for enhancing cooperation other than
the fact that a mixed strategy is implemented. In the end,
the asynchronous process for updating action promotes less
cooperation than the synchronous process. Looking back

at the ample stock of precursors, it has been proven that
stochastic perturbation (introducing a stochastic nature into
evolutionary dynamics, e.g., adding noise to the payoff matrix,
establishing a heterogeneous network, employing probabilistic
updating) helps to enhance network reciprocity [69–71]. It is
worthwhile to note that what we have found above, namely
the difference between the synchronous and asynchronous
update setting for an agent’s action in the framework of a
mixed-strategy game, should be understood in the context
of the amount of stochastic perturbation that is realized in
the model. It should be addressed that stochastic perturbation
realized by updating actions in a synchronous manner, not
an asynchronous manner, markedly increases the evolution
of cooperation. An asynchronous updating action in the
mixed-strategy system inherently entails probabilistic offering
actions by gaming agents more often than a synchronous one,
which leads the event frequency of C or D approximating
to the average value expressed by strategy si . This obviously
suppresses stochastic perturbation. This is the point that seems
crucially important for why synchronous updating action in a
mixed strategy surges cooperation.

Next let us mention the role of the underlying network. In
the above discussion we presumed a homogeneous network:
a regular lattice. Since each agent has the same number of
neighbors, their payoffs are determined only by the strategy.
On the other hand, when we presume a heterogeneous network,
a BA scale-free network [72] for example, the cooperation is
not so phenomenally enhanced vis-á-vis the lattice case as
the network average degree increases even in the case that
synchronous process for updating action is presumed with the
mixed strategy. This is because not only the strategy but also
the difference of degree among agents determines the agents’
payoff, which implies that a hub agent having large degree be-
comes influential for spreading his or her strategy irrespective
of his or her strategy value. Due to that fact, the drastic en-
hancement of cooperation can be seen only on a homogeneous
network, but not so much on a heterogeneous network.

Even though a synchronous process for updating action is
used in mixed-strategy games on a homogeneous network,
there is a limit to enhance cooperation. Figure 7 shows the
fraction of cooperators ρc versus the degree of network k.
The peak of cooperation appears around k = 48, which is
quite large compared with the critical degree for the network
reciprocity to work effectively in conventional static spatial
games. After the peak of ρc, it starts to decrease gradually in
a linear fashion. Thus, a relatively high cooperation phase can
be still observed on a quite dense network like the case of
k = 192 shown in Fig. 5 among episodes, but such an episode
occurs less frequently as the degree increases.

As we have discussed above, the difference of process
for updating action whether synchronous or asynchronous
significantly affects the evolutionary outcome as long as the
updating process for strategy was fixed as a synchronous one.
Let us mention the case of asynchronous process for updating
strategy. In such cases, we obtain a similar tendency, one in
which cooperation is enhanced in the case of a synchronous
process for updating action, while weakened in the case of
an asynchronous process (not shown); therefore, we may say
that our conclusion is qualitatively the same as what would
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FIG. 7. (Color online) The fraction of cooperators ρc versus the
degree of network k for Dg = Dr = 0.3. Each plot is obtained
averaging over 100 independent realizations. The peak of ρc appears
around k = 48. After that it starts to decrease in a linear fashion.

have been observed by implementing an synchronous strategy
updating.

It is known that the cooperation is not significantly
enhanced in PD games if the probabilistic strategy updating
rule such as Fermi update rule (see Appendix C ) is used in
the traditional discrete strategy game. To explore the influence
of the other strategy updating rule in our model, we adopted
the Fermi update rule instead of IM. Despite presuming the
mixed strategy, we confirmed that the cooperation was not
enhanced on a regular lattice network, as in the case of the
discrete strategy definition.

IV. CONCLUSION

In this study, we investigated the evolutionary mechanism
of cooperation in a mixed-strategy 2 × 2 game and compared
it with a discrete strategy setting. In a mixed-strategy game,
an agent acts according to the probability defined by the
strategy value. We found that the specification of a process for
the agent’s updating action, whether synchronously or asyn-
chronously, significantly affects the final result. Especially,

we showed a surprising result that cooperation is escalated
as the degree of the underlying network increases in the case
of a synchronous process for updating action, which opposes
the general understanding that the higher the degree of an
underlying network, the lesser the cooperation one is able to
attain. The difference between a synchronous process and an
asynchronous process for the updating offer is synonymous
with the difference between how stochastic perturbation is
considered in the game for the two processes. It is well known
that the difference of stochastic perturbation derived from
the choice of update rule for strategy adaptation that is used
causes a relatively large influence in discrete strategy games.
As shown in this study, such stochastic perturbation by the
difference of the strategy adaptation rule also strongly impacts
the final fraction of cooperators in mixed-strategy games,
although the strategy definition itself is stochastic by nature.
In addition, stochastic perturbation caused by the setting of
the process for updating action plays a crucial role for the
evolution of cooperation in the mixed-strategy game.

Shigaki et al. [73] elucidate one of the substantial mecha-
nisms of network reciprocity to enhance cooperation, in which
they insisted that the evolutionary process can be classified
into two sequential periods: an enduring (END) period, where
initial cooperators are rapidly plundered by defectors, leaving
only a few cooperators forming compact C clusters, and an ex-
panding (EXP) period, where C clusters start to expand (see the
schematic view shown in Fig. 8). Evidently, such a tendency
that they observed can be seen in the present model (time series
shown in Figs. 4 and 5). This leads us to identify a universal
principle in cases of network reciprocity, even those with
superficial features: The different models that are assumed are
observed to be quite different from our result showed, where
a larger degree enables more cooperation, which contrasts
common knowledge about what is observed in most models.
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period: C clusters start to expand, since a cooperator on the clusters’ border can attract a neighboring defector into the cluster. In the present
framework, evolutionary dynamics can also be classified into these two types.
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APPENDIX A

When the size of a cluster is sufficiently large, the payoff
acquired by agents who are placed near the center of a cluster,
far from the boundary, can be predicted by applying mean
field approximation (MFA). The average payoff per link in the
cluster with a mixed strategy sx within a range of [0,1] is as
follows:

〈π〉 = s2
xR + sx(1 − sx)S + (1 − sx)sxT + (1 − sx)2P

= (R − T − S + P )s2
x + (S + T − 2P )sx + P

= (R − S − T + P )

{
sx + S + T − 2P

2(R − S − T + P )

}2

− (S + T − 2P )2

4(R − S − T + P
+ P. (A1)

By taking the derivative with respect to sx , we obtain

d〈π〉
dsx

= 2(R − S − T + P )sx + S + T − P. (A2)

Depending on whether R − S − T + P is positive, 0, or neg-
ative, we can evaluate whether d〈π〉

dsx
is positive by examining

whether the minimum d〈π〉
dsx

, or say, either d〈π〉
dsx

|sx=0 or d〈π〉
dsx

|sx=1,
is positive, because Eq. (A2) is linear. Let us pursue the three
cases as below:

(i) When R − S − T + P > 0,

d〈π〉
dsx

∣∣∣∣
min

= d〈π〉
dsx

∣∣∣∣
sx=0

= 2(R − S − T + P )0 + S + T − P

= S + T − P ; (A3)

(ii) when R − S − T + P = 0,

d〈π〉
dsx

∣∣∣∣
min

= 2(0)sx + S + T − P

= S + T − P ; (A4)

(iii) when R − S − T + P < 0,

d〈π〉
dsx

∣∣∣∣
min

= 2(R − S − T + P )1 + S + T − P

= 2R − S − T + P. (A5)

To the end, we obtain the necessary and sufficient condition to
ensure that 〈π〉 is monotonically increasing as

2R > S + T − P > 0. (A6)

As long as we presume archetype PD games, where R = 1 and
P = 0 are assumed, and that R reciprocity, not ST reciprocity
(see [74]), is satisfied, the condition above is always valid. As
precisely noted in [74], R reciprocity means that the dilemma
situation of mutual R’s is meaningful for both players, as in

FIG. 9. (Color online) Probabilities that the special situation
mentioned in Fig. 10 occurs in a cluster with degrees k = 8, 24,
96, and 192. The inset shows magnification for the right bottom area.
In the small-degree case, agents have a relatively high possibility of
being the most profitable agent in the wide range of sx .

typical PGs, whereas ST reciprocity means that the specific
dilemma situation of alternating S and T is more beneficial
than that of constantly obtaining mutual R’s. The so-called
leader game and hero game, which are both classified under
the chicken game category, are typical dilemmas where ST
reciprocity is meaningful.

In summary, when we presume typical PDs, where R reci-
procity, not ST reciprocity, is satisfied, 〈π〉 is monotonically
increasing with respect to the cooperation extent sx .

APPENDIX B

We presume the special situation, one in which center-
placed focal agents offer D, while all their neighbors offer C, as
schematically shown in Fig. 10. Figure 9 shows the probability
of the special situation above, in which the probability can
be defined as P〈π〉max = (1 − sx)sk

x , where sx means strategy
shared by focal agents as well as all their neighbors. Obviously,
the larger the degree, the rarer the special situation.

APPENDIX C

Imitation max is the deterministic strategy updating rule in
which an agent unconditionally imitates the strategy which can
produce the highest payoff among neighbors, while the Fermi

FIG. 10. (Color online) Schematic view of special situation in the
case of k = 8, where a central agent in a cluster offers D, while all
his or her neighbors offer C, even though all agents belonging to the
cluster have identical strategy sx .
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update rule is the one of probabilistic strategy updating rules.
First, randomly selected agent i acquires his or her payoff πi

by playing the game with all his or her four neighbors. Next,
one randomly chosen neighbor of agent i, denoted by j , also
acquires his or her payoff πj by playing games with his or
her all neighbors. Then, focal agent i imitates the strategy of
agent j by the pairwise comparison process that determines the
probability of whether the agent would copy or not, depending

on the payoff difference of those two,

Psj →si
= 1

1 + exp
(
−πj −πi

κ

) , (C1)

where κ denotes the uncertainty governing the strategy
adaptation. In our study, κ is set to be 0.1.
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[46] J. Gómez-Gardeñes, M. Campillo, L. M. Florı́a, and Y. Moreno,

Phys. Rev. Lett. 98, 108103 (2007).
[47] A. Yamauchi, J. Tanimoto, and A. Hagishima, Biosystems 102,

82 (2010).
[48] A. Yamauchi, J. Tanimoto, and A. Hagishima, Biosystems 103,

85 (2011).
[49] W. Zhong, S. Kokubo, and J. Tanimoto, BioSystems 107, 88

(2012).
[50] C. E. Tarnita, T. Antal, and M. A. Nowak, J. Theor. Biol. 261,

50 (2009).
[51] C. Zhang, J. Zhang, G. Xie, and L. Wang, Europhys. Lett. 90,

68005 (2010).
[52] X. Chen, A. Szolnoki, M. Perc, and L. Wang, Phys. Rev. E 85,

066133 (2012).
[53] J. Gao, Z. Li, R. Cong, and L. Wang, Physica A 381, 4111

(2012).

062149-10

http://dx.doi.org/10.1038/374227a0
http://dx.doi.org/10.1038/374227a0
http://dx.doi.org/10.1038/374227a0
http://dx.doi.org/10.1038/374227a0
http://dx.doi.org/10.1038/246015a0
http://dx.doi.org/10.1038/246015a0
http://dx.doi.org/10.1038/246015a0
http://dx.doi.org/10.1038/246015a0
http://dx.doi.org/10.1016/S0378-4371(03)00263-2
http://dx.doi.org/10.1016/S0378-4371(03)00263-2
http://dx.doi.org/10.1016/S0378-4371(03)00263-2
http://dx.doi.org/10.1016/S0378-4371(03)00263-2
http://dx.doi.org/10.1371/journal.pcbi.0020178
http://dx.doi.org/10.1371/journal.pcbi.0020178
http://dx.doi.org/10.1371/journal.pcbi.0020178
http://dx.doi.org/10.1371/journal.pcbi.0020178
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1016/j.jtbi.2010.01.025
http://dx.doi.org/10.1016/j.jtbi.2010.01.025
http://dx.doi.org/10.1016/j.jtbi.2010.01.025
http://dx.doi.org/10.1016/j.jtbi.2010.01.025
http://dx.doi.org/10.1016/j.chaos.2012.01.004
http://dx.doi.org/10.1016/j.chaos.2012.01.004
http://dx.doi.org/10.1016/j.chaos.2012.01.004
http://dx.doi.org/10.1016/j.chaos.2012.01.004
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1073/pnas.1206681109
http://dx.doi.org/10.1073/pnas.1206681109
http://dx.doi.org/10.1073/pnas.1206681109
http://dx.doi.org/10.1073/pnas.1206681109
http://dx.doi.org/10.1038/srep00369
http://dx.doi.org/10.1038/srep00369
http://dx.doi.org/10.1038/srep00369
http://dx.doi.org/10.1038/srep00369
http://dx.doi.org/10.1103/PhysRevE.80.036106
http://dx.doi.org/10.1103/PhysRevE.80.036106
http://dx.doi.org/10.1103/PhysRevE.80.036106
http://dx.doi.org/10.1103/PhysRevE.80.036106
http://dx.doi.org/10.1016/j.physa.2010.12.003
http://dx.doi.org/10.1016/j.physa.2010.12.003
http://dx.doi.org/10.1016/j.physa.2010.12.003
http://dx.doi.org/10.1016/j.physa.2010.12.003
http://dx.doi.org/10.1209/0295-5075/94/30003
http://dx.doi.org/10.1209/0295-5075/94/30003
http://dx.doi.org/10.1209/0295-5075/94/30003
http://dx.doi.org/10.1209/0295-5075/94/30003
http://dx.doi.org/10.1016/j.jtbi.2008.09.022
http://dx.doi.org/10.1016/j.jtbi.2008.09.022
http://dx.doi.org/10.1016/j.jtbi.2008.09.022
http://dx.doi.org/10.1016/j.jtbi.2008.09.022
http://dx.doi.org/10.1371/journal.pone.0040218
http://dx.doi.org/10.1371/journal.pone.0040218
http://dx.doi.org/10.1371/journal.pone.0040218
http://dx.doi.org/10.1371/journal.pone.0040218
http://dx.doi.org/10.1038/srep01183
http://dx.doi.org/10.1038/srep01183
http://dx.doi.org/10.1038/srep01183
http://dx.doi.org/10.1038/srep01183
http://dx.doi.org/10.1371/journal.pone.0071961
http://dx.doi.org/10.1371/journal.pone.0071961
http://dx.doi.org/10.1371/journal.pone.0071961
http://dx.doi.org/10.1371/journal.pone.0071961
http://dx.doi.org/10.1371/journal.pone.0032114
http://dx.doi.org/10.1371/journal.pone.0032114
http://dx.doi.org/10.1371/journal.pone.0032114
http://dx.doi.org/10.1371/journal.pone.0032114
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1103/PhysRevE.66.021907
http://dx.doi.org/10.1103/PhysRevE.66.021907
http://dx.doi.org/10.1103/PhysRevE.66.021907
http://dx.doi.org/10.1103/PhysRevE.66.021907
http://dx.doi.org/10.1103/PhysRevE.64.051905
http://dx.doi.org/10.1103/PhysRevE.64.051905
http://dx.doi.org/10.1103/PhysRevE.64.051905
http://dx.doi.org/10.1103/PhysRevE.64.051905
http://dx.doi.org/10.1103/PhysRevE.77.046109
http://dx.doi.org/10.1103/PhysRevE.77.046109
http://dx.doi.org/10.1103/PhysRevE.77.046109
http://dx.doi.org/10.1103/PhysRevE.77.046109
http://dx.doi.org/10.1103/PhysRevE.85.011149
http://dx.doi.org/10.1103/PhysRevE.85.011149
http://dx.doi.org/10.1103/PhysRevE.85.011149
http://dx.doi.org/10.1103/PhysRevE.85.011149
http://dx.doi.org/10.1016/j.jtbi.2007.01.002
http://dx.doi.org/10.1016/j.jtbi.2007.01.002
http://dx.doi.org/10.1016/j.jtbi.2007.01.002
http://dx.doi.org/10.1016/j.jtbi.2007.01.002
http://dx.doi.org/10.1209/0295-5075/87/48005
http://dx.doi.org/10.1209/0295-5075/87/48005
http://dx.doi.org/10.1209/0295-5075/87/48005
http://dx.doi.org/10.1209/0295-5075/87/48005
http://dx.doi.org/10.1103/PhysRevE.80.011909
http://dx.doi.org/10.1103/PhysRevE.80.011909
http://dx.doi.org/10.1103/PhysRevE.80.011909
http://dx.doi.org/10.1103/PhysRevE.80.011909
http://dx.doi.org/10.1371/journal.pcbi.0020140
http://dx.doi.org/10.1371/journal.pcbi.0020140
http://dx.doi.org/10.1371/journal.pcbi.0020140
http://dx.doi.org/10.1371/journal.pcbi.0020140
http://dx.doi.org/10.1016/j.physa.2012.07.065
http://dx.doi.org/10.1016/j.physa.2012.07.065
http://dx.doi.org/10.1016/j.physa.2012.07.065
http://dx.doi.org/10.1016/j.physa.2012.07.065
http://dx.doi.org/10.1088/1367-2630/11/8/083031
http://dx.doi.org/10.1088/1367-2630/11/8/083031
http://dx.doi.org/10.1088/1367-2630/11/8/083031
http://dx.doi.org/10.1088/1367-2630/11/8/083031
http://dx.doi.org/10.1016/j.jtbi.2007.10.040
http://dx.doi.org/10.1016/j.jtbi.2007.10.040
http://dx.doi.org/10.1016/j.jtbi.2007.10.040
http://dx.doi.org/10.1016/j.jtbi.2007.10.040
http://dx.doi.org/10.1016/j.jtbi.2012.04.024
http://dx.doi.org/10.1016/j.jtbi.2012.04.024
http://dx.doi.org/10.1016/j.jtbi.2012.04.024
http://dx.doi.org/10.1016/j.jtbi.2012.04.024
http://dx.doi.org/10.1209/0295-5075/97/48001
http://dx.doi.org/10.1209/0295-5075/97/48001
http://dx.doi.org/10.1209/0295-5075/97/48001
http://dx.doi.org/10.1209/0295-5075/97/48001
http://dx.doi.org/10.1371/journal.pone.0056016
http://dx.doi.org/10.1371/journal.pone.0056016
http://dx.doi.org/10.1371/journal.pone.0056016
http://dx.doi.org/10.1371/journal.pone.0056016
http://dx.doi.org/10.1088/1367-2630/14/7/073035
http://dx.doi.org/10.1088/1367-2630/14/7/073035
http://dx.doi.org/10.1088/1367-2630/14/7/073035
http://dx.doi.org/10.1088/1367-2630/14/7/073035
http://dx.doi.org/10.1103/PhysRevE.82.021115
http://dx.doi.org/10.1103/PhysRevE.82.021115
http://dx.doi.org/10.1103/PhysRevE.82.021115
http://dx.doi.org/10.1103/PhysRevE.82.021115
http://dx.doi.org/10.1371/journal.pone.0015117
http://dx.doi.org/10.1371/journal.pone.0015117
http://dx.doi.org/10.1371/journal.pone.0015117
http://dx.doi.org/10.1371/journal.pone.0015117
http://dx.doi.org/10.1016/j.physa.2011.08.039
http://dx.doi.org/10.1016/j.physa.2011.08.039
http://dx.doi.org/10.1016/j.physa.2011.08.039
http://dx.doi.org/10.1016/j.physa.2011.08.039
http://dx.doi.org/10.1209/0295-5075/77/30004
http://dx.doi.org/10.1209/0295-5075/77/30004
http://dx.doi.org/10.1209/0295-5075/77/30004
http://dx.doi.org/10.1209/0295-5075/77/30004
http://dx.doi.org/10.1371/journal.pone.0001917
http://dx.doi.org/10.1371/journal.pone.0001917
http://dx.doi.org/10.1371/journal.pone.0001917
http://dx.doi.org/10.1371/journal.pone.0001917
http://dx.doi.org/10.1016/j.physa.2010.06.023
http://dx.doi.org/10.1016/j.physa.2010.06.023
http://dx.doi.org/10.1016/j.physa.2010.06.023
http://dx.doi.org/10.1016/j.physa.2010.06.023
http://dx.doi.org/10.1103/PhysRevLett.98.108103
http://dx.doi.org/10.1103/PhysRevLett.98.108103
http://dx.doi.org/10.1103/PhysRevLett.98.108103
http://dx.doi.org/10.1103/PhysRevLett.98.108103
http://dx.doi.org/10.1016/j.biosystems.2010.07.017
http://dx.doi.org/10.1016/j.biosystems.2010.07.017
http://dx.doi.org/10.1016/j.biosystems.2010.07.017
http://dx.doi.org/10.1016/j.biosystems.2010.07.017
http://dx.doi.org/10.1016/j.biosystems.2010.10.006
http://dx.doi.org/10.1016/j.biosystems.2010.10.006
http://dx.doi.org/10.1016/j.biosystems.2010.10.006
http://dx.doi.org/10.1016/j.biosystems.2010.10.006
http://dx.doi.org/10.1016/j.biosystems.2011.10.001
http://dx.doi.org/10.1016/j.biosystems.2011.10.001
http://dx.doi.org/10.1016/j.biosystems.2011.10.001
http://dx.doi.org/10.1016/j.biosystems.2011.10.001
http://dx.doi.org/10.1016/j.jtbi.2009.07.028
http://dx.doi.org/10.1016/j.jtbi.2009.07.028
http://dx.doi.org/10.1016/j.jtbi.2009.07.028
http://dx.doi.org/10.1016/j.jtbi.2009.07.028
http://dx.doi.org/10.1209/0295-5075/90/68005
http://dx.doi.org/10.1209/0295-5075/90/68005
http://dx.doi.org/10.1209/0295-5075/90/68005
http://dx.doi.org/10.1209/0295-5075/90/68005
http://dx.doi.org/10.1103/PhysRevE.85.066133
http://dx.doi.org/10.1103/PhysRevE.85.066133
http://dx.doi.org/10.1103/PhysRevE.85.066133
http://dx.doi.org/10.1103/PhysRevE.85.066133
http://dx.doi.org/10.1016/j.physa.2012.03.027
http://dx.doi.org/10.1016/j.physa.2012.03.027
http://dx.doi.org/10.1016/j.physa.2012.03.027
http://dx.doi.org/10.1016/j.physa.2012.03.027


INFLUENCE OF STOCHASTIC PERTURBATION OF BOTH . . . PHYSICAL REVIEW E 88, 062149 (2013)

[54] A. Traulsen, C. Hauert, H. D. Silve, M. A. Nawak, and
K. Sigmund, Proc. Natl. Acad. Sci. USA 106, 709 (2009).

[55] J. M. Pacheco, F. L. Pinheiro, and F. C. Santos, PLoS Comput.
Biol. 5, e1000596 (2009).

[56] D. Helbing, A. Szolnoki, M. Perc, and G. Szabó, New J. Phys.
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